請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92078完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃慶怡 | zh_TW |
| dc.contributor.advisor | Ching-I Huang | en |
| dc.contributor.author | 邱威嵐 | zh_TW |
| dc.contributor.author | Wei-Lan Chiu | en |
| dc.date.accessioned | 2024-03-04T16:24:53Z | - |
| dc.date.available | 2024-09-14 | - |
| dc.date.copyright | 2024-03-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-06 | - |
| dc.identifier.citation | 參考文獻
1. Park, Y.; Jeong, H.; Choi, S.; Jeong, H., Planarization of wafer edge profile in chemical mechanical polishing. Int. J. Precis. Eng. Manuf. 2013, 14, 11–15. 2. Tian, Y.; Zhong, Z.; Ng, J.H., Effects of chemical slurries on fixed abrasive chemical-mechanical polishing of optical silicon substrates. Int. J. Precis. Eng. Manuf. 2013, 14, 1447–1454. 3. Kim, D.; Kim, H.; Lee, S.; Jeong, H., Effect of initial deflection of diamond wire on thickness variation of sapphire wafer in multi-wire saw. Int. J. Precis. Eng. Manuf. Technol. 2015, 2, 117–121. 4. Lee, Y.; Seo, Y.-J.; Lee, H.; Jeong, H., Effect of diluted colloidal silica slurry mixed with ceria abrasives on CMP characteristic. Int. J. Precis. Eng. Manuf. Technol. 2016, 3, 13–17. 5. Lee, H.; Kim, M.; Jeong, H., Effect of non-spherical colloidal silica particles on removal rate in oxide CMP. Int. J. Precis. Eng. Manuf. 2015, 16, 2611–2616. 6. Ryan, J.G.; Geffken, R.M.; Poulin J.R. Paraszczak, N.R., Evolution of interconnection technology at IBM 1995, J. Res. Dev. 39, 371–381. 7. Maeng, J.-H.; Kim, D.-H.; Park, S.-M.; Kim, H.-J., The effect of chemical treatment on the strength and transmittance of so-da-lime cover glass for mobile. Int. J. Precis. Eng. Manuf. 2014, 15, 1779–1783. 8. Lee, C.; Park, J.; Kinoshita, M.; Jeong, H., Analysis of pressure distribution and verification of pressure signal by changes load and velocity in chemical mechanical polishing. Int. J. Precis. Eng. Manuf. 2015, 16, 1061–1066. 9. Kang, E.-G.; Kim, J.-S.; Lee, S.-W.; Min, B.-K.; Lee, S.-J. Emission characteristics of high-voltage plasma diode cathode for metal surface modification. Int. J. Precis. Eng. Manuf. 2015, 16, 13–19. 10. Oliaei, S. N. B.; Mukhtarkhanov, M.; Perveen, A., Technological advances and challenges in chemical mechanical polishing. Advances in Abrasive Based Machining and Finishing Processes 2020, 235-253. 11. Feng, H.; Tan, P.-K.; Yap, H.-H.; Low, G.; He, R.; Zhao, Y.-Z.; Liu, B.; Dawood, M.K.; Zhu, J.; Huang, Y.-M.; et al., A sample preparation methodology to reduce sample edge unevenness and improve efficiency in delayering the 20-nm node IC chips. Business. In Proceedings of the 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, Hsinchu, Taiwan, 29 June–2 July. 2015. 12. Clark, L.T.; Vashishtha, V.; Shifren, L.; Gujja, A.; Sinha, S.; Cline, B.; Ramamurthy, C.; Yeric, G., ASAP7: A 7-nm finFET predictive process design kit. Microelectron. J. 2016, 53, 105–115. 13. Bai, P.; Auth, C.; Balakrishnan, S.; Bost, M.; Brain, R.; Chikarmane, V.; Heussner, R.; Hussein, M.; Hwang, J.; Ingerly, D.; James, R. ; Jeong, J.; Kenyon, C.; Lee, S.-H.; Lee, E.; Lindert, N.; Liu, M.; Ma, Z.