請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92122完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳信希 | zh_TW |
| dc.contributor.advisor | Hsin-Hsi Chen | en |
| dc.contributor.author | 阮羿寧 | zh_TW |
| dc.contributor.author | Yi-Ning Juan | en |
| dc.date.accessioned | 2024-03-05T16:23:28Z | - |
| dc.date.available | 2024-03-19 | - |
| dc.date.copyright | 2024-03-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-17 | - |
| dc.identifier.citation | D. Araci. Finbert: Financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063, 2019.
S. Banerjee and A. Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, pages 65–72, 2005. I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150, 2020. S. Cao and L. Wang. Controllable open-ended question generation with a new question type ontology. In C. Zong, F. Xia, W. Li, and R. Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 6424–6439, Online, Aug. 2021. Association for Computational Linguistics. Z. Chen, W. Chen, C. Smiley, S. Shah, I. Borova, D. Langdon, R. Moussa, M. Beane, T.-H. Huang, B. Routledge, and W. Y. Wang. FinQA: A dataset of numerical reasoning over financial data. In M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, edi-tors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3697–3711, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics. I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coefficient. Noise reduction in speech processing, pages 1–4, 2009. Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov. Transformer- XL: Attentive language models beyond a fixed-length context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, Florence, Italy, July 2019. Association for Computational Linguistics. T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. X. Du, J. Shao, and C. Cardie. Learning to ask: Neural question generation for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1342–1352, Vancouver, Canada, July 2017. Association for Computational Linguistics. Z. Fei, Q. Zhang, T. Gui, D. Liang, S. Wang, W. Wu, and X. Huang. CQG: A simple and effective controlled generation framework for multi-hop question generation. In S. Muresan, P. Nakov, and A. Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6896–6906, Dublin, Ireland, May 2022. Association for Computational Linguistics. T. Gao, X. Yao, and D. Chen. Simcse: Simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021. M. Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv preprint arXiv:2203.05794, 2022. C. H. Guanliang Chen, Jie Yang and G.-J. Houben. Learningq: A large-scale dataset for educational question generation, 2018. M. Guo, J. Ainslie, D. Uthus, S. Ontanon, J. Ni, Y.-H. Sung, and Y. Yang. Longt5: Efficient text-to-text transformer for long sequences. arXiv preprint arXiv:2112.07916, 2021. S. Han, B. Kim, and B. Chang. Measuring and improving semantic diversity of dialogue generation. arXiv preprint arXiv:2210.05725, 2022. M. Heilman and N. A. Smith. Question generation via overgenerating transformations and ranking. DTIC Document, 2009. M. Heilman and N. A. Smith. Good question! statistical ranking for question generation. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 609–617, Los Angeles, California, June 2010. Association for Computational Linguistics. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021. X. Jia, W. Zhou, X. Sun, and Y. Wu. How to ask good questions? try to leverage paraphrases. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6130–6140, Online, July 2020. Association for Computational Linguistics. T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, and E. Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of the Association for Computational Linguistics, 6:317–328, 2018. T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, et al. Natural questions: a benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:453–466, 2019. T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.- W. Chang, A. M. Dai, J. Uszkoreit, Q. Le, and S. Petrov. Natural questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019. G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. Race: Large-scale reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017. N.-T. Le, T. Kojiri, and N. Pinkwart. Automatic question generation for educational applications–the state of art. In Advanced Computational Methods for Knowledge Engineering: Proceedings of the 2nd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2014), pages 325–338. Springer, 2014. M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871– 7880, Online, July 2020. Association for Computational Linguistics. J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015. C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74–81, 2004. S. Medya, M. Rasoolinejad, Y. Yang, and B. Uzzi. An exploratory study of stock price movements from earnings calls. In Companion Proceedings of the Web Conference 2022, WWW ’22, page 20–31, New York, NY, USA, 2022. Association for Computing Machinery. J. Mostow and W. Chen. Generating instruction automatically for the reading strategy of self-questioning. In AIED, pages 465–472. Brighton, 2009. R. Mukherjee, A. Bohra, A. Banerjee, S. Sharma, M. Hegde, A. Shaikh, S. Shrivastava, K. Dasgupta, N. Ganguly, S. Ghosh, and P. Goyal. ECTSum: A new benchmark dataset for bullet point summarization of long earnings call transcripts. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10893–10906, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics. N. Mulla and P. Gharpure. Automatic question generation: a review of methodologies, datasets, evaluation metrics, and applications. Progress in Artificial Intelligence, 12(1):1–32, 2023. T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. MS MARCO: A human generated machine reading comprehension dataset. CoRR, abs/1611.09268, 2016. R. Palmieri, A. Rocci, and N. Kudrautsava. Argumentation in earnings conference calls. corporate standpoints and analysts'challenges. Studies in communication sciences, 15(1):120–132, 2015. L. Pan, Y. Xie, Y. Feng, T.-S. Chua, and M.-Y. Kan. Semantic graphs for generating deep questions. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1463 1475, Online, July 2020. Association for Computational Linguistics. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311–318, 2002. A. Prasad, T. Bui, S. Yoon, H. Deilamsalehy, F. Dernoncourt, and M. Bansal. Meetingqa: Extractive question-answering on meeting transcripts. ACL, 2023. Y. Qin and Y. Yang. What you say and how you say it matters: Predicting stock volatility using verbal and vocal cues. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 390–401, Florence, Italy, July 2019. Association for Computational Linguistics. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, Nov. 2016. Association for Computational Linguistics. P. S. B. Rao, M. Agnihotri, and D. B. Jayagopi. Improving asynchronous interview interaction with follow-up question generation. International Journal of Interactive Multimedia and Artificial Intelligence, 6(5):79–89, 03/2021 2021. H. Rashkin, A. Celikyilmaz, Y. Choi, and J. Gao. PlotMachines: Outline-conditioned generation with dynamic plot state tracking. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4274–4295, Online, Nov. 2020. Association for Computational Linguistics. S. Rose, D. Engel, N. Cramer, and W. Cowley. Automatic keyword extraction from individual documents. Text mining: applications and theory, pages 1–20, 2010. R. Sawhney, P. Khanna, A. Aggarwal, T. Jain, P. Mathur, and R. R. Shah. VolTAGE: Volatility forecasting via text audio fusion with graph convolution networks for earnings calls. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8001–8013, Online, Nov. 2020. Association for Computational Linguistics. L. Song, Z. Wang, W. Hamza, Y. Zhang, and D. Gildea. Leveraging context information for natural question generation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 569–574, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. R. Sun, X. Zhou, and F. Fang. Neural question generation using question type guidance. In 2021 17th International Conference on Computational Intelligence and Security (CIS), pages 328–332, 2021. R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto. Stanford alpaca: An instruction-following llama model. https:// github.com/tatsu-lab/stanford_alpaca, 2023. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. A. Trischler, T. Wang, X. Yuan, J. Harris, A. Sordoni, P. Bachman, and K. Suleman. NewsQA: A machine comprehension dataset. In P. Blunsom, A. Bordes, K. Cho, S. Cohen, C. Dyer, E. Grefenstette, K. M. Hermann, L. Rimell, J. Weston, and S. Yih, editors, Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 191–200, Vancouver, Canada, Aug. 2017. Association for Computational Linguistics. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. S. Wang, Z. Wei, Z. Fan, Z. Huang, W. Sun, Q. Zhang, and X. Huang. PathQG: Neural question generation from facts. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9066–9075, Online, Nov. 2020. Association for Computational Linguistics. Y. Yang, W.-t. Yih, and C. Meek. WikiQA: A challenge dataset for opendomain question answering. In L. Màrquez, C. Callison-Burch, and J. Su, editors, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2013–2018, Lisbon, Portugal, Sept. 2015. Association for Computational Linguistics. T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019. Z. Zhao, Y. Hou, D. Wang, M. Yu, C. Liu, and X. Ma. Educational question generation of children storybooks via question type distribution learning and eventcentric summarization. In S. Muresan, P. Nakov, and A. Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5073–5085, Dublin, Ireland, May 2022. Association for Computational Linguistics. W. Zhou, M. Zhang, and Y. Wu. Question-type driven question generation. In K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6032–6037, Hong Kong, China, Nov. 2019. Association for Computational Linguistics. Y. Zhu, S. Lu, L. Zheng, J. Guo, W. Zhang, J. Wang, and Y. Yu. Texygen: A bench-marking platform for text generation models. In The 41st international ACM SIGIR conference on research & development in information retrieval, pages 1097–1100, 2018. Y. Zhu, H. Yuan, S. Wang, J. Liu, W. Liu, C. Deng, Z. Dou, and J.-R. Wen. Large language models for information retrieval: A survey. arXiv preprint arXiv:2308.07107, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92122 | - |
| dc.description.abstract | 從學術研討會到每個季度由企業召開的法說會,對於當今社會多樣的專業領域而言,口頭報告已成為日常工作中必不可少的一部分。演講/報告者會試圖通過分析觀眾的背景、興趣和對主題的認知,來預測觀眾可能的提問以進一步完善自己的報告。然而,這一過程不僅耗時,而且在觀眾群體龐大或多元化的情況下尤為困難。雖然近幾年自然語言處理(NLP)在問題生成方面取得了進展,但其主要焦點仍然在事實型問題的生成或教育場域評量型問題的應用,往往無法直接適用於商業或實際工作情境,因這些專業領域會面臨的問題通常更為複雜,且依賴於特定背景,常常需要一定的領域知識,如法說會中財經分析師所提出的問題。有鑑於此,本研究首次提出了專為專業領域如法說會設計的多問題生成(MQG)任務。我們收集並整理了一份包含近六千篇法說會逐字稿的資料集,其中包含公司經理人的報告內容,以及約十萬個分析師於法說會所提出的問題,根據我們提出的標記框架,這些問題又被進一步分為對應的不同類別。此外,我們提出了一種基於檢索器-生成器的共同訓練框架,以及利用檢索增強模型多問題生成的訓練策略,其中結合了基於提示(prompt-based)的微調(fine-tune)方法來檢索相關經理人報告中的段落,以增強生成模型預測分析師可能提出的問題的能力。實驗結果證實,我們提出的方法在生成問題的準確性、多樣性、一致性和困惑度以及人工評估上皆優於其他具競爭力的訓 練策略,證明了其有效性。本文探索了自動問題生成的新方法,而且通過實驗與人工評估驗證了其在實際專業領域應用場景中的效果,為自然語言處理領域的應用探索了新的可能性。 | zh_TW |
| dc.description.abstract | In diverse professional environments, from academic conferences to corporate earnings calls, being able to predict audience questions is crucial. Traditional methods, which rely on manual assessment of an audience''s background, interests, and subject knowledge, often fall short—particularly when facing large or heterogeneous groups, leading to inaccuracies and inefficiencies. Although Natural Language Processing (NLP) has advanced in generating questions from text, its focus has largely been on academic applications, not fully addressing the complex needs of professional scenarios like earnings calls. To fill this gap, our paper introduces a new task: multi-question generation (MQG), tailored for the context of earnings calls. Our approach includes collecting a vast number of earnings call transcripts and developing a unique annotation method to categorize potential questions. Additionally, we introduced a "Co-Trained Retriever-Generator Framework" that enhances the generator''s ability to produce a variety of questions likely to be asked by financial analysts. This is achieved by supplying the generator with information relevant to the questions during the training phase, focusing on the content of earnings calls. Our empirical evaluations demonstrate the effectiveness of our method, showcasing strong performance across question accuracy, diversity, consistency, perplexity, and human evaluation. We believe this approach could improve the quality of conference presentations and make communication more efficient, better meeting stakeholder needs. It represents a notable advancement in preparation tools within the financial communication field. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:23:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-05T16:23:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
摘要 v Abstract vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Challenges 3 1.2.1 Input Length Limitation 3 1.2.2 Diverse Analyst Perspectives 4 1.2.3 Absence of Guiding Information for Question Generation 5 1.2.4 Complexity and Structure of Analysts’ Questions 5 1.3 Contributions 7 1.4 Thesis Organization 9 Chapter 2 Related Work 11 Chapter 3 Datasets 13 3.1 Dataset Collection and Preprocess 13 3.2 Dataset Analysis 16 3.2.1 Dataset Statistics 16 3.2.2 Comparison with Existing Datasets 16 3.3 Question Type Annotation 21 3.3.1 Annotation Scheme 22 3.3.2 Annotation Procedure and Results 26 3.3.3 Question Type Classifier 28 Chapter 4 Pilot Experiment 31 4.1 Task Formulation 32 4.2 Model Selection 33 4.3 Experiments 35 4.3.1 Evaluation Metrics 36 4.3.1.1 Correctness 36 4.3.1.2 Diversity 37 4.3.2 Results 38 Chapter 5 Methodology 43 5.1 Task Formulation 43 5.2 Co-Trained Retriever-Generator Framework 45 5.3 Inference 48 Chapter 6 Experiments 49 6.1 Experimental Setup 49 6.2 Evaluation Metrics 51 6.3 Main Results 55 6.3.1 Automatic evaluation 55 6.3.2 Human Evaluation 61 Chapter 7 Discussion 69 7.1 Impact of Question Typology Annotation 69 7.2 Robustness Test 70 7.3 Impact of Different Parameter Sizes in Retriever 71 7.4 Impact of Different Passage Sizes on Generator Using Various Re-trieve Methods 72 Chapter 8 Conclusion 75 References 77 | - |
| dc.language.iso | en | - |
| dc.subject | 基於提示的微調 | zh_TW |
| dc.subject | 問題生成 | zh_TW |
| dc.subject | 檢索增強 | zh_TW |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | 自然語言理解 | zh_TW |
| dc.subject | Large Language Model | en |
| dc.subject | Prompt-based Fine-tuning | en |
| dc.subject | Question Generation | en |
| dc.subject | Retrieval-Augmented | en |
| dc.subject | Natural Language Understanding | en |
| dc.title | 利用 Prompt-Based 微調段落檢索器與 Alpaca-Lora 解碼器增強法說會預期問題生成 | zh_TW |
| dc.title | Expected Question Generation in Earnings Call Conferences Enhanced by Prompt-Based Fine-Tuning for Relevant Paragraph Retrieval with Alpaca-Lora | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 古倫維 | zh_TW |
| dc.contributor.coadvisor | Lun-Wei Ku | en |
| dc.contributor.oralexamcommittee | 王釧茹;陳建錦 | zh_TW |
| dc.contributor.oralexamcommittee | Chuan-Ju Wang;Chien-Chin Chen | en |
| dc.subject.keyword | 基於提示的微調,問題生成,檢索增強,大型語言模型,自然語言理解, | zh_TW |
| dc.subject.keyword | Prompt-based Fine-tuning,Question Generation,Retrieval-Augmented,Large Language Model,Natural Language Understanding, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202400722 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-18 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資料科學學位學程 | - |
| 顯示於系所單位: | 資料科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
