Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92097
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃文達zh_TW
dc.contributor.advisorWen-Dar Huangen
dc.contributor.author吳玫臻zh_TW
dc.contributor.authorMei-Chen Wuen
dc.date.accessioned2024-03-05T16:16:27Z-
dc.date.available2024-03-06-
dc.date.copyright2024-03-05-
dc.date.issued2024-
dc.date.submitted2024-02-06-
dc.identifier.citation李水盛、徐鳳麟、邱泰惠、陳益昇、賴慧真。2019。常用中藥第二版。臺北市:台灣藥學會、知音出版社。
張正、宋珮綺、張芝瑄、陳盈君、林永浩。2006。臺灣白及種子發育與貯藏之研究 [Seed Development and Storage of Bletilla formosana (Hayata) Schltr.]。植物種苗,8(3),29-38。https://doi.org/10.30077/sn.200609.0003
陳盈君、李宗徽、洪惠娟、張正、張隆仁、魏芳明。2009。臺灣白及(Bletilla formosana(Hayata)Schltr.)假球莖發育與成分分析 [The Development、Cultivation and Chemical Constituents in Psudobulbs of Bletilla Formosana (Hayata) Schltr]。臺中區農業改良場研究彙報 (103),31-39。https://doi.org/10.6956/btdais.200906.0031
楊榮光。2003。川藥炮製規範學。臺北市:衛生福利部國家中醫藥研究所。
衛生福利部臺灣中藥典第四版編修委員。2021。臺灣中藥典第四版。臺北市:衛生福利部。
Arai-Sanoh, Y., Ida, M., Zhao, R., Yoshinaga, S., Takai, T., Ishimaru, T., Maeda, H., Nishitani, K., Terashima, Y., & Gau, M. (2011). Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, and sugar vane. Bioscience, Biotechnology, and Biochemistry, 75(6), 1104-1112. https://doi.org/10.1271/bbb.110009
Atif, M. J., Amin, B., Ghani, M. I., Ali, M., & Cheng, Z. (2020). Variation in morphological and quality Parameters in Garlic (Allium sativum L.) Bulb Influenced by Different Photoperiod, Temperature, Sowing and Harvesting Time. Plants, 9(2), 155. https://doi.org/10.3390/plants9020155
Atilio J, B., & Causin, H. F. (1996). The central role of amino acids on nitrogen utilization and plant growth. Journal of Plant Physiology, 149(3), 358-362. https://doi.org/10.1016/S0176-1617(96)80134-9
Bae, J. Y., Lee, J. W., Jin, Q., Jang, H., Lee, D., Kim, Y., Hong, J. T., Lee, M. K., Lee, M. S., & Hwang, B. Y. (2017). Chemical constituents isolated from Bletilla striata and their inhibitory effects on nitric oxide production in RAW 264.7 cells. Chemistry & Biodiversity, 14(2), e1600243. https://doi.org/10.1002/cbdv.201600243
Bao, H. Y., Zhang, J., Yeo, S. J., Myung, C.-S., Kim, H. M., Kim, J. M., Park, J. H., Cho, J., & Kang, J. S. (2005). Memory enhancing and neuroprotective effects of selected ginsenosides. Archives of Pharmacal Research, 28(3), 335-342. https://doi.org/10.1007/BF02977802
Barnett, N. M., & Naylor, A. (1966). Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiology, 41(7), 1222-1230. https://doi.org/10.1104/pp.41.7.1222
Cai, B., Qin, K., Wu, H., Cai, H., Lu, T., & Zhang, X. (2012). Chemical mechanism during Chinese medicine processing. Progress in Chemistry, 24(04), 637-649.
Chen, H., Zeng, J., Wang, B., Cheng, Z., Xu, J., Gao, W., & Chen, K. (2021). Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydrate Polymers, 266, 118149. https://doi.org/10.1016/j.carbpol.2021.118149
Chen, Z., Cheng, L., He, Y., & Wei, X. (2018). Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. International Journal of Biological Macromolecules, 120, 2076-2085. https://doi.org/10.1016/j.ijbiomac.2018.09.028
Cheng, G., Zhou, S., Zhang, J., Huang, X., Bai, X., Xie, T., Guo, R., Liu, J., Yu, H., & Xie, L. (2019). Comparison of transcriptional expression patterns of phenols and carotenoids in 'Kyoho' grapes under a two-crop-a-year cultivation system. PLoS One, 14(1), e0210322. https://doi.org/10.1371/journal.pone.0210322
Cheng, W., Lu, J., Wang, B., Sun, L., Zhu, B., Zhou, F., & Ding, Z. (2021). Inhibition of inflammation-induced injury and cell migration by coelonin and militarine in PM2.5-exposed human lung alveolar epithelial A549 cells. European Journal of Pharmacology, 896, 173931. https://doi.org/10.1016/j.ejphar.2021.173931
Cho, E. J., Piao, X. L., Jang, M. H., Baek, S. H., Kim, H. Y., Kang, K. S., Kwon, S. W., & Park, J. H. (2008). The effect of steaming on the free amino acid contents and antioxidant activity of Panax ginseng. Food Chemistry, 107(2), 876-882. https://doi.org/10.1016/j.foodchem.2007.09.007