-C.; Marieb, T.; Murthy, A.; Nagisetty, R.; Natarajan, S.; Neirynck, J.; Ott, A.; Parker, C.; Sebastian, J.; Shaheed, R.; Sivakumar, S.; Steigerwald, J.; Tyagi, S.; Weber, C.; Woolery, B.; Yeoh, A.; Zhang, K.; Bohr, M., A 65 nm logic technology featuring 35 nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell, Tech. Dig. Int. Electron Devices Meet. IEDM. 2004, 657–660. 14. Sung, S.; Kim, C.-H.; Lee, J.; Jung, J.-Y.; Jeong, J.-H.; Choi, J.-H.; Lee, E.-S., Advanced metal lift-offs and nanoimprint for plasmonic metal patterns. Int. J. Precis. Eng. Manuf. Technol. 2014, 1, 25–30. 15. Heo, J.; Min, H.; Lee, M., Laser micromachining of permalloy for fine metal mask. Int. J. Precis. Eng. Manuf. Technol. 2015, 2, 225–230. 16. Lee, W.-S.; Kim, S.-Y.; Seo, Y.-J.; Lee, J.-K., An optimization of tungsten plug chemical mechanical polishing (CMP) using different consumables. J. Mater. Sci. Mater. Electron. 2001, 12, 63–68. 17. Nelson, M.M., Optimized pattern fill process for improved CMP uniformity and interconnect capacitance. Bienn. Univ. Microelectron. Symp. Proc. 2003, 374–375. 18. Duong, T.-H.; Kim, H.-C., Electrochemical etching technique for tungsten electrodes with controllable profiles for micro-electrical discharge machining. Int. J. Precis. Eng. Manuf. Technol. 2015, 16, 1053–1060. 19. Lee, J.; Park, S.; Park, J.; Cho, Y.S.; Shin, K.-H.; Lee, D., Analysis of adhesion strength of laminated copper layers in roll-to-roll lamination process. Int. J. Precis. Eng. Manuf. Technol. 2015, 16, 2013–2020. 20. Yu, J.H.; Rho, Y.; Kang, H.; Jung, H.S.; Kang, K.-T., Electrical Behavior of Laser-Sintered Cu based Metal-Organic Decomposition Ink in Air Environment and Application as Current Collectors in Supercapacitor. Int. J. Precis. Eng. Manuf. Green Technol. 2015, 2, 333–337. 21. Humpston, G., Cobalt: A universal barrier metal for solderable under bump metalization. J. Mater. Sci. Mater. Electron. 2009, 21, 584–588. 22. Deng, C.; Jiang, L.; Qin N.; Qian, L., Effects of pH and H2O2 on the chemical mechanical polishing of titanium alloys. J. Mater. Process. Technol. 2021, 295, 117204 23. Park, S.-J.; Lee, H.-S.; Jeong, H., Signal analysis of CMP process based on AE monitoring system. Int. J. Precis. Eng. Manuf. Technol. 2015, 2, 15–19. 24. Singh, R.-K.; Lee, S.-M.; Choi, K.-S.; Basim, G.B.; Choi, W.; Chen, Z.; Moudgil, B.M., Fundamentals of Slurry Design for CMP of Metal and Dielectric Materials. MRS Bull. 2002, 27, 752–760. 25. Huang, I.-Y., ULSI Manufacturing Technology—(e) Chemical Mechanical Planarization, Chapter 3., National Sun Yat-sen University: Kaohsiung, Taiwan, 2005. 26. Zhao, D.; Lu, X., Chemical mechanical polishing: theory and experiment. Friction 2013, 306–326. 27. Wang, Y.-G.; Chen, Y.; Zhao, Y.-W., Chemical Mechanical Planarization of silicon wafers at natural pH for green manufacturing. Int. J. Precis. Eng. Manuf. 2015 ,16(9), 2049-2054. 28. Chu, W.-S.; Kim, C.-S.; Lee, H.-T.; Choi, J.-O.; Park, J.-I.; Song, J.-H.; Jang, K.-H.; Ahn, S.-H., Hybrid manufacturing in micro/nano scale: A Review. Int. J. Precis. Eng. Manuf. Technol. 2014, 1, 75–92. 29. Lee, D.; Lee, H.; Jeong, H., The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption. J. Mech. Sci. Technol. 