Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92094
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor吳逸民zh_TW
dc.contributor.advisorYih-Min Wuen
dc.contributor.author楊民zh_TW
dc.contributor.authorBenjamin Ming Yangen
dc.date.accessioned2024-03-05T16:15:35Z-
dc.date.available2024-03-06-
dc.date.copyright2024-03-05-
dc.date.issued2024-
dc.date.submitted2024-02-05-
dc.identifier.citationAllen, R. M. (2007). The ElarmS Earthquake Early Warning Methodology and Application across California in Earthquake Early Warning Systems P. Gasparini, G. Manfredi, and J. Zschau (Editors), Springer, Berlin, Heidelberg, 21–43.
Allen, R. M., and H. Kanamori (2003). The Potential for Earthquake Early Warning in Southern California, Science 300, no. 5620, 786–789, doi: 10.1126/science.1080912.
Allen, R. M., and D. Melgar (2019). Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs, Annu. Rev. Earth Planet. Sci. 47, no. 1, 361–388, doi: 10.1146/annurev-earth-053018-060457.
Allen, R. M., and M. Stogaitis (2022). Global growth of earthquake early warning, Science 375, no. 6582, 717–718, doi: 10.1126/science.abl5435.
Boatwright, J. (2007). The Persistence of Directivity in Small Earthquakes, Bull. Seismol. Soc. Am. 97, no. 6, 1850–1861, doi: 10.1785/0120050228.
Böse, M., C. Felizardo, and T. H. Heaton (2015). Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System, Seismol. Res. Lett. 86, no. 6, 1692–1704, doi: 10.1785/0220150154.
Böse, M., T. H. Heaton, and E. Hauksson (2012). Real-time Finite Fault Rupture Detector (FinDer) for large earthquakes, Geophys. J. Int. 191, no. 2, 803–812, doi: 10.1111/j.1365-246X.2012.05657.x.
Calais, E., S. Symithe, et al. (2022). Citizen seismology helps decipher the 2021 Haiti earthquake, Science 376, no. 6590, 283–287, doi: 10.1126/science.abn1045.
Campbell, K. W. (1997). Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra, Seismol. Res. Lett. 68, no. 1, 154–179, doi: 10.1785/gssrl.68.1.154.
Cauzzi, C., E. Faccioli, M. Vanini, and A. Bianchini (2015). Updated predictive equations for broadband (0.01–10 s) horizontal response spectra and peak ground motions, based on a global dataset of digital acceleration records, Bull. Earthq. Eng. 13, no. 6, 1587–1612, doi: 10.1007/s10518-014-9685-y.
Chen, D. Y., N. C. Hsiao, and Y. M. Wu (2015). The Earthworm Based Earthquake Alarm Reporting System in Taiwan, Bull. Seismol. Soc. Am. 105, no. 2A, 568–579, doi: 10.1785/0120140147.
Chen, K. H., S. Toda, and R. J. Rau (2008). A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan, J. Geophys. Res. Solid Earth 113, no. B2, doi: 10.1029/2007JB005048.
Chen, D. Y., Y. M. Wu, and T. L. Chin (2015). Incorporating Low-Cost Seismometers into the Central Weather Bureau Seismic Network for Earthquake Early Warning in Taiwan, Terr. Atmospheric Ocean. Sci. 26, no. 5, 503, doi: 10.3319/TAO.2015.04.17.01(T).
Chou, C. C., C. L. Wu, J. F. Chai, and G. C. Yao (2023). Reconnaissance Report on Seismic Damage Caused by the 2022 Guanshan and Chihshang Earthquake Sequence, Taiwan, Technical Report of National Center for Research on Earthquake Engineering, NCREE-23-007, 229 pp.
Cochran, E. S., J. F. Lawrence, C. Christensen, and R. S. Jakka (2009). The Quake-Catcher Network: Citizen Science Expanding Seismic Horizons, Seismol. Res. Lett. 80, no. 1, 26–30, doi: 10.1785/gssrl.80.1.26.
Cooper, J. D. (1868). Earthquake Indicator, San Francisco, California.
Cremen, G., and C. Galasso (2020). Earthquake early warning: Recent advances and perspectives, Earth-Sci. Rev. 205, 103184, doi: 10.1016/j.earscirev.2020.103184.
Espinosa-Aranda, J. M., A. Jiménez, G. Ibarrola, F. Alcantar, A. Aguilar, M. Inostroza, and S. Maldonado (1995). Mexico City Seismic Alert System, Seismol. Res. Lett. 66, no. 6, 42–53, doi: 10.1785/gssrl.66.6.42.
Espinosa-Aranda, J. M., A. Jimenez, G. Ibarrola, F. Alcantar, A. Aguilar, M. Inostroza, S. Maldonado, and R. Higareda (2003). The Seismic Alert System in Mexico City and the School Prevention Program in Early Warning Systems for Natural Disaster Reduction J. Zschau, and A. Küppers (Editors), Springer, Berlin, Heidelberg, 441–446.