Choi, Y., Lee, S. M., Chun, J., Lee, H. B., & Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chemistry, 99(2), 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
Chung, I. M., Kim, J. J., Lim, J. D., Yu, C. Y., Kim, S. H., & Hahn, S. J. (2006). Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environmental and Experimental Botany, 56(1), 44-53. https://doi.org/10.1016/j.envexpbot.2005.01.001
Dale, M. P., & Causton, D. R. (1992). Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant. Functional Ecology, 6(2), 190-196. https://doi.org/10.2307/2389754
Dean, M. A., Letner, C. A., & Eley, J. H. (1993). Effect of autumn foliar senescence on chlorophyll a:b ratio and respiratory enzymes of populus tremuloides. Bulletin of the Torrey Botanical Club, 120(3), 269-274. https://doi.org/10.2307/2996991
Deng, P., Yin, R., Wang, H., Chen, L., Cao, X., & Xu, X. (2023). Comparative analyses of functional traits based on metabolome and economic traits variation of Bletilla striata: Contribution of intercropping. Frontiers in Plant Science, 14, 1147076. https://doi.org/10.3389/fpls.2023.1147076
Deshavath, N. N., Mukherjee, G., Goud, V. V., Veeranki, V. D., & Sastri, C. V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 156, 180-185. https://doi.org/10.1016/j.ijbiomac.2020.04.045
Ding, Z., Jia, S., Wang, Y., Xiao, J., & Zhang, Y. (2017). Phosphate stresses affect ionome and metabolome in tea plants. Plant Physiology and Biochemistry, 120, 30-39. https://doi.org/10.1016/j.plaphy.2017.09.007
Dong, J., Zhao, L., Cai, L., Fang, H., Chen, X., & Ding, Z. (2014). Antioxidant activities and phenolics of fermented Bletilla formosana with eight plant pathogen fungi. Journal of Bioscience and Bioengineering, 118(4), 396-399. https://doi.org/10.1016/j.jbiosc.2014.03.003
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., & Kulma, A. (2016). The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences, 17(2), 160. https://doi.org/10.3390/ijms17020160
Emeterio-Lara, A., García-Franco, J. G., Hernández-Apolinar, M., Toledo-Hernández, V. H., Valencia-Díaz, S., & Flores-Palacios, A. (2021). Is pseudobulb harvest a sustainable management strategy in wild orchid populations? An experiment with Laelia autumnalis. Forest Ecology and Management, 491, 119205. https://doi.org/10.1016/j.foreco.2021.119205
Fang, Y.-K., Shang, Z.-M., Sun, G.-Q., Zhang, M.-S., Wang, G., Xu, D.-L., Zhou, Y., Sun, C.-X., & Xiao, S.-J. (2022). Glucosyloxybenzyl 2-isobutylmalates and phenolic glycosides from the flowers of Bletilla striata. Fitoterapia, 160, 105220. https://doi.org/10.1016/j.fitote.2022.105220
Fernández-Novales, J., López, M.-I., Sánchez, M.-T., Morales, J., & González-Caballero, V. (2009). Shortwave-near infrared spectroscopy for determination of reducing sugar content during grape ripening, winemaking, and aging of white and red wines. Food Research International, 42(2), 285-291. https://doi.org/10.1016/j.foodres.2008.11.008
Fritschi, F. B., & Ray, J. D. (2007). Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica, 45(1), 92-98. https://doi.org/10.1007/s11099-007-0014-4
Gates, D. M. (1968). Transpiration and leaf temperature. Annual Review of Plant Physiology, 19(1), 211-238.
Gonçalves, B., Borges, O., Rosa, E., Coutinho, J., & Silva, A. P. (2012). Effect of cooking on free amino acid and mineral profiles of sweet chestnut (Castanea sativa Mill.). Fruits, 67(3), 201-214. https://doi.org/10.1051/fruits/2012013
Gong, G., Guan, Y.-Y., Zhang, Z.-L., Rahman, K., Wang, S.-J., Zhou, S., Luan, X., & Zhang, H. (2020). Isorhamnetin: A review of pharmacological effects. Biomedicine & Pharmacotherapy, 128, 110301. https://doi.org/10.1016/j.biopha.2020.110301
Green, B. R., Pichersky, E., & Kloppstech, K. (1991). Chlorophyll a/b-binding proteins: An extended family. Trends in Biochemical Sciences, 16, 181-186.
Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190.