2015, 29, 5057–5062. 30. Lee, H.; Dornfeld, D.A.; Jeong, H., Mathematical Model-based Evaluation Methodology for Environmental Burden of Chemical Mechanical Planarization Process. Int. J. Precis. Eng. Manuf. Green Technol. 2014, 1, 11–15. 31. Lee, H.; Jeong, H., Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces. CIRP Ann. 2009, 58, 485–490. 32. Kim, N.H.; Choi, M.H.; Kim, S.Y.; Chang, E.G., Design of experiment (DOE) method considering interaction effect of process parameters for optimization of copper chemical mechanical polishing (CMP) process, Microelectron. Eng. 2006, 83(3), 506–512. 33. Li, Y.-Z, Ed., Micro-Electric Applications of Chemical Mechanical Planarization: John Wiley & Sons Inc.: Hoboken, NJ, USA. 2008, 4–5. 34. Lee, D.; Lee, H.; Jeong, H., Slurry component in metal chemical planarization (CMP) Processes: A Review, Int. J. Precis. Eng. Manuf. 2016, 17(12), 1751-1762 35. Liu. W.-J.; Liu. Y.L., Synergic Effect of Chelating Agent and Oxidant on Chemical Mechanical Planarization. Journal of Semiconductors 2015, 36(2), 026001. 36. Liu, S., A review on protein oligomerization process. Int. J. Precis. Eng. Manuf. 2015, 16(13), 2731-2760. 37. Pearson, R.G., Hard and soft acids and bases. Journal of the American Chemical Society 1963, 85(22), 3533-3539. 38. Lim, G.; Lee, J.-H.; Kim, J.; Lee, H.-W.; Hyun, S.-H., Effects of oxidants on the removal of tungsten in CMP Process. Wear 2004, 257(9), 863-868. 39. Moon, M.-S., Woo, K.-D., Kang, S.-J., Song, J.-H., Oh, J.-H.; Yang, S.-M., A Study of the corrosive behavior of STS304 and STS 430, depending on surface pre-treatment conditions, in PEMFC while in operation. Int. J. Precis. Eng. Manuf. 2014, 15(6), 1201-1205. 40. Collman, J. P.; Kubota, M.; Hosking, J. W., Metal ion facilitation of atom-transfer-oxidation-reduction reactions. Journal of the American Chemical Society 1967, 89(18), 4809-4811. 41. Lee, J.-O.; Park, G.; Park, J.; Cho, Y.; Lee, C.-K., Study of electrochemical redox of gold for refining in non-aqueous electrolyte. Int. J. Precis. Eng. Manuf. 2015, 16(7),1229-1232. 42. Attia, A. A. A. A.; Cioloboc, D.; Lupan, A.; Silaghi-Dumitrescu, R., Fe-O Versus O-O bond cleavage in reactive iron peroxide intermediates of superoxide reductase. JBIC Journal of Biological Inorganic Chemistry 2013, 18(1), 95-101. 43. Du, T.; Vijayakumar, A.; Desai, V., Effect of hydrogen peroxide on oxidation of copper in CMP slurries containing glycine and Cu Ions. Electrochimica Acta 2004, 49(25), 4505-4512. 44. Chathapuram, V. S.; Du, T.; Sundaram, K. B.; Desai, V., Role of oxidizer in the chemical mechanical planarization of the Ti/TiN barrier layer. Microelectronic Engineering 2003, 65(4), 478-488. 45. Lee, H.; Park, B.; Jeong, H., Influence of slurry components on uniformity in copper chemical mechanical planarization. Microelectronic Engineering 2008, 85(4), 689-696. 46. Eom, D.-H.; Ryu, J.; Park, J.-G.; Myung, J.; Kim, K.-S., Chemical and mechanical characterizations of the passivation layer of copper in organic acid based slurries and its CMP performance. Key Engineering Materials 2004, Vols. 257-258, 389-394. 47. Kang, Y.-J.; Eom, D.-H.; Song, J.-H.; Park, J.