Evans, J. R., R. M. Allen, A. I. Chung, E. S. Cochran, R. Guy, M. Hellweg, and J. F. Lawrence (2014). Performance of Several Low‐Cost Accelerometers, Seismol. Res. Lett. 85, no. 1, 147–158, doi: 10.1785/0220130091.
Farghal, N. S., J. K. Saunders, and G. A. Parker (2022). The Potential of Using Fiber Optic Distributed Acoustic Sensing (DAS) in Earthquake Early Warning Applications, Bull. Seismol. Soc. Am. 112, no. 3, 1416–1435, doi: 10.1785/0120210214.
Fleming, K., M. Picozzi, C. Milkereit, F. Kühnlenz, B. Lichtblau, J. Fischer, C. Zulfikar, O. Özel, and the SAFER and EDIM working groups (2009). The Self-organizing Seismic Early Warning Information Network (SOSEWIN), Seismol. Res. Lett. 80, no. 5, 755–771, doi: 10.1785/gssrl.80.5.755.
Gee, L. S., D. S. Neuhauser, D. S. Dreger, M. E. Pasyanos, R. A. Uhrhammer, and B. Romanowicz (1996). Real-time seismology at UC Berkeley: The Rapid Earthquake Data Integration project, Bull. Seismol. Soc. Am. 86, no. 4, 936–945, doi: 10.1785/BSSA0860040936.
Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only, Bull. St. Louis Univ. 8, no. 1, 56–71.
Hayes, G. P., L. Rivera, and H. Kanamori (2009). Source Inversion of the W-Phase: Real-time Implementation and Extension to Low Magnitudes, Seismol. Res. Lett. 80, no. 5, 817–822, doi: 10.1785/gssrl.80.5.817.
Heaton, T. H. (1985). A Model for a Seismic Computerized Alert Network, Science 228, no. 4702, 987–990, doi: 10.1126/science.228.4702.987.
Holland, A. (2003). Earthquake Data Recorded by the MEMS Accelerometer: Field Testing in Idaho, Seismol. Res. Lett. 74, no. 1, 20–26, doi: 10.1785/gssrl.74.1.20.
Horiuchi, S., Y. Horiuchi, S. Yamamoto, H. Nakamura, C. Wu, P. A. Rydelek, and M. Kachi (2009). Home seismometer for earthquake early warning, Geophys. Res. Lett. 36, no. 5, doi: 10.1029/2008GL036572.
Hoshiba, M. (2013). Real-time prediction of ground motion by Kirchhoff-Fresnel boundary integral equation method: Extended front detection method for Earthquake Early Warning, J. Geophys. Res. Solid Earth 118, no. 3, 1038–1050, doi: 10.1002/jgrb.50119.
Hoshiba, M., and S. Aoki (2015). Numerical Shake Prediction for Earthquake Early Warning: Data Assimilation, Real‐Time Shake Mapping, and Simulation of Wave Propagation, Bull. Seismol. Soc. Am. 105, no. 3, 1324–1338, doi: 10.1785/0120140280.
Hsiao, N. C., Y. M. Wu, T. C. Shin, L. Zhao, and T. L. Teng (2009). Development of earthquake early warning system in Taiwan, Geophys. Res. Lett. 36, no. 5, doi: 10.1029/2008GL036596.
Hsiao, N. C., Y. M. Wu, L. Zhao, D. Y. Chen, W. T. Huang, K. H. Kuo, T. C. Shin, and P. L. Leu (2011). A new prototype system for earthquake early warning in Taiwan, Soil Dyn. Earthq. Eng. 31, no. 2, 201–208, doi: 10.1016/j.soildyn.2010.01.008.
Hsieh, C. Y., W. A. Chao, and Y. M. Wu (2015). An Examination of the Threshold-Based Earthquake Early Warning Approach Using a Low-Cost Seismic Network, Seismol. Res. Lett. 86, no. 6, 1664–1667, doi: 10.1785/0220150073.
Hsieh, C. Y., Y. M. Wu, T. L. Chin, K. H. Kuo, D. Y. Chen, K. S. Wang, Y. T. Chan, W. Y. Chang, W. S. Li, and S. H. Ker (2014). Low Cost Seismic Network Practical Applications for Producing Quick Shaking Maps in Taiwan, Terr. Atmospheric Ocean. Sci. 25, no. 5, 617, doi: 10.3319/TAO.2014.03.27.01(T).
Hsu, T. Y., P. Y. Lin, H. H. Wang, H. W. Chiang, Y. W. Chang, C. H. Kuo, C. M. Lin, and K. L. Wen (2018). Comparing the Performance of the NEEWS Earthquake Early Warning System Against the CWB System During the 6 February 2018 Mw 6.2 Hualien Earthquake, Geophys. Res. Lett. 45, no. 12, 6001–6007, doi: 10.1029/2018GL078079.