Gu, Q., Liu, Y., Zhen, L., Zhao, T., Luo, L., Zhang, J., Deng, T., Wu, M., Cheng, G., & Hu, J. (2022). The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-kappaB pathway. Carbohydrate Polymers, 292, 119694. https://doi.org/10.1016/j.carbpol.2022.119694
Guo, J.-J., Dai, B.-L., Chen, N.-P., Jin, L.-X., Jiang, F.-S., Ding, Z.-S., & Qian, C.-D. (2016). The anti-Staphylococcus aureus activity of the phenanthrene fraction from fibrous roots of Bletilla striata. BMC Complementary and Alternative Medicine, 16(1), 491. https://doi.org/10.1186/s12906-016-1488-z
Haeger, G., Bongaerts, J., & Siegert, P. (2022). A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent. Analytical Biochemistry, 654, 114819. https://doi.org/10.1016/j.ab.2022.114819
Halford, N., Curtis, T., Muttucumaru, N., Postles, J., & Mottram, D. (2011). Sugars in crop plants. Annals of Applied Biology, 158(1), 1-25. https://doi.org/10.1111/j.1744-7348.2010.00443.x
He, X., Wang, X., Fang, J., Zhao, Z., Huang, L., Guo, H., & Zheng, X. (2017). Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. Journal of Ethnopharmacology, 195, 20-38. https://doi.org/10.1016/j.jep.2016.11.026
Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell, 17(8), 2142-2155. https://doi.org/10.1105/tpc.105.032508
Holm, J., Björck, I., Asp, N. G., Sjöberg, L. B., & Lundquist, I. (1985). Starch availability in vitro and in vivo after flaking, steam-cooking and popping of wheat. Journal of Cereal Science, 3(3), 193-206. https://doi.org/10.1016/S0733-5210(85)80013-8
Hu, W. H., Yang, Y. H., Liaw, S. I., & Chang, C. (2013). Cryopreservation the seeds of a Taiwanese terrestrial orchid, Bletilla formosana (Hayata) Schltr. by vitrification. Botanical Studies, 54(1), 33. https://doi.org/10.1186/1999-3110-54-33
Huan, J., He, Z., Lei, Y., Li, W., Jiang, L., & Luo, X. (2022). The genetic diversity of Bletilla spp. Based on SLAF-seq and Oligo-FISH. Genes, 13(7), 1118. https://doi.org/10.3390/genes13071118
Huang, J., Yuan, F., Zhou, M., Huang, T., Zhang, Y., & Liang, Q. (2022). Phenotype correlation analysis and excellent germplasm screening of herb Bletilla Rchb. f. based on comprehensive evaluation from thirty-three geographic populations. BMC Plant Biology, 22(1), 154. https://doi.org/10.1186/s12870-022-03540-w
Hussein, R., & El-Anssary, A. (2019). Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herbal Medicine, 1(3). https://doi.org/10.5772/intechopen.76139
Ito, H., Kikuzaki, H., & Ueno, H. (2019). Effects of cooking methods on free amino acid contents in vegetables. Journal of Nutritional Science and Vitaminology, 65(3), 264-271. https://doi.org/10.3177/jnsv.65.264
Jia, X., Li, Q., Xu, M., Zhang, J., & Xu, D. (2024). Advances in militarine: Pharmacology, synthesis, molecular regulation and regulatory mechanisms. Heliyon, 10(2), e24341. https://doi.org/10.1016/j.heliyon.2024.e24341
Jiang, F., Li, W., Huang, Y., Chen, Y., Jin, B., Chen, N., Ding, Z., & Ding, X. (2013). Antioxidant, antityrosinase and antitumor activity comparison: The potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb. f. PLoS One, 8(2), e58004. https://doi.org/10.1371/journal.pone.0058004
Jiang, S., Wan, K., Lou, H.-Y., Yi, P., Zhang, N., Zhou, M., Song, Z.-Q., Wang, W., Wu, M.-K., & Pan, W.-D. (2019). Antibacterial bibenzyl derivatives from the tubers of Bletilla striata. Phytochemistry, 162, 216-223. https://doi.org/10.1016/j.phytochem.2019.03.022
Jiang, S., Wang, M., Jiang, L., Xie, Q., Yuan, H., Yang, Y., Zafar, S., Liu, Y., Jian, Y., Li, B., & Wang, W. (2021). The medicinal uses of the genus Bletilla in traditional Chinese medicine: A phytochemical and pharmacological review. Journal of Ethnopharmacology, 280, 114263. https://doi.org/10.1016/j.jep.2021.114263
Ju, H. K., Chung, H. W., Hong, S.-S., Park, J. H., Lee, J., & Kwon, S. W. (2010). Effect of steam treatment on soluble phenolic content and antioxidant activity of the Chaga mushroom (Inonotus obliquus). Food Chemistry, 119(2), 619-625. https://doi.org/10.1016/j.foodchem.2009.07.006
Kao, T. I., Chen, P. J., Wang, Y. H., Tseng, H. H., Chang, S. H., Wu, T. S., Yang, S. H., Lee, Y. T., & Hwang, T. L. (2021). Bletinib ameliorates neutrophilic inflammation and lung injury by inhibiting Src family kinase phosphorylation and activity. British Journal of Pharmacology, 178(20), 4069-4084. https://doi.org/10.1111/bph.15597
Kashyap, P., Shikha, D., Thakur, M., & Aneja, A. (2022). Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. Journal of Food Biochemistry, 46(4), e13950. https://doi.org/10.1111/jfbc.13950
Khatri, D., & Chhetri, S. B. B. (2020). Reducing sugar, total phenolic content, and antioxidant potential of Nepalese plants. BioMed Research International, 2020, 7296859. https://doi.org/10.1155/2020/7296859
Kim, K. H., Oh, J. K.-W., & Jeong, W. (2016). Study on solar radiation models in South Korea for improving office building energy performance analysis. Sustainability, 8(6), 589. https://doi.org/10.3390/su8060589
Kong, L., Yu, L., Feng, T., Yin, X., Liu, T., & Dong, L. (2015). Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydrate Polymers, 125, 1-8. https://doi.org/10.1016/j.carbpol.2015.02.042
Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342. https://doi.org/10.1021/jf000523q
Kuo, Y.-H., Ikegami, F., & Lambein, F. (2003). Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry, 62(7), 1087-1091. https://doi.org/10.1016/S0031-9422(02)00658-1
Lanfer-Marquez, U. M., Barros, R. M. C., & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38(8), 885-891. https://doi.org/10.1016/j.foodres.2005.02.012
Li, L., Hao, B., Zhang, Y., Ji, S., & Chou, G. (2020). Metabolite profiling and distribution of militarine in rats using UPLC-Q-TOF-MS/MS. Molecules, 25(5), 1082. https://doi.org/10.3390/molecules25051082
Li, M., & Qian, S. (2016). Gastrodin protects neural progenitor cells against amyloid β (1–42)-induced neurotoxicity and improves hippocampal neurogenesis in amyloid β (1–42)-injected mice. Journal of Molecular Neuroscience, 60, 21-32. https://doi.org/10.1007/s12031-016-0758-z
Li, Q., Huang, C., Liu, C., Jia, X., Wen, W., Li, L., He, Y., & Xu, D. (2023). Exploring the role and expression pattern of WRKY transcription factor in the growth and development of Bletilla striata based on transcriptome. Gene Reports, 30, 101730. https://doi.org/10.1016/j.genrep.2022.101730
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4.3.1-F4.3.8.