-G., The effect of pH adjustor in Cu slurry on Cu CMP. PacRim-CMP 2004, 197-204. 48. Kovačević, N.; Kokalj, A., Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces. Materials Chemistry and Physics 2012, 137(1), 331-339. 49. Shin, W.-K.; An, J.-H.; Jeong, H., Investigation of particle adhesion force for green nanotechnology in post-CMP cleaning. Int. J. Precis. Eng. Manuf. 2012, 13(7), 1125-1130. 50. Lee, H.; Chung, M.; Ahn, H.-G.; Kim, S.-J.; Park, Y.-K.; Jung,S.-C., Effect of the surfactant on size of nickel nanoparticles generated by liquid-phase plasma method. Int. J. Precis. Eng. Manuf. 2015, 16(7),1305-1310. 51. Dylla-Spears, R.; Wong, L.; Miller, P. E.; Feit, M. D.; Steele, W.; Suratwala, T., Charged micelle halo mechanism for agglomeration reduction in metal oxide particle based polishing slurries. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 447, 32-43. 52. Li, Z.; Ina, K.; Lefevre, P.; Koshiyama, I.; Philipossian, A., Determining the effects of slurry surfactant, abrasive size, and abrasive content on the tribology and kinetics of copper CMP. Journal of The Electrochemical Society 2005, 152(4), G299-G304. 53. Kim, N.-H.; Choi, M.-H.; Kim, S.-Y.; Chang, E.-G., Design of experiment (DOE) method considering interaction effect of process parameters for optimization of copper chemical mechanical polishing (CMP) process, Microelectron. Eng. 2006, (83)506–512. 54. Preston, F., The theory and design of plate glass polishing machines. J. Soc. Glass Technol. 1927, 11, 214–256. 55. Zhao, D.; Lu, X., Chemical mechanical polishing: theory and experiment, Friction 2013, 306–326. 56. Kaufman, F.B.; Thompson, D.B.; Broadie, R.E.; Jaso, M.A.; Guthrie, W.L.; Pearson, D.J.; Small, M.B., Chemical mechanical polishing for fabricating patterned W metal features as chip interconnects. J. Electrochem. Soc. 1991, 138, 3460–3465. 57. Debottam D.; Himanshu R.; Swarnima S.; Meenakshi S.; Rajesh K. S.; Nitya N.G., Nanoscale tribological aspects of chemical mechanical polishing: A review. Applied Surface Science Advances 2022, 11,100286. 58. Lee, H.; Lee, D.; Jeong, H., Mechanical aspects of the chemical mechanical polishing process: A review. Int. J. Precis. Eng. Manuf. 2016, 17, 525–536. 59. Nguyen, V.-T.; Fang, T.-H., Molecular dynamics simulation of abrasive characteristics and interfaces in chemical mechanical polishing. Appl. Surf. Sci.2020, 509, 144676. 60. Nguyen, V.-T.; Fang, T.-H., Revealing the mechanisms for inactive rolling and wear behavior on chemical mechanical planarization. Appl. Surf. Sci.2022, 595, 153524 61. Paul, E., A model of chemical mechanical polishing. J. Electrochem. Soc. 2001, 148, G355–G358. 62. Luo, J.; Dornfeld, D., Material removal mechanism in chemical mechanical polishing: Theory and modeling. IEEE Trans. Semi-cond. Manuf. 2001, 14, 112–133. 63. Xu, X.F; Chen, H.F; Ma, H.T; Ma, B.X; Peng, W., The mechanism of polymer particles in silicon wafer CMP. Material Science Forum 2009,626-627, 231-236. 64. Wang, Y.; Zhao, Y.; An, W.; Ni, Z.; Wang, J. Modeling effects of abrasive particle size and concentration on material removal at molecular scale in chemical mechanical polishing. Appl. Surf. Sci. 2010, 257, 249–253. 65. Kim, E.; Lee, J.; Park, Y.; Shin, C.; Yang, J.; Kim, T., Shape classification of fumed silica abrasive and its effects on chemical mechanical polishing. Powder Technol. 2021, 381, 451–458. 66. Jing, W.; Du, S.; Zhang, Z., Synthesis of polystyrene particles with precisely controlled degree of concaveness. Polymers 2018, 10,458. 67. Bartoš, D.; Wang, L.; Anker, A.; Rewers, M.; Frederiksen, O.; Jensen, K.; Sørensen, T., Synthesis of fluorescent polystyrene nanoparticles: a reproducible and scalable method. PeerJ Materials Science 2022, 10,7177,22. 68. Jeong, U.; Wang, Y.; Ibisate, M.; Xia, Y., Adv. Func. Mater 2005, 15,1907-1921. 69. 松本恒隆,越智明宏,高分子化學 1965, 第22卷,第244號. 70. Zhong, F.; Pan, C.-Y.; Dispersion polymerization versus emulsifier-free emulsion polymerization for nano-object fabrication: A Comprehensive Comparison. Macromol. Rapid Commun. 2022, 43, 2100566. 71. Ikkala, O.; Brinke, G.T., Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409. 72. Janata, J.; Josowicz, M., Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24. 73. Zotti, G.; Vercelli, B.; Berlin, A., Monolayers and Multilayers of Conjugated Polymers as Nanosized Electronic Components. Acc. Chem. Res. 2008, 41,1098–1109. 74. Aida, T.; Meijer, E. W.; Stupp, S. I., Functional supramolecular polymers. Science 2012, 335, 813–817. 75. Ro¨sler, A.; Vandermeulen, G.W.; Klok, H.-A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Delivery Rev. 2012, 64, 270–279 76. Nakatani, K.; Ogura, Y.; Koda, Y.; Terashima, T.; Sawamoto, M. J. Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification. Am. Chem. Soc. 2012, 134(9), 4373–4383. 77. Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661–3688. 78. Moad, G.; Rizzardo, E.; Thang, S.-H., Living radical polymerization by the RAFT process a third update. Aust. J. Chem. 2012, 65, 985–1076. 79. Hilf, S.; Kilbinger, A. F. M., Functional end groups for polymers prepared using ring-opening metathesis polymerization. Nat. Chem. 2009, 1, 537–546. 80. Matyjaszewski, K.; Tsarevsky, N. V., Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513–6533. 81. Rosebrugh, L. E.; Marx, V. M.; Keitz, B. K.; Grubbs, R. H., Synthesis of highly cis, syndiotactic polymers via ring-opening metathesis polymerization using ruthenium metathesis catalysts. J. Am. Chem. Soc. 2013, 135, 10032–10035. 82. Kim, J. K.; Yang, S. Y.; Lee, Y.; Kim, Y., Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci. 2010, 35, 1325–1349. 83. Zhang, Q.; Ko, N. R.; Oh, J. K., Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem. Commun. 2012, 48,7542–7552. 84. Ge, Z.; Liu, S., Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging. Chem. Soc. Rev. 2013, 42, 7289–7325. 85. Ruzette, A.-V.; Leibler, L., Block copolymers in tomorrow''s plastics. Nat. Mater. 2005, 4, 19–31. 86. Mai, Y.; Eisenberg, A., Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. 87. Kim, H.-C.; Park, S.-M.; Hinsberg, W. D., Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem. Rev. 2009, 110, 146–177. 88. Moughton, A.O.; Hillmyer, M.A.; Lodge, T.P., Multicompartment block polymer micelles. Macromolecules 2012, 45, 2–19. 