Hsu, T. Y., R. C. Yin, and Y. M. Wu (2018). Evaluating Post-Earthquake Building Safety Using Economical MEMS Seismometers, Sensors 18, no. 5, 1437, doi: 10.3390/s18051437.
Huang, H. H., N. Aso, and V. C. Tsai (2017). Toward automated directivity estimates in earthquake moment tensor inversion, Geophys. J. Int. 211, no. 2, 1062–1076, doi: 10.1093/gji/ggx354.
Jean, W. Y., Y. W. Chang, K. L. Wen, and C. H. Loh (2006). Early Estimation of Seismic Hazard for Strong Earthquakes in Taiwan, Nat. Hazards 37, no. 1, 39–53, doi: 10.1007/s11069-005-4655-y.
Jian, P. R., T. L. Tseng, W. T. Liang, and P. H. Huang (2018). A New Automatic Full‐Waveform Regional Moment Tensor Inversion Algorithm and Its Applications in the Taiwan Area, Bull. Seismol. Soc. Am. 108, no. 2, 573–587, doi: 10.1785/0120170231.
Johnson, C. E., A. Bittenbinder, B. Bogaert, L. Dietz, and W. Kohler (1995). Earthworm: A Flexible Approach to Seismic Network Processing, IRIS Newsl. 14, no. 2, 1–4.
Kanamori, H., E. Hauksson, and T. Heaton (1997). Real-time seismology and earthquake hazard mitigation 6659, Nature 390, no. 6659, 461–464, doi: 10.1038/37280.
Kanamori, H., P. Maechling, and E. Hauksson (1999). Continuous monitoring of ground-motion parameters, Bull. Seismol. Soc. Am. 89, no. 1, 311–316, doi: 10.1785/BSSA0890010311.
Kanamori, H., L. Ye, B. S. Huang, H. H. Huang, S. J. Lee, W. T. Liang, Y. Y. Lin, K. F. Ma, Y. M. Wu, and T. Y. Yeh (2017). A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4), Terr. Atmospheric Ocean. Sci. 28, no. 5, 637–650, doi: 10.3319/TAO.2016.10.07.01.
Kodera, Y., Y. Yamada, K. Hirano, K. Tamaribuchi, S. Adachi, N. Hayashimoto, M. Morimoto, M. Nakamura, and M. Hoshiba (2018). The Propagation of Local Undamped Motion (PLUM) Method: A Simple and Robust Seismic Wavefield Estimation Approach for Earthquake Early Warning, Bull. Seismol. Soc. Am. 108, no. 2, 983–1003, doi: 10.1785/0120170085.
Kong, Q., R. M. Allen, L. Schreier, and Y. W. Kwon (2016). MyShake: A smartphone seismic network for earthquake early warning and beyond, Sci. Adv. 2, no. 2, e1501055, doi: 10.1126/sciadv.1501055.
Kumar, S., H. Mittal, K. S. Roy, Y. M. Wu, R. Chaubey, and A. P. Singh (2020). Development of earthquake early warning system for Kachchh, Gujarat, in India using τc and Pd, Arab. J. Geosci. 13, no. 14, 622, doi: 10.1007/s12517-020-05353-3.
Kuyuk, H. S., and R. M. Allen (2013). Optimal Seismic Network Density for Earthquake Early Warning: A Case Study from California, Seismol. Res. Lett. 84, no. 6, 946–954, doi: 10.1785/0220130043.
Lawrence, J. F., E. S. Cochran, et al. (2014). Rapid Earthquake Characterization Using MEMS Accelerometers and Volunteer Hosts Following the M 7.2 Darfield, New Zealand, Earthquake, Bull. Seismol. Soc. Am. 104, no. 1, 184–192, doi: 10.1785/0120120196.
Lee, Y. H., G. T. Chen, R. J. Rau, and K. E. Ching (2008). Coseismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan, J. Geophys. Res. Solid Earth 113, no. B4, doi: 10.1029/2007JB005180.
Lee, S. J., T. Y. Liu, and T. C. Lin (2023). The role of the west-dipping collision boundary fault in the Taiwan 2022 Chihshang earthquake sequence 1, Sci. Rep. 13, no. 1, 3552, doi: 10.1038/s41598-023-30361-0.
Lee, S. J., T. P. Wong, T. Y. Liu, T. C. Lin, and C. T. Chen (2020). Strong ground motion over a large area in northern Taiwan caused by the northward rupture directivity of the 2019 Hualien earthquake, J. Asian Earth Sci. 192, 104095, doi: 10.1016/j.jseaes.2019.104095.
Legendre, C. P., T. L. Tseng, H. Mittal, C. H. Hsu, A. Karakhanyan, and B. S. Huang (2017). Complex Wave Propagation Revealed by Peak Ground Velocity Maps in the Caucasus Area, Seismol. Res. Lett. 88, no. 3, 812–821, doi: 10.1785/0220160178.