Lin, C. W., Hwang, T. L., Chen, F. A., Huang, C. H., Hung, H. Y., & Wu, T. S. (2016). Chemical constituents of the rhizomes of Bletilla formosana and their potential anti-inflammatory activity. Journal of Natural Products, 79(8), 1911-1921. https://doi.org/10.1021/acs.jnatprod.6b00118
Lin, H., & Chang, Y.-C. A. (2023). Carbohydrate changes in the pseudobulbs of Oncidesa Gower Ramsey ‘Honey Angel’ during vegetative and reproductive growth. HortScience, 58(1), 114-121. https://doi.org/10.21273/HORTSCI16905-22
Lin, Y. L., Chen, W. P., & Macabalang, A. D. (2005). Dihydrophenanthrenes from Bletilla formosana. Chemical and Pharmaceutical Bulletin, 53(9), 1111-1113. https://doi.org/10.1248/cpb.53.1111
Liu, H., Huang, C., Li, Q., Wang, M., Xiao, S., Shi, J., He, Y., Wen, W., Li, L., & Xu, D. (2022). Genome-wide identification of genes related to biosynthesis of phenolic acid derivatives in Bletilla striata at different suspension culture stages. Frontiers in Plant Science, 13, 875404. https://doi.org/10.3389/fpls.2022.875404
Liu, Y., Gao, J., Peng, M., Meng, H., Ma, H., Cai, P., Xu, Y., Zhao, Q., & Si, G. (2018). A review on central nervous system effects of gastrodin. Frontiers in Pharmacology, 9(24), 1-18. https://doi.org/10.3389/fphar.2018.00024
Liu, Y., Tu, Y., Kang, Y., Zhu, C., Wu, C., Chen, G., Liu, Z., & Li, Y. (2022). Biological evaluation, molecular modeling and dynamics simulation of phenanthrenes isolated from Bletilla striata as butyrylcholinesterase inhibitors. Scientific Reports, 12(1), 13649. https://doi.org/10.1038/s41598-022-17912-7
Lu, M. K., Chang, C. C., Chao, C. H., & Hsu, Y. C. (2022). Structural changes, and anti-inflammatory, anti-cancer potential of polysaccharides from multiple processing of Rehmannia glutinosa. International Journal of Biological Macromolecules, 206, 621-632. https://doi.org/10.1016/j.ijbiomac.2022.02.112
Luo, Y., Diao, H., Xia, S., Dong, L., Chen, J., & Zhang, J. (2010). A physiologically active polysaccharide hydrogel promotes wound healing. Journal of Biomedical Materials Research Part A, 94(1), 193-204. https://doi.org/10.1002/jbm.a.32711
Luo, Y., Wang, J., Li, S., Wu, Y., Wang, Z., Chen, S., & Chen, H. (2022). Discovery and identification of potential anti-melanogenic active constituents of Bletilla striata by zebrafish model and molecular docking. BMC Complementary Medicine and Therapies, 22(9), 1-14. https://doi.org/10.1186/s12906-021-03492-y
Maina, J. N., & Wang, Q. (2015). Seasonal response of chlorophyll a/b ratio to stress in a typical desert species: Haloxylon ammodendron. Arid Land Research and Management, 29(3), 321-334. https://doi.org/10.1080/15324982.2014.980588
Mi, Z.-y., Lv, D.-h., Jiang, G.-h., Niu, J.-f., Wang, S.-q., & Wang, Z.-z. (2021). Establishment of a rapid breeding system for Bletilla striata. HortScience, 56(4), 454-459. https://doi.org/10.21273/hortsci15598-20
Moore, S., & Stein, W. H. (1948). Photometric ninhydrin method for use in the chromatography of amino acids. Journal of Biological Chemistry, 176(1), 367-388.