89. Moughton, A. O.; O’Reilly, R. K., Thermally induced micelle to vesicle morphology transition for a charged chain end di-block copolymer. Chem. Commun.2010, 46,1091–1093. 90. Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P., Mechanistic Insights for block copolymer morphologies: how do worms form vesicles? J. Am. Chem. Soc. 2011, 133, 16581–16587. 91. Kamps, A. C.; Cativo, M. H. M.; Fryd, M.; Park, S.-J., Self-assembly of amphiphilic conjugated di-block copolymers into one-dimensional nanoribbons. Macromolecules 2014, 47, 161–164. 92. Bang, J.; Jain, S.; Li, Z.; Lodge, T. P.; Pedersen, J. S.; Kesselman, E.; Talmon, Y., Sphere, cylinder, and vesicle nanoaggregates in poly(styrene-b-isoprene) di-block copolymer solutions. Macromolecules 2006, 39, 1199–1208. 93. Bhargava, P.; Tu, Y.; Zheng, J. X.; Xiong, H.; Quirk, R. P.; Cheng, S. Z. D., Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution. J. Am. Chem. Soc. 2007, 129, 1113–1121. 94. Shen, H.; Zhang, L.; Eisenberg, A., Multiple pH-induced morphological changes in aggregates of polystyrene-block-poly(4-vinylpyridine) in DMF/H2O mixtures. J. Am. Chem. Soc. 1999, 121, 2728–2740 95. Reng, Q.; Ding, L.; Dai, X.; Jiang, Z.; Ye, G.; Schutter, G.D., Determination of specific surface area of irregular aggregate by random sectioning and its comparison with conventional methods. Construction and Building Materials 2021, 273, 122019 96. Bala, M.; Zentar, R.; Boustingorry, P., Parameter determination of the compressible packing model (CPM) for concrete application. Powder Technology 2020, 367, 56-66 97. Kong, H.; Wang, D.; Liu, W.; Song, Z., Preparation of non-spherical colloidal silica nanoparticle and its application on chemical mechanical polishing of sapphire. J. Wuhan Univ. Technol. Mater. Sci. 2019, Ed. 34, 86–90. 98. Gao, P.; Liu, T.; Zhang, Z.-Y.; Meng, F.-N.; Ye, R.-P.; Liu, J., Non-spherical abrasives with ordered mesoporous structure for chemical mechanical polishing. Science China Materials 2021, 64(11), 2747–2763. 99. Hong, S.; Han, D.; Kwon, J.; Kim, S.-J.; Lee, S.-J.; Jang, K.-S., Influence of abrasive morphology and size dispersity of Cu barrier metal slurry on removal rates and wafer surface quality in chemical mechanical planarization. Microelectron. Eng. 2020, 232(15), 111417. 100. Xu, L.; Lei, H.; Wang, T.; Dong, Y.; Dai, S., Preparation of flower-shaped silica abrasives by double system template method and its effect on polishing performance of sapphire wafers. Ceram. Int. 2019, 45(7), 8471–8476. 101. Dong, H.; Lei, W.; Liu, Y.; Chen, Y., Preparation of ellipsoidal rod-shaped silica nanocomposite abrasives by chromium ion/PEG200 induced method for sapphire substrates chemical mechanical polishing. J. Alloys Compd. 2019, 777(10), 1294–1303. 102. Nguyen, V.; Fang, T. Revealing the mechanisms for inactive rolling and wear behavior on chemical mechanical planarization. Applied Surface Science 2022, 595, 153524. 103. Lee, H.; Jeong, H. Analysis of removal mechanism on oxide CMP using mixed abrasive slurry. Int. J. Precis. Eng. Manuf. 2015, 16, 603–607. 104. Luo, J., Dornfeld, D.A., Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification. IEEE Trans. Semi-cond. Manuf. 2003, 16, 469–476. 105. Ye, C.; Liu, J., Ren, F.; Okafo, N., Design of experiment and data analysis by JMP® (SAS institute) in analytical method validation. J. Pharm. Biomed. Anal. 2000, 23, 581–589. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92078 | - |