Lin, T. L., and Y. M. Wu (2010a). Magnitude estimation using the covered areas of strong ground motion in earthquake early warning, Geophys. Res. Lett. 37, no. 9, doi: 10.1029/2010GL042797.
Lin, T. L., and Y. M. Wu (2010b). Magnitude determination using strong ground-motion attenuation in earthquake early warning, Geophys. Res. Lett. 37, no. 7, doi: 10.1029/2010GL042502.
Lindsey, N. J., and E. R. Martin (2021). Fiber-Optic Seismology, Annu. Rev. Earth Planet. Sci. 49, no. 1, 309–336, doi: 10.1146/annurev-earth-072420-065213.
Meier, M. A., T. Heaton, and J. Clinton (2016). Evidence for universal earthquake rupture initiation behavior, Geophys. Res. Lett. 43, no. 15, 7991–7996, doi: 10.1002/2016GL070081.
Meier, M. A., Y. Kodera, M. Böse, A. Chung, M. Hoshiba, E. Cochran, S. Minson, E. Hauksson, and T. Heaton (2020). How Often Can Earthquake Early Warning Systems Alert Sites With High-Intensity Ground Motion?, J. Geophys. Res. Solid Earth 125, no. 2, e2019JB017718, doi: 10.1029/2019JB017718.
Melgar, D., Y. Bock, and B. W. Crowell (2012). Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records, Geophys. J. Int. 188, no. 2, 703–718, doi: 10.1111/j.1365-246X.2011.05297.x.
Melgar, D., B. W. Crowell, J. Geng, R. M. Allen, Y. Bock, S. Riquelme, E. M. Hill, M. Protti, and A. Ganas (2015). Earthquake magnitude calculation without saturation from the scaling of peak ground displacement, Geophys. Res. Lett. 42, no. 13, 5197–5205, doi: 10.1002/2015GL064278.
Melgar, D., and G. P. Hayes (2017). Systematic Observations of the Slip Pulse Properties of Large Earthquake Ruptures, Geophys. Res. Lett. 44, no. 19, 9691–9698, doi: 10.1002/2017GL074916.
Mittal, H., Y. M. Wu, T. L. Lin, C. P. Legendre, S. Gupta, and B. M. Yang (2019). Time-dependent shake map for Uttarakhand Himalayas, India, using recorded earthquakes, Acta Geophys. 67, no. 3, 753–763, doi: 10.1007/s11600-019-00281-7.
Mittal, H., Y. M. Wu, M. Sharma, T. L. Lin, and B. Yang (2018). Shake Maps Generation for Delhi Region using Two Different Algorithms in 16th Symposium on Earthquake Engineering India, Department of Earthquake Engineering, IIT Roorkee.
Mittal, H., B. M. Yang, T. L. Tseng, and Y. M. Wu (2021). Importance of real-time PGV in terms of lead-time and shakemaps: Results using 2018 ML 6.2 & 2019 ML 6.3 Hualien, Taiwan earthquakes, J. Asian Earth Sci. 220, 104936, doi: 10.1016/j.jseaes.2021.104936.
Mittal, H., B. M. Yang, and Y. M. Wu (2022). Progress on the earthquake early warning and shakemaps system using low-cost sensors in Taiwan, Geosci. Lett. 9, no. 1, 42, doi: 10.1186/s40562-022-00251-w.
Naik, S. P., A. Mohanty, H. Mittal, S. Porfido, A. M. Michetti, B. M. Yang, O. Gwon, and Y. S. Kim (2023). The earthquake environmental effects (EEEs) of the 6th February 2018, Hualien earthquake (Mw=6.4): A contribution to the seismic hazard estimation in the epicentral area, Quat. Int. 656, 48–69, doi: 10.1016/j.quaint.2022.10.009.
Nakamura, Y. (1988). On the urgent earthquake detection and alarm system (UrEDAS) in 9th World Conference on Earthquake Engineering Japan, 673–678.
Nakamura, Y., and J. Saita (2007). UrEDAS, the Earthquake Warning System: Today and Tomorrow in Earthquake Early Warning Systems P. Gasparini, G. Manfredi, and J. Zschau (Editors), Springer, Berlin, Heidelberg, 249–281.
Parolai, S., D. Bindi, T. Boxberger, C. Milkereit, K. Fleming, and M. Pittore (2015). On‐Site Early Warning and Rapid Damage Forecasting Using Single Stations: Outcomes from the REAKT Project, Seismol. Res. Lett. 86, no. 5, 1393–1404, doi: 10.1785/0220140205.
Peng, C., P. Jiang, Q. Chen, Q. Ma, and J. Yang (2019). Performance Evaluation of a Dense MEMS-Based Seismic Sensor Array Deployed in the Sichuan-Yunnan Border Region for Earthquake Early Warning 11, Micromachines 10, no. 11, 735, doi: 10.3390/mi10110735.