Nishidono, Y., Ishii, T., Okada, R., Norimoto, H., Murayama, C., He, D., Okuyama, T., Nishizawa, M., & Tanaka, K. (2020). Effect of heat processing on the chemical constituents and NO-suppressing activity of Bletilla tuber. Journal of Natural Medicines, 74(1), 219-228. https://doi.org/10.1007/s11418-019-01371-y
Ohara-Takada, A., Matsuura-Endo, C., Chuda, Y., Ono, H., Yada, H., Yoshida, M., Kobayashi, A., Tsuda, S., Takigawa, S., & Noda, T. (2005). Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Bioscience, Biotechnology, and Biochemistry, 69(7), 1232-1238. https://doi.org/10.1271/bbb.69.1232
Pan, Y., Li, L., Xiao, S., Chen, Z., Sarsaiya, S., Zhang, S., ShangGuan, Y., Liu, H., & Xu, D. (2020). Callus growth kinetics and accumulation of secondary metabolites of Bletilla striata Rchb. f. using a callus suspension culture. PLoS One, 15(2), e0220084. https://doi.org/10.1371/journal.pone.0220084
Pant, P., Pandey, S., & Dall'Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 18(11), e2100345. https://doi.org/10.1002/cbdv.202100345
Peixoto, J. A. B., Álvarez-Rivera, G., Alves, R. C., Costa, A. S., Machado, S., Cifuentes, A., Ibáñez, E., & Oliveira, M. B. P. (2021). Comprehensive phenolic and free amino acid analysis of rosemary infusions: Influence on the antioxidant potential. Antioxidants, 10(3), 500. https://doi.org/10.3390/antiox10030500
Peng, Q., Li, M., Xue, F., & Liu, H. (2014). Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydrate Polymers, 107, 119-123. https://doi.org/10.1016/j.carbpol.2014.02.042
POWO. (2024). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/
Qian, C.-D., Jiang, F.-S., Yu, H.-S., Shen, Y., Fu, Y.-H., Cheng, D.-Q., Gan, L.-S., & Ding, Z.-S. (2015). Antibacterial biphenanthrenes from the fibrous roots of Bletilla striata. Journal of Natural Products, 78(4), 939-943. https://doi.org/10.1021/np501012n
Qu, Y., Li, C., Zhang, C., Zeng, R., & Fu, C. (2016). Optimization of infrared-assisted extraction of Bletilla striata polysaccharides based on response surface methodology and their antioxidant activities. Carbohydrate Polymers, 148, 345-353. https://doi.org/10.1016/j.carbpol.2016.04.081
Rochaix, J.-D. (2011). Regulation of photosynthetic electron transport. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(3), 375-383. https://doi.org/10.1016/j.bbabio.2010.11.010
Sakuno, E., Kamo, T., Takemura, T., Sugie, H., Hiradate, S., & Fujii, Y. (2010). Contribution of militarine and dactylorhin A to the plant growth-inhibitory activity of a weed-suppressing orchid, Bletilla striata. Weed Biology and Management, 10(3), 202-207. https://doi.org/10.1111/j.1445-6664.2010.00385.x
Salachna, P., Pietrak, A., & Łopusiewicz, Ł. (2021). Antioxidant potential of flower extracts from Centaurea spp. depends on their content of phenolics, flavonoids and free amino acids. Molecules, 26(24), 7465. https://doi.org/10.3390/molecules26247465
Sarijeva, G., Knapp, M., & Lichtenthaler, H. K. (2007). Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. Journal of Plant Physiology, 164(7), 950-955. https://doi.org/10.1016/j.jplph.2006.09.002
Shao, Y., Fang, C., Zhang, H., Shi, Y., Hu, Z., & Zhu, Z. (2017). Variation of phenolics, tocols, antioxidant activities, and soluble sugar compositions in red and black rice (Oryza sativa L.) during boiling. Cereal Chemistry, 94(5), 811-819. https://doi.org/10.1094/CCHEM-04-17-0076-R
Shi, Y., Zhang, B., Lu, Y., Qian, C., Feng, Y., Fang, L., Ding, Z., & Cheng, D. (2017). Antiviral activity of phenanthrenes from the medicinal plant Bletilla striata against influenza A virus. BMC Complementary and Alternative Medicine, 17(1), 273. https://doi.org/10.1186/s12906-017-1780-6
Song, Y., Zeng, R., Hu, L., Maffucci, K. G., Ren, X., & Qu, Y. (2017). In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts. Biomedicine & Pharmacotherapy, 93, 451-461. https://doi.org/10.1016/j.biopha.2017.06.079
Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579(1-2), 200-213. https://doi.org/10.1016/j.mrfmmm.2005.03.023
Stadtman, E., & Levine, R. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino acids, 25, 207-218. https://doi.org/10.1007/s00726-003-0011-2
Sugapriya, S., Mathad, J., Patil, A., Hegde, R., Lingaraju, S., & Biradar, M. (2012). Evaluation of Dendrobium orchids for growth and yield grown under greenhouse. Karnataka Journal of Agricultural Sciences, 25(1), 104-107.
Sun, H.-Y., Zheng, L., Gong, Z.-P., Li, Y.-T., Yang, C., Pan, J., Wang, Y.-L., Wang, A.-M., Li, Y.-J., & Huang, Y. (2019). A validated HPLC-MS/MS method for simultaneous determination of militarine and its three metabolites in rat plasma: Application to a pharmacokinetic study. Evidence-Based Complementary and Alternative Medicine, 2019, 2371784. https://doi.org/10.1155/2019/2371784
Tharanathan, M., & Tharanathan, R. N. (2001). Resistant starch in wheat-based products: Isolation and characterisation. Journal of Cereal Science, 34(1), 73-84. https://doi.org/10.1006/jcrs.2000.0383
Tian, S.-X., Cheng, W., Lu, J.-J., Zhou, F.-M., Ding, Z.-S., & Zhu, B.-Q. (2021). Role of militarine in PM2.5-induced BV-2 cell damage. Neurochemical Research, 46, 1423-1434. https://doi.org/10.1007/s11064-021-03281-6
Tovar, J., & Melito, C. (1996). Steam-cooking and dry heating produce resistant starch in legumes. Journal of Agricultural and Food Chemistry, 44(9), 2642-2645. https://doi.org/10.1021/jf950824d
Trees, C. C., Clark, D. K., Bidigare, R. R., Ondrusek, M. E., & Mueller, J. L. (2000). Accessory pigments versus chlorophyll a concentrations within the euphotic zone: A ubiquitous relationship. Limnology and Oceanography, 45(5), 1130-1143. https://doi.org/10.4319/lo.2000.45.5.1130
Wang, C.-Y., Chiou, C.-Y., Wang, H.-L., Krishnamurthy, R., Venkatagiri, S., Tan, J., & Yeh, K.-W. (2008). Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta, 227(5), 1063-1077. https://doi.org/10.1007/s00425-007-0681-1
Wang, R., Qin, Y., Zhou, J., Wang, J., Shu, H., Zhou, S., & Peng, X. (2022). Comprehensive evaluation of Bletilla striata and its substitutes by combining phenotypic characteristic, chemical composition, and anti-melanogenic activity. Phytochemistry, 195, 113059. https://doi.org/10.1016/j.phytochem.2021.113059
Wang, S., Ding, Y., Lin, S., Ji, X., & Zhan, H. (2016). Seasonal changes of endogenous soluble sugar and starch in different developmental stages of Fargesia yunnanensis. Journal of Wood Science, 62(1), 1-11. https://doi.org/10.1007/s10086-015-1521-8
Wang, Y., Liu, D., Chen, S., Wang, Y., Jiang, H., & Yin, H. (2014). A new glucomannan from Bletilla striata: Structural and anti-fibrosis effects. Fitoterapia, 92, 72-78. https://doi.org/10.1016/j.fitote.2013.10.008
Wood, I. P., Elliston, A., Ryden, P., Bancroft, I., Roberts, I. N., & Waldron, K. W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy, 44, 117-121. https://doi.org/10.1016/j.biombioe.2012.05.003
Wu, R.-Y., Chuang, K.-C., Hsieh, T.-F., & Chang, Y.-S. (2018). Effect of capsule maturity and desiccation time on viability of Taiwan native orchid, Bletilla formosana seeds (Orchidaceae) after cryopreservation. Taiwania, 63(4), 345-350. https://doi.org/10.6165/tai.2018.63.345
Wu, T.-Y., & Lay, H.-L. (2013). Effect of growth stages, culture media, and processing methods on the component variations of Bletilla formosana and comparison of its component contents to commercial Rhizoma Bletillae crude drugs. Journal of Food and Drug Analysis, 21(4), 404-413. https://doi.org/10.1016/j.jfda.2013.09.004
Wu, T.-Y., Chen, C.-C., & Lay, H.-L. (2010). Study on the components and antioxidant activity of the Bletilla plant in Taiwan. Journal of Food and Drug Analysis, 18(4), 279-289. https://doi.org/10.38212/2224-6614.2229
Xiao, C., Xu, C., Zhang, J., Jiang, W., Zhang, X., Yang, C., Xu, J., Zhang, Y., & Zhou, T. (2022). Soil microbial communities affect the growth and secondary metabolite accumulation in Bletilla striata (Thunb.) Rchb. f. Frontiers in Microbiology, 13, 916418. https://doi.org/10.3389/fmicb.2022.916418
Xu, D., Pan, Y., & Chen, J. (2019). Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata. Frontiers in Pharmacology, 10, 1168. https://doi.org/10.3389/fphar.2019.01168
Yang, C.-M., Chang, K.-W., Yin, M.-H., & Huang, H.-M. (1998). Methods for the determination of the chlorophylls and their derivatives. Taiwania, 43(2), 116-122. https://doi.org/10.6165/tai.1998.43(2).116
Yang, C., Xia, T., Wang, C., Sun, H., Li, Y., Gong, Z., Li, Y., Zheng, L., & Huang, Y. (2019). Using the UPLC–ESI–Q-TOF–MSE method and intestinal bacteria for metabolite identification in the nonpolysaccharide fraction from Bletilla striata. Biomedical Chromatography, 33(11), e4637. https://doi.org/10.1002/bmc.4637
Yang, N., Dang, S., Shi, J., Wu, F., Li, M., Zhang, X., Li, Y., Jia, X., & Zhai, S. (2017). Caffeic acid phenethyl ester attenuates liver fibrosis via inhibition of TGF-β1/Smad3 pathway and induction of autophagy pathway. Biochemical and Biophysical Research Communications, 486(1), 22-28. https://doi.org/10.1016/j.bbrc.2017.02.057
Ye, J.-J., Lin, X.-Y., Yang, Z.-X., Wang, Y.-Q., Liang, Y.-R., Wang, K.-R., Lu, J.-L., Lu, P., & Zheng, X.-Q. (2023). The light-harvesting chlorophyll a/b-binding proteins of photosystem II family members are responsible for temperature sensitivity and leaf color phenotype in albino tea plant. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2023.12.017
Yong, J. W. H., & Hew, C. S. (1995). The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. International Journal of Plant Sciences, 156(4), 450-459. https://doi.org/10.1086/297267
Yu, H., Dai, B., Qian, C., Ding, Z., Jiang, F., Jin, B., & Li, M. (2016). Antibacterial activity of chemical constituents isolated from fibrous roots of Bletilla striata. Journal of Chinese Medicinal Materials, 39(3), 544-547.
Yu, X., Ming, X., Xiong, M., Zhang, C., Yue, L., Yang, L., & Fan, C. (2022). Partial shade improved the photosynthetic capacity and polysaccharide accumulation of the medicinal plant Bletilla ochracea Schltr. Photosynthetica, 60(2), 168-178. https://doi.org/10.32615/ps.2021.064
Zeng, X., Diao, H., Ni, Z., Shao, L., Jiang, K., Hu, C., Huang, Q., & Huang, W. (2020). Temporal variation in community composition of root associated endophytic fungi and carbon and nitrogen stable isotope abundance in two Bletilla species (Orchidaceae). Plants, 10(1), 18. https://doi.org/10.3390/plants10010018
Zhang, L., Ji, Y., Kang, Z., Lv, C., & Jiang, W. (2015). Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. Toxicology and Applied Pharmacology, 283(1), 50-56. https://doi.org/10.1016/j.taap.2015.01.001
Zhang, M., Luo, D., Fang, H., Zhao, W., & Zheng, Y. (2022). Effect of light quality on the growth and main chemical composition of Bletilla striata. Journal of Plant Physiology, 272, 153690. https://doi.org/10.1016/j.jplph.2022.153690
Zhang, P., Fu, J., & Hu, L. (2012). Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Ecotoxicology, 21, 1911-1918. https://doi.org/10.1007/s10646-012-0924-1
Zhang, W., Dong, X.-M., Zhang, Y.-W., Fan, Z.-X., & Zhang, S.-B. (2023). Age-related differences in physiological and metabolic responses of Pleione aurita (Orchidaceae) pseudobulbs to drought stress and recovery. Plant Physiology and Biochemistry, 197, 107655. https://doi.org/10.1016/j.plaphy.2023.107655
Zhang, W., Zhu, B., Childs, H., Whent, M., Yu, L., Pehrsson, P. R., Zhao, J., Wu, X., & Li, S. (2022). Effects of boiling and steaming on the carbohydrates of sweet corn. ACS Food Science & Technology, 2(5), 951-960. https://doi.org/10.1021/acsfoodscitech.2c00103
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
Zhou, D., Chang, W., Qi, J., Chen, G., & Li, N. (2023). Lung protective effects of dietary malate esters derivatives from Bletilla striata against SiO2 nanoparticles through activation of Nrf2 pathway. Chinese Herbal Medicines, 15(1), 76-85. https://doi.org/10.1016/j.chmed.2022.11.001
Zhu, M., Lin, C., Jiang, Z., Yan, F., Li, Z., Tang, X., Yang, F., Ding, Y., Li, W., & Liu, Z. (2023). Uniconazole enhances lodging resistance by increasing structural carbohydrate and sclerenchyma cell wall thickness of japonica rice (Oryza sativa L.) under shading stress. Environmental and Experimental Botany, 206, 105145. https://doi.org/10.1016/j.envexpbot.2022.105145
Zhu, Z., Liang, T., Dai, G., Zheng, J., Dong, J., Xia, C., & Duan, B. (2023). Extraction, structural-activity relationships, bioactivities, and application prospects of Bletilla striata polysaccharides as ingredients for functional products: A review. International Journal of Biological Macromolecules, 245, 125407. https://doi.org/10.1016/j.ijbiomac.2023.125407
Zou, Y., Wang, Y., Li, K., Zhou, M., Li, J., Wang, X., Tan, R., Wu, C., Liu, Y., & Li, W. (2022). Metabolic activation of militarine in vitro and in vivo. Chemical Research in Toxicology, 35(5), 817-828. https://doi.org/10.1021/acs.chemrestox.1c00430
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92097-
dc.description.abstract臺灣白及 (Bletilla formosana (Hayata) Schltr.) 為蘭科多年生草本植物,並為臺灣原生種,其假球莖為傳統中藥白及的理血藥。為了解生長時期與採收季節對臺灣白及產量與成分之影響,本研究以花蓮縣光復鄉栽培的臺灣白及為材料,於冬季採收栽培 1、2、3 年的全株,於夏季採收 1.5、2.5、3.5 年的全株,以假球莖直徑 3 公分為界進行分級,調查農藝性狀與產量構成要素,並且測定假球莖的代謝物含量;同時,為了解臺灣白及炮製處理的理想條件,本研究於夏季採收栽培 3.5 年的假球莖,分別進行 5 種時長的蒸製、煮製處理,分析假球莖的代謝物含量。結果顯示,隨著栽培年分增加,臺灣白及的假球莖總數與總乾重提升,大、小假球莖間的植化素含量差異縮小;採收季節中,冬季採收的假球莖之天麻苷、Militarine 含量顯著高於夏季,顯示冬季為較佳的採收時期;複合產量與品質評估,推斷於冬季採收栽培 3 年的臺灣白及假球莖較佳。另一方面,不同炮製方法與處理時長下,假球莖的代謝物含量皆有顯著差異,當以天麻苷與 Militarine 含量為炮製品質的共同判斷標準時,推斷理想的蒸製處理時長為大假球莖 45 分鐘、小假球莖 30 分鐘;理想的煮製處理時長於大、小假球莖皆為 15 分鐘。本篇研究結果可以做為臺灣白及生產栽培與炮製處理之規劃參考。zh_TW
dc.description.abstractBletilla formosana (Hayata) Schltr. is one of the native species of the Orchidaceae family in Taiwan, of which pseudobulb can be used as traditional Chinese medicine, Bletillae Rhizoma. As a perennial herb, research based on yearly and seasonal changes of the phytochemical content in Bletilla formosana pseudobulbs remains insufficient; additionally, regarding the thermal processing of traditional medicine, there is no detailed method in the literature of Bletillae. In this study, in the aim to determine the effect of harvest time on the yield and the quality of Bletilla formosana, the materials were grown in Guangfu township, Hualien county; plants aged 1, 2, and 3 years were collected in winter, while plants aged 1.5, 2.5, and 3.5 years were collected in summer, then the grading of large and small pseudobulbs was set based on a diameter of 3cm; next, agronomic traits and yield components were measured, and metabolites content was analyzed. Simultaneously, in order to examine the effect of the processing method on the quality of Bletilla formosana, plants aged 3.5 years were collected, and the pseudobulbs were processed through 5 sequential time settings of steaming and boiling treatments, respectively; afterwards, metabolites content was analyzed. The results showed that, as the growing year length extended, the number and the dry weight of pseudobulbs per hill increased, and the gap in phytochemical content between graded pseudobulbs decreased; pseudobulbs harvested in winter contained more gastrodin and militarine content than those in summer; based on the quality and quantity of Bletilla formosana pseudobulbs, the optimal time to harvest is during winter for plants aged 3 years. Meanwhile, significant changes in metabolites content were observed under different processing treatments, and the quality of pseudobulbs was estimated based on the gastrodin and militarine content. The ideal steaming treatment duration for the large pseudobulbs is 45 minutes, for the small is 30 minutes; the ideal boiling treatment duration for both the large and small pseudobulbs is 15 minutes. The findings of this study could assist in scheduling the cropping calendar based on the quality and quantity of Bletilla formosana; on the other hand, this study had shed more light on the quality control of Bletilla formosana pseudobulbs during thermal processing.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:16:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-05T16:16:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌 謝 ii
摘 要 iii
Abstract iv
實驗架構圖 vi
目 次 vii
表 次 ix
圖 次 x
第一章、前言 1
第一節、中藥白及概述 1
第二節、白及的代謝物成分 5
一、植化素與機能性功效 5
二、游離胺基酸與醣類 10
第三節、植物生理對白及生長與品質的影響 12
一、生長週期與栽培管理 12
二、光合作用色素 14
第四節、炮製加工對白及品質的影響 15
第五節、研究方法與目的 17
第二章、材料與方法 18
第一節、試驗材料 18
第二節、農藝性狀與產量構成要素 19
第三節、光合作用色素 19
第四節、試驗加工處理 20
第五節、植化素 21
一、總酚類 21
二、總類黃酮 21
三、粗多醣 22
四、HPLC 分析 22
第六節、游離胺基酸與醣類 23
一、游離胺基酸 23
二、可溶性糖 23
三、澱粉 24
四、還原糖 24
第七節、統計分析 25
第三章、結果 26
第一節、農藝性狀與產量構成要素 26
第二節、光合作用色素 28
第三節、不同栽培年分之假球莖代謝物 29
第四節、不同炮製處理之假球莖代謝物 36
第五節、相關性分析 46
第四章、討論 52
第一節、農藝性狀與產量構成要素 52
第二節、光合作用色素 55
第三節、不同栽培年分之假球莖代謝物 56
第四節、不同炮製處理之假球莖代謝物 60
第五章、結論 66
第六章、參考文獻 67
-
dc.language.isozh_TW-
dc.title採收時期與炮製方法對臺灣白及有效成分品質之評估zh_TW
dc.titleEffect of Harvest Time and Processing Method on the Quality of Phytochemicals in Bletilla formosanaen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor陳昶璋zh_TW
dc.contributor.coadvisorChang-Chang Chenen
dc.contributor.oralexamcommittee楊棋明;洪傳揚;楊志維zh_TW
dc.contributor.oralexamcommitteeChi-Ming Yang;Chwan-Yang Hong;Zhi-Wei Yangen
dc.subject.keyword臺灣白及,假球莖,採收時期,炮製處理,產量構成要素,植化素,zh_TW
dc.subject.keywordBletilla formosana,pseudobulb,harvest time,processing treatment,yield components,phytochemicals,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202400502-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2028-02-29-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2028-02-29
4.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved