請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | zh_TW |
| dc.contributor.advisor | Anthony J. T. Lee | en |
| dc.contributor.author | 李欣 | zh_TW |
| dc.contributor.author | Hsin Lee | en |
| dc.date.accessioned | 2024-03-05T16:22:56Z | - |
| dc.date.available | 2024-03-06 | - |
| dc.date.copyright | 2024-03-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-03 | - |
| dc.identifier.citation | 【1】 Alsini A, Huynh DQ, Datta A (2023) #REVAL: A semantic evaluation framework for hashtag recommendation. arXiv:2305.18330. https://doi.org/10.48550/arXiv.2305.18330.
【2】 Bahdanau D, Cho K, Bengio Y (2016) Neural machine translation by jointly learning to align and translate. ArXiv:1409.0473. https://doi.org/10.48550/arXiv.1409.0473. 【3】 Chen YC, Lai KT, Liu D, Chen MS (2022) TAGNet: Triplet-attention graph networks for hashtag recommendation. IEEE Transaction on Circuits and Systems for Video Technology 32(3):1148–1159. https://doi.org/10.1109/TCSVT.2021.3074599. 【4】 Cheng L, Leung ACS, Ozawa S eds. (2018) Hashtag recommendation with attention-based neural image hashtagging network. Proceedings of International Conference on Neural Information Processing. 52–63. https://doi.org/10.1007/978-3-030-04179-3_5. 【5】 Denton E, Weston J, Paluri M, Bourdev L, Fergus R (2015) User conditional hashtag prediction for images. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1731–1740. https://dl.acm.org/doi/10.1145/2783258.2788576. 【6】 Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 4171–4186. https://doi.org/10.18653/v1/N19-1423. 【7】 Ding Z, Qiu X, Zhang Q, Huang X (2013) Learning topical translation model for microblog hashtag suggestion. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. 2078–2084. https://dl.acm.org/doi/10.5555/2540128.2540427. 【8】 Gong Y, Zhang Q (2016) Hashtag recommendation using attention-based convolutional neural network. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. 2782–2788. https://dl.acm.org/doi/10.5555/3060832.3061010. 【9】 Gong Y, Zhang Q, Huang X (2018) Hashtag recommendation for multimodal microblog posts. Neurocomputing 272:170–177. https://doi.org/10.1016/j.neucom.2017.06.056. 【10】 Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18(5–6):602–610. 【11】 Graves A, Wayne G, Danihelka I (2014) Neural turing machines. ArXiv:1410.5401. https://doi.org/10.48550/arXiv.1410.5401. 【12】 Graves A, Wayne G, Reynolds M, Harley T, Danihelka I, Grabska-Barwińska A, Colmenarejo SG, et al. (2016) Hybrid computing using a neural network with dynamic external memory. Nature 538(7626):471–476. https://doi.org/10.1038/nature20101. 【13】 He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. ArXiv:1512.03385. http://arxiv.org/abs/1512.03385. 【14】 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. 【15】 Huang H, Zhang Q, Gong Y, Huang X (2016) Hashtag recommendation using end-to-end memory networks with hierarchical attention. Proceedings of the International Conference on Computational Linguistics. 943–952. 【16】 Javari A, He Z, Huang Z, Jeetu R, Chen-Chuan Chang K (2020) Weakly supervised attention for hashtag recommendation using graph data. Proceedings of The Web Conference. 1038–1048. https://doi.org/10.1145/3366423.3380182. 【17】 Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE. 86(11):2278–2324. https://doi.org/10.1109/5.726791. 【18】 Lu J, Yang J, Batra D, Parikh D (2016) Hierarchical question-image co-attention for visual question answering. Proceedings of the International Conference on Neural Information Processing Systems. 289–297. https://dl.acm.org/doi/10.5555/3157096.3157129. 【19】 Ma R, Qiu X, Zhang Q, Hu X, Jiang YG, Huang X (2019) Co-attention memory network for multimodal microblog’s hashtag recommendation. IEEE Transactions on Knowledge and Data Engineering 33(2):388–400. https://doi.org/10.1109/TKDE.2019.2932406. 【20】 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in Vector Space. ArXiv:1301.3781. http://arxiv.org/abs/1301.3781. 【21】 Miller A, Fisch A, Dodge J, Karimi AH, Bordes A, Weston J (2016) Key-value memory networks for directly reading documents. Proceedings of the Conference on Empirical Methods in Natural Language Processing. 1400–1409. https://doi.org/10.18653/v1/D16-1147. 【22】 Peng M, Lin Y, Zeng L, Gui T, Zhang Q (2019) Modeling the long-term post history for personalized hashtag recommendation. Proceedings of the Conference on Chinese Computational Linguistics. 495–507. https://doi.org/10.1007/978-3-030-32381-3_40. 【23】 Połap D (2023) Hybrid image analysis model for hashtag recommendation through the use of deep learning methods. Expert Systems with Applications 229:120566. https://doi.org/10.1016/j.eswa.2023.120566. 【24】 Rauschnabel PA, Sheldon P, Herzfeldt E (2019) What motivates users to hashtag on social media? Psychology and Marketing. 36(5):473–488. https://doi.org/10.1002/mar.21191. 【25】 Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention. 234-241. https://doi.org/10.1007/978-3-319-24574-4_28. 【26】 Schlichtkrull M, Kipf TN, Bloem P, Berg R van den, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. The Semantic Web Lecture Notes in Computer Science. vol 18043. Springer Science and Business Media LLC, Berlin/Heidelberg, Germany. 【27】 Sedhai S, Sun A (2014) Hashtag recommendation for hyperlinked Tweets. Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval. 831–834. https://doi.org/10.1145/2600428.2609452. 【28】 Sukhbaatar S, Szlam A, Weston J, Fergus R (2015) End-to-end memory networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. 2440–2448. https://doi.org/10.48550/arXiv.1503.08895. 【29】 Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems. 3104–3112. 【30】 Tao H, Khan L, Thuraisingham B (2022) Personalized hashtag recommendation with user-level meta-learning. Proceedings of International Joint Conference on Neural Networks. 1–8. 【31】 Weston J, Chopra S, Bordes A (2015) Memory networks. ArXiv:1410.3916. http://arxiv.org/abs/1410.3916. 【32】 Yang Q, Wu G, Li Y, Li R, Gu X, Deng H, Wu J (2020) AMNN: Attention-based multimodal neural network model for hashtag recommendation. IEEE Transactions on Computational Social Systems 7(3):768–779. https://doi.org/10.1109/TCSS.2020.2986778. 【33】 Yang Z, He X, Gao J, Deng L, Smola A (2016) Stacked attention networks for image question answering. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 21–29. https://doi.org/10.1109/CVPR.2016.10. 【34】 Zhang Q, Wang J, Huang H, Huang X, Gong Y (2017) Hashtag recommendation for multimodal microblog using co-attention network. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. 3420–3426. https://doi.org/10.24963/ijcai.2017/478. 【35】 Zhang S, Yao Y, Xu F, Tong H, Yan X, Lu J (2019) Hashtag recommendation for photo sharing services. Proceedings of the AAAI Conference on Artificial Intelligence 33:5805–5812. https://doi.org/10.1609/aaai.v33i01.33015805. 【36】 Zhang Z, Bu J, Ester M, Zhang J, Yao C, Li Z, Wang C (2020) Learning temporal interaction graph embedding via coupled memory networks. Proceedings of The Web Conference. 3049–3055. https://doi.org/10.1145/3366423.3380076. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92120 | - |
| dc.description.abstract | 為了提升貼文能見度以及讓貼文呈現個人化或品牌形象,在本研究中,我們提出一個個人化主題標籤推薦模型,我們提出的模型包括四個階段,首先,我們萃取每篇貼文的視覺與文字特徵,接著,我們設計一個貼文與標籤的注意力機制以取得使用者標注的習慣以及貼文與標籤的關係,然後,我們開發一個六重共注意力機制產生貼文表示式,最後,我們利用關係圖卷積網絡來強化貼文表示式,並利用強化後的貼文表示式推薦主題標籤。實驗結果顯示,我們的模型在命中率、精確度、召回率和F1分數等指標上均優於現有模型。我們的模型可幫助使用者使用個人化的主題標籤,亦可幫助企業加速主題標籤標注的工作,進而提升貼文的能見度、社群參與度以及使用者間的互動。 | zh_TW |
| dc.description.abstract | To increase the post visibility and present personalized or brand image, in this study, we propose a novel personalized hashtag recommendation framework to recommend hashtags for user posts. The proposed framework contains four phases. First, we extract the visual and textual features from each post. Second, we devise the post-tag attention mechanism to acquire user tagging habits and post-tag relationships through similar posts. Third, we employ the sextuplet co-attention mechanism to derive the representation of each post. Finally, we adopt the relational graph convolution network (R-GCN) to construct the interaction graph between posts and update the post representations by propagating information among neighboring nodes. Then, we use the convoluted post representations to recommend hashtags for users. The results from the experiments demonstrate that the suggested framework surpasses the performance of current state-of-the-art models, achieving higher scores in hit rate, precision, recall, and F1 score. Our proposed framework may offer an effective tool for users to quickly make personalized hashtags on their posts and for businesses to accelerate the task of creating hashtags, which in turn increases post visibility, fosters community engagement, and enhances user interactions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:22:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-05T16:22:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Related Work 4 2.1 Hashtag Recommendation 4 2.2 Memory Network 6 2.3 Attention Mechanism 6 Chapter 3 The Proposed Framework 8 3.1 Feature Extraction 9 3.1.1 Image Encoder 9 3.1.2 Text Encoder 12 3.2 Post-Tag Attention Mechanism 12 3.3 Sextuplet Co-attention Mechanism 14 3.4 Graph Convolution and Hashtag Recommendation 15 Chapter 4 Experimental Results 18 4.1 Dataset and Experiment Setup 18 4.2 Performance Evaluation 19 4.4 Effects of Attention Mechanisms 22 4.5 Recommendation Examples 26 Chapter 5 Conclusions and Future Work 29 References 32 Appendix 36 | - |
| dc.language.iso | en | - |
| dc.subject | 主題標籤推薦 | zh_TW |
| dc.subject | 注意力機制 | zh_TW |
| dc.subject | 關係圖卷積網絡 | zh_TW |
| dc.subject | 記憶網絡 | zh_TW |
| dc.subject | Memory Network | en |
| dc.subject | Hashtag recommendations | en |
| dc.subject | Attention mechanism | en |
| dc.subject | Relational Graph Convolution Network | en |
| dc.title | 基於社群媒體內容之個人化 Hashtag 推薦模型 | zh_TW |
| dc.title | A Personalized Hashtag Recommendation Model Based on Social Media Contents | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 向倩儀;吳怡瑾 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Yi Hsiang;I-Chin Wu | en |
| dc.subject.keyword | 主題標籤推薦,注意力機制,關係圖卷積網絡,記憶網絡, | zh_TW |
| dc.subject.keyword | Hashtag recommendations,Attention mechanism,Relational Graph Convolution Network,Memory Network, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202400412 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-05 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