Rau, R. J., and W. T. Liang (2017). Introduction to the special issue on the 2016 Meinong, Taiwan, earthquake, Terr. Atmospheric Ocean. Sci. 28, no. 5, I–III, doi: 10.3319/TAO.2017.06.07.01.
Rau, R. J., and T. L. Tseng (2019). Introduction to the special issue on the 2018 Hualien, Taiwan, earthquake, Terr. Atmospheric Ocean. Sci. 30, no. 3, 281–283, doi: 10.3319/TAO.2019.05.31.01.
Rydelek, P., and S. Horiuchi (2006). Is earthquake rupture deterministic? 7100, Nature 442, no. 7100, E5–E6, doi: 10.1038/nature04963.
Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space, Geophys. J. Int. 138, no. 2, 479–494, doi: 10.1046/j.1365-246X.1999.00876.x.
Satriano, C., L. Elia, C. Martino, M. Lancieri, A. Zollo, and G. Iannaccone (2011). PRESTo, the earthquake early warning system for Southern Italy: Concepts, capabilities and future perspectives, Soil Dyn. Earthq. Eng. 31, no. 2, 137–153, doi: 10.1016/j.soildyn.2010.06.008.
Satriano, C., A. Lomax, and A. Zollo (2008). Real-Time Evolutionary Earthquake Location for Seismic Early Warning, Bull. Seismol. Soc. Am. 98, no. 3, 1482–1494, doi: 10.1785/0120060159.
Satriano, C., Y. M. Wu, A. Zollo, and H. Kanamori (2011). Earthquake early warning: Concepts, methods and physical grounds, Soil Dyn. Earthq. Eng. 31, no. 2, 106–118, doi: 10.1016/j.soildyn.2010.07.007.
Shin, T. C., and T. liang Teng (2001). An Overview of the 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seismol. Soc. Am. 91, no. 5, 895–913, doi: 10.1785/0120000738.
Shyu, J. B. H., Y. R. Chuang, Y. L. Chen, Y. R. Lee, and C. T. Cheng (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan, Terr. Atmospheric Ocean. Sci. 27, no. 3, 311, doi: 10.3319/TAO.2015.11.27.02(TEM).
Shyu, J. B. H., K. Sieh, Y. G. Chen, and L. H. Chung (2006). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan, GSA Bull. 118, nos. 11–12, 1447–1462, doi: 10.1130/B25905.1.
Silva, V., D. Amo-Oduro, et al. (2018). Global earthquake model (GEM) seismic risk map (version 2018.1).
Teng, T. L., L. Wu, T. C. Shin, Y. B. Tsai, and W. H. K. Lee (1997). One minute after: Strong-motion map, effective epicenter, and effective magnitude, Bull. Seismol. Soc. Am. 87, no. 5, 1209–1219.
Wang, K. S., W. A. Chao, H. Mittal, and Y. M. Wu (2018). Building Effects on the P‐Alert‐Based Real‐Time Shaking Map Determination, Seismol. Res. Lett. 89, no. 6, 2314–2321, doi: 10.1785/0220170252.
Worden, C. B., E. M. Thompson, J. W. Baker, B. A. Bradley, N. Luco, and D. J. Wald (2018). Spatial and Spectral Interpolation of Ground‐Motion Intensity Measure Observations, Bull. Seismol. Soc. Am. 108, no. 2, 866–875, doi: 10.1785/0120170201.
Worden, C. B., D. J. Wald, T. I. Allen, K. Lin, D. Garcia, and G. Cua (2010). A Revised Ground-Motion and Intensity Interpolation Scheme for ShakeMap, Bull. Seismol. Soc. Am. 100, no. 6, 3083–3096, doi: 10.1785/0120100101.
Wu, Y. M. (2015). Progress on Development of an Earthquake Early Warning System Using Low-Cost Sensors, Pure Appl. Geophys. 172, no. 9, 2343–2351, doi: 10.1007/s00024-014-0933-5.
Wu, Y. M., R. M. Allen, and C. F. Wu (2005). Revised ML Determination for Crustal Earthquakes in Taiwan, Bull. Seismol. Soc. Am. 95, no. 6, 2517–2524, doi: 10.1785/0120050043.
Wu, Y. M., C. H. Chang, L. Zhao, T. L. Teng, and M. Nakamura (2008). A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005, Bull. Seismol. Soc. Am. 98, no. 3, 1471–1481, doi: 10.1785/0120070166.
Wu, Y. M., D. Y. Chen, T. L. Lin, C. Y. Hsieh, T. L. Chin, W. Y. Chang, W. S. Li, and S. H. Ker (2013). A High‐Density Seismic Network for Earthquake Early Warning in Taiwan Based on Low Cost Sensors, Seismol. Res. Lett. 84, no. 6, 1048–1054, doi: 10.1785/0220130085.
Wu, Y. M., J. K. Chung, and T. C. Shin (1999). Development of an Integrated Earthquake Early Warning System in Taiwan-Case for the Hualien Area Earthquakes, Terr. Atmospheric Ocean. Sci. 10, no. 4, 719, doi: 10.3319/TAO.1999.10.4.719(T).