| dc.description.abstract | 化學機械研磨拋光製程技術(Chemical Mechanical Polishing, CMP)是一種濕式的晶圓表面拋光平坦化技術,該技術結合了化學和機械力的作用,使矽晶圓上的沈積成長材料及半導體材料完全平坦化,使晶圓表面上之積體電路(Integrated Circuit, IC)的微電子元件產生更高更好的堆疊密集化。達到實現具有奈米尺寸、缺陷少、晶圓良率好的元件對於積體電路晶圓製造商提高利潤和提高競爭力至關重要。化學機械研磨拋光(CMP)技術用於生產許多IC世代的奈米尺寸生產節點(generation node),在更窄的線寬,以獲得更好的性能和製造可行性。研磨拋光漿料(Slurry)是化學機械研磨拋光過程中的重要原料。在研磨拋光漿料之中,最關鍵的成分是研磨拋光顆粒,而研磨拋光顆粒是研磨拋光過程中產生機械力的來源。它會影響晶圓表面材料的移除速率、非均勻性、缺陷種類及數量和材料移除速率的選擇比。傳統的研磨拋光顆粒是由膠體型二氧化矽,燒結型二氧化矽或其他無機型奈米顆粒所組成。我們首先系統地研究了應用於化學機械研磨拋光漿料中使用聚合物類型的奈米顆粒,並在拋光性能方面比較了傳統的無機和聚合物奈米顆粒。我們亦進行研究聚合物奈米顆粒的尺寸大小、顆粒形狀、顆粒固含量比例和高分子共聚物的不同類型,並根據研磨拋光材料移除速率、總缺陷數和非均勻性來評估其平坦化研磨效果,發現聚合物奈米顆粒顯著改善了總缺陷數和非均勻性。儘管高分子型奈米顆粒研磨拋光材料移除速率低於使用無機奈米顆粒的研磨拋光材料移除速率,然而,聚合物奈米顆粒的較低研磨速率是可以接受的,因為用於更小的製造世代在低於10nm以下的線寬,其製程沈積成長的薄膜材料更薄更小。從數據結果發現,聚合物奈米顆粒的物理性質,就其尺寸,形狀和不同類型的共聚物高分子而言,會導致拋光性能的差異。同時,我們使用統計分析軟體對研磨拋光材質移除速率和研磨拋光缺陷總數的數據進行分析。該方法有助於確定最適合用作研磨拋光漿料的聚合物奈米顆粒,並改善降低缺陷總數的可靠性趨勢研究。 | zh_TW |
| dc.description.abstract | Abstract
Chemical mechanical planarization (CMP) is a wafer-surface-polishing planarization technique based on a wet procedure that combines chemical and mechanical forces to fully flatten materials for semiconductors to be mounted on the wafer surface. The achievement of devices of a small nano-size with few defects and good wafer yields is essential in enabling IC chip manufacturers to enhance their profits and become more competitive. The CMP process is applied to produce many IC generations of nanometer node, or those of even narrower line widths, for a better performance and manufacturing feasibility. Slurry is a necessary supply for CMP. The most critical component in slurry is an abrasive particle which affects the removal rates, uniformity, defects, and removal selectivity for the materials on the wafer surface. The polishing abrasive is the source of mechanical force. Conventional CMP abrasives consist of colloidal silica, fume silica or other inorganic pol-ishing particles in the slurries. I am the first to systematically study nanoparticles of the polymer type applied in CMP, and to compare traditional inorganic and polymer nanoparticles in terms of polishing performance. In particular, the polymer nanoparticle size, shape, solid content dosing ratio, and molecular types were examined. The polishing performance was measured for the polishing removal rates, total defect counts, and uniformity. I found that the polymer nanoparticles significantly improved the total defect counts and uniformity, although the removal rates were lower than the rates obtained using inorganic nanoparticles. However, the lower removal rates of the polymer nanoparticles are acceptable due to the thinner film materials used for smaller IC device nodes, which may be below 10 nm. I also found that the physical properties of polymer nanoparticles, in terms of their size, shape, and different types of copolymer molecules, cause differences in the polishing performance. Meanwhile, we used statistical analysis software to analyze the data on the polishing removal rates and defect counts. This method help to determine the most suitable polymer nanoparticle for use as a slurry abrasive, and improves the reliability trends for defect counts. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:24:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-04T16:24:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 總目錄
口試委員會審定書……………………………………………………………I 致謝詞…………………………………………………………………………………II 中文摘要…………………………………………………………………………III 英文摘要……………………………………………………… …………………IV 總目錄…………………………………………………………………………………VI 表目錄….……………………………………………………………………………VIII 圖目錄…………………………………………………………………………………IX 第一章 導論…………………………………………………………………………1 1.1前言………………………………………………………………………1 1.2晶圓半導體製程技術及半導體晶片結構……………………………………2 1.3 化學與機械平坦化技術製程之應用於半導體晶圓製造……………………3 1.4 化學機械研磨拋光製程之設備裝置及拋光研磨反應理論機制…………5 1.5 高分子聚合物奈米顆粒應用於化學機械研磨拋光製程…………………11 1.6 高分子聚合物奈米顆粒應用於化學機械研磨拋光製程……………………15 1.7 高分子聚合物奈米顆粒之製造法及應用……………………………………18 1.8 共聚高分子聚合物奈米顆粒之製造法………………………………………19 第二章 實驗方法與試驗儀器及材料……………………………………………23 2.1 化學機械研磨拋光(CMP)實驗材料………………………………………23 2.2 測試儀器及CMP晶圓研磨拋光設備……………………25 第三章 結果與討論…………………………………………………………………29 3.1傳統二氧化矽奈米顆粒與聚合物奈米顆粒的粒子固含量對比於CMP研磨光拋光性能的影響效應及理論解析………………………………………29 3.2高分子聚合物顆粒形狀對CMP研磨拋光性能的影響效應及理論解析…33 3.3 高分子聚合物奈米顆粒粒徑對CMP研磨拋光性能的影響效應及理論解…37 3.4高分子共聚物奈米顆粒對CMP研磨拋光性能的影響效應及理論解析…41 3.5 聚合物奈米微顆粒CMP研磨拋光數據經由JMP®(SAS公司)統計軟體分析.47 3.6膠體二氧化矽顆粒與高分子聚合物奈米顆粒的測試晶圓研磨拋光比較…49 第四章 結論…………………………………………………………………………50 第五章 未來展望……………………………………………………………………53 參考文獻..……………………………………………………………………………55 作者介紹………………………………………………………………………………63 發表著作……………………………………………………………………………….64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 親水性高分子 | zh_TW |
| dc.subject | 嵌段高分子奈米顆粒 | zh_TW |
| dc.subject | 高分子奈米顆粒 | zh_TW |
| dc.subject | 化學與機械平坦化 | zh_TW |
| dc.subject | 研磨拋光材料移除速率 | zh_TW |
| dc.subject | 高分子核殼結構 | zh_TW |
| dc.subject | 半導體製程缺陷 | zh_TW |
| dc.subject | Copolymer nanoparticle | en |
| dc.subject | hydrophilic hydrophobic | en |
| dc.subject | Core shell structure | en |
| dc.subject | Block copolymer nanoparticle | en |
| dc.subject | Semiconductor manufacturing | en |
| dc.subject | Polymer nanoparticle | en |
| dc.subject | Polishing scratches defect | en |
| dc.subject | Wafers polishing materials removal rates | en |
| dc.subject | Chemical mechanical polishing | en |
| dc.title | 高分子奈米顆粒應用於晶圓平坦化技術之缺陷改善及研磨拋光材料移除速率趨勢 | zh_TW |
| dc.title | Polymer Nanoparticles Applied in the Chemical Mechanical Polishing (CMP) Process of Chip Wafers for Defect Improvement and Polishing Removal Rate Response | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 鄭如忠;童世煌;楊燿州;陳炤彰;楊偉文 | zh_TW |
| dc.contributor.oralexamcommittee | Ru-Jong Jeng;Shih-Huang Tung;Yao-Joe Yang;Chao-Chang Chen;Wei-Wen Yang | en |
| dc.subject.keyword | 化學與機械平坦化,高分子奈米顆粒,嵌段高分子奈米顆粒,半導體製程缺陷,研磨拋光材料移除速率,親水性高分子,高分子核殼結構, | zh_TW |
| dc.subject.keyword | Chemical mechanical polishing,Semiconductor manufacturing,Wafers polishing materials removal rates,Polishing scratches defect,Polymer nanoparticle,Copolymer nanoparticle,Block copolymer nanoparticle,Core shell structure,hydrophilic hydrophobic, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202400491 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