Wu, Y. M., N. C. Hsiao, and T. L. Teng (2004). Relationships between Strong Ground Motion Peak Values and Seismic Loss during the 1999 Chi-Chi, Taiwan Earthquake, Nat. Hazards 32, no. 3, 357–373, doi: 10.1023/B:NHAZ.0000035550.36929.d0.
Wu, Y. M., N. chi Hsiao, T. L. Teng, and T. C. Shin (2002). Near Real-Time Seismic Damage Assessment of the Rapid Reporting System, Terr. Atmospheric Ocean. Sci. 13, no. 3, 313, doi: 10.3319/TAO.2002.13.3.313(CCE).
Wu, Y. M., and H. Kanamori (2005a). Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System, Bull. Seismol. Soc. Am. 95, no. 1, 347–353, doi: 10.1785/0120040097.
Wu, Y. M., and H. Kanamori (2005b). Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves, Bull. Seismol. Soc. Am. 95, no. 3, 1181–1185, doi: 10.1785/0120040193.
Wu, Y. M., and H. Kanamori (2008). Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake, Earth Planets Space 60, no. 2, 155–160, doi: 10.1186/BF03352778.
Wu, Y. M., H. Kanamori, R. M. Allen, and E. Hauksson (2007). Determination of earthquake early warning parameters, τc and Pd, for southern California, Geophys. J. Int. 170, no. 2, 711–717, doi: 10.1111/j.1365-246X.2007.03430.x.
Wu, Y. M., W. H. K. Lee, C. C. Chen, T. C. Shin, T. L. Teng, and Y. B. Tsai (2000). Performance of the Taiwan Rapid Earthquake Information Release System (RTD) during the 1999 Chi-Chi (Taiwan) Earthquake, Seismol. Res. Lett. 71, no. 3, 338–343, doi: 10.1785/gssrl.71.3.338.
Wu, Y. M., W. T. Liang, H. Mittal, W. A. Chao, C. H. Lin, B. S. Huang, and C. M. Lin (2016). Performance of a Low‐Cost Earthquake Early Warning System (P‐Alert) during the 2016 ML 6.4 Meinong (Taiwan) Earthquake, Seismol. Res. Lett. 87, no. 5, 1050–1059, doi: 10.1785/0220160058.
Wu, Y. M., and T. L. Lin (2014). A Test of Earthquake Early Warning System Using Low Cost Accelerometer in Hualien, Taiwan in Early Warning for Geological Disasters: Scientific Methods and Current Practice, Springer-Verlag, Berlin, Heidelberg, Advanced Technologies in Earth Sciences, 253–261.
Wu, Y. M., T. L. Lin, W. A. Chao, H. H. Huang, N. C. Hsiao, and C. H. Chang (2011). Faster Short-Distance Earthquake Early Warning Using Continued Monitoring of Filtered Vertical Displacement: A Case Study for the 2010 Jiasian, Taiwan, Earthquake, Bull. Seismol. Soc. Am. 101, no. 2, 701–709, doi: 10.1785/0120100153.
Wu, Y. M., H. Mittal, D. Y. Chen, T. Y. Hsu, and P. Y. Lin (2021). Earthquake Early Warning Systems in Taiwan: Current Status, J. Geol. Soc. India 97, no. 12, 1525–1532, doi: 10.1007/s12594-021-1909-6.
Wu, Y. M., H. Mittal, T. C. Huang, B. M. Yang, J. C. Jan, and S. K. Chen (2019). Performance of a Low‐Cost Earthquake Early Warning System (P‐Alert) and Shake Map Production during the 2018 Mw 6.4 Hualien, Taiwan, Earthquake, Seismol. Res. Lett. 90, no. 1, 19–29, doi: 10.1785/0220180170.
Wu, Y. M., T. C. Shin, and C. H. Chang (2001). Near Real-Time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following a Strong Earthquake, Bull. Seismol. Soc. Am. 91, no. 5, 1218–1228, doi: 10.1785/0120000734.
Wu, Y. M., T. C. Shin, C. C. Chen, Y. B. Tsai, W. H. K. Lee, and T. L. Teng (1997). Taiwan Rapid Earthquake Information Release System, Seismol. Res. Lett. 68, no. 6, 931–943, doi: 10.1785/gssrl.68.6.931.
Wu, Y. M., T. C. Shin, and Y. B. Tsai (1998). Quick and reliable determination of magnitude for seismic early warning, Bull. Seismol. Soc. Am. 88, no. 5, 1254–1259.
Wu, Y. M., and T. liang Teng (2002). A Virtual Subnetwork Approach to Earthquake Early Warning, Bull. Seismol. Soc. Am. 92, no. 5, 2008–2018, doi: 10.1785/0120010217.
Wu, Y. M., T. liang Teng, T. C. Shin, and N. C. Hsiao (2003). Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Intensity in Taiwan, Bull. Seismol. Soc. Am. 93, no. 1, 386–396, doi: 10.1785/0120020097.
Wu, Y. M., and L. Zhao (2006). Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophys. Res. Lett. 33, no. 16, doi: 10.1029/2006GL026871.
Yagi, Y., R. Okuwaki, B. Enescu, and J. Lu (2023). Irregular rupture process of the 2022 Taitung, Taiwan, earthquake sequence 1, Sci. Rep. 13, no. 1, 1107, doi: 10.1038/s41598-023-27384-y.
Yu, S. B., H. Y. Chen, and L. C. Kuo (1997). Velocity field of GPS stations in the Taiwan area, Tectonophysics 274, no. 1, 41–59, doi: 10.1016/S0040-1951(96)00297-1.
Zeng, X., F. Bao, C. H. Thurber, R. Lin, S. Wang, Z. Song, and L. Han (2021). Turning a Telecom Fiber‐Optic Cable into an Ultradense Seismic Array for Rapid Postearthquake Response in an Urban Area, Seismol. Res. Lett., doi: 10.1785/0220210183.
Zheng, H., G. Shi, T. Zeng, and B. Li (2011). Wireless earthquake alarm design based on MEMS accelerometer in 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet) XianNing, China, IEEE, 5481–5484.
Zhou, H. wei (1994). Rapid three-dimensional hypocentral determination using a master station method, J. Geophys. Res. Solid Earth 99, no. B8, 15439–15455, doi: 10.1029/94JB00934.
Zou, X., P. Thiruvenkatanathan, and A. A. Seshia (2014). A Seismic-Grade Resonant MEMS Accelerometer, J. Microelectromechanical Syst. 23, no. 4, 768–770, doi: 10.1109/JMEMS.2014.2319196.
郭冠宏(2013)。以低價位P波警報器建置即時強地震觀測系統及其於地震預警之運用。國立臺灣大學地質科學所碩士論文,共107頁。
蕭乃祺、戴一明(2022)。精進行政區震度資訊實用性之研究。氣象學報第57卷,第3期,49-77頁。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92094-
dc.description.abstract地震預測目前還未被完全實現,相對突顯地震預警、速報等防、減災系統的重要性。即便近十年相關即時強震觀測系統蓬勃發展,其中仍有不少挑戰。欲突破之,有一個共通前提,那便是更密集且更廣的即時觀測。在臺灣,採用低價位加速儀建立的P-Alert觀測網,從2010年開始架設至今,已在多次地震事件中驗證其可靠性及穩定度;利用P-Alert觀測網高密度且即時的優勢,能產生較為精細的即時強地動峰值圖,更能近即時判別斷層破裂的方向。因此,本文將透過P-Alert觀測網即時資料,探討高密度即時強震網在地震防、減災上的運用。首先,本文透過快速解算各方向上即時最大地表加速度值 (Peak Ground Acceleration, PGA) 衰減關係,推演出地震事件最終PGA值可能的分布情形,此地震預警演算法稱之為「ShakingAlarm」。相較於傳統先求取地震位置的預警方法,此演算法不求取地震位置,計算流程簡單、處理時間較短,能提供更充足的時間來進行災害評估及緊急應變。當災害性地震發生後,精細的強地動峰值圖是災損評估的重要依據,其中包含PGA、地表最大速度 (Peak Ground Velocity, PGV) 及不同週期之譜加速度 (Spectral Acceleration, Sa) 三種常見的強地動峰值圖。為此,本研究建立了PGA、PGV及0.3秒、1秒週期Sa強地動峰值圖的即時繪製系統,期望為未來震後災損評估提供更佳的參考依據。此外,2022年9月17日和18日一系列襲擊花東縱谷南部的地震,在臺東和花蓮造成嚴重災損。P-Alert觀測網在此地震事件中,成功繪製了多種數值的強地動峰值圖。強地動峰值圖所指示的高震度區域與此次地震期間觀察到的損害情況相符。而在中央氣象署區域預警盲區內,P-Alert測站透過現地型預警功能提供了3到10秒的預警提前時間。且P-Alert區域預警系統分別在主震和最大前震發生後約9秒和7秒提供了第一份預警報告,估計規模分別為5.74和5.67。綜合前述,本文立基於高密度且即時的P-Alert觀測網,研發出兩個新系統,分別應用於地震預警及速報,同時驗證了P-Alert觀測網既有預警功能;揭示了高密度即時觀測網在地震防、減災領域中所能提供的寶貴貢獻和發展潛力。zh_TW
dc.description.abstractEarthquake prediction has not yet been fully realized, underscoring the critical importance of earthquake early warning (EEW), rapid reporting, and other disaster prevention and mitigation systems. Despite the booming development of real-time strong motion observation systems over the past decade, numerous challenges persist. To overcome these challenges, a common prerequisite emerges: the necessity for denser and wider real-time observations. In Taiwan, the P-Alert network, composed of low-cost accelerometers, was established. Since its establishment in 2010, its reliability and stability have been verified in numerous earthquakes. By leveraging the high-density and real-time capabilities of the P-Alert network, it can generate more precise real-time shake maps and even identify the direction of fault rupture in near real-time. Therefore, this study utilizes the real-time data from the P-Alert network to explore potential applications of high-density, real-time networks in earthquake disaster prevention and mitigation. First, this study rapidly derives the time-dependent attenuation relationship of real-time peak ground acceleration (PGA) in all directions, deduces the potential distribution of the final PGA value for an earthquake, and names this earthquake early warning algorithm as ''ShakingAlarm''. Compared with traditional early warning methods that require knowledge of the location of hypocenter, this algorithm eliminates the need for such information. The calculation process is simple, and the processing time is short, providing more time for disaster assessment and emergency response. The precise shake map following a disastrous earthquake provides crucial information for assessing disaster damage, including three common values: PGA, peak ground velocity (PGV), and spectral acceleration (Sa) at different periods. Therefore, this study establishes a real-time system for generating shake maps of PGA, PGV, and Sa at 0.3-second and 1-second periods, aiming to provide a valuable reference for future disaster damage assessments. Moreover, a series of earthquakes struck Taiwan''s southern Longitudinal Valley on September 17 and 18, 2022, causing severe damage to several buildings in Taitung and Hualien. During this earthquake, the P-Alert network successfully generated shake maps with various values. The high-shaking areas on these maps align with the observed damages during the earthquake. In the regional early warning blind zone of the Central Weather Administration, the P-Alert stations can provide an early warning leading time of 3 to 10 seconds by on-site EEW method. The P-Alert regional EEW system provided the first report about 9 s & 7 s after the mainshock and the largest foreshock occurrence, respectively, with estimated magnitudes of 5.74 & 5.67. Based on the above, this study develops two new systems for early warning and rapid reporting based on the high-density and real-time P-Alert network. It also verifies the existing early warning function of the P-Alert network. These findings reveal the valuable contribution and development potential that high-density real-time networks can provide for earthquake prevention and disaster mitigation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:15:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-05T16:15:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 viii
表次 xii
第一章 緒論 1
1.1 前言 1
1.1.1 地震預警 1
1.1.2 地震速報 4
1.1.3 高密度即時強震觀測 6
1.2 研究動機與目的 7
1.3 論文架構概述 9
第二章 P-Alert觀測網 11
2.1 P-Alert感測器與測站 11
2.2 觀測網沿革 13
2.3 觀測網架構 17
第三章 非傳統區域型地震預警系統:ShakingAlarm 21
3.1 前言 21
3.2 ShakingAlarm流程及演算法 25
3.3 資料及結果 31
3.4 討論與結論 40
第四章 多數值即時強地動峰值圖產製系統 45
4.1 前言 45
4.2 強地動峰值圖 (Shake map) 48
4.3 2018及2019年花蓮地震 49
4.4 新強地動峰值圖演算法及流程 52
4.5 實際應用範例:2020年7月26日宜蘭外海地震 56
4.6 討論與結論 58
第五章 P-Alert系統表現探討:2022年池上地震 61
5.1 前言 61
5.2 區域預警 64
5.3 資料可用性 65
5.4 強地動峰值圖 (Shake map) 68
5.5 現地預警 71
5.6 ShakingAlarm 73
5.7 討論與結論 75
第六章 結論 79
參考文獻 83
附錄 著作彙編學位論文共同作者貢獻聲明書 93
-
dc.language.isozh_TW-
dc.subject高密度即時強震網zh_TW
dc.subject強地動峰值圖zh_TW
dc.subject地震災害評估zh_TW
dc.subject地震預警zh_TW
dc.subjectP-Alert觀測網zh_TW
dc.subject地震速報zh_TW
dc.subjectHigh-density real-time strong motion networken
dc.subjectP-Alert networken
dc.subjectEarthquake early warningen
dc.subjectEarthquake rapid reportingen
dc.subjectShake mapsen
dc.subjectSeismic damage assesmenten
dc.title高密度即時強震觀測網於地震減災之運用zh_TW
dc.titleApplications of the High-density Real-time Strong Motion Network for Earthquake Disaster Mitigationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee黃信樺;黃俊郎;金台齡;趙韋安;溫士忠zh_TW
dc.contributor.oralexamcommitteeHsin-Hua Huang;Jiun-Lang Huang;Tai-Lin Chin;Wei-An Chao;Strong Wenen
dc.subject.keyword高密度即時強震網,P-Alert觀測網,地震預警,地震速報,強地動峰值圖,地震災害評估,zh_TW
dc.subject.keywordHigh-density real-time strong motion network,P-Alert network,Earthquake early warning,Earthquake rapid reporting,Shake maps,Seismic damage assesment,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202400505-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2024-03-01-
Appears in Collections:地質科學系

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
Access limited in NTU ip range
11.25 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved