請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 宋煒瀚 | zh_TW |
| dc.contributor.author | Wei-Han Sung | en |
| dc.date.accessioned | 2024-03-04T16:22:26Z | - |
| dc.date.available | 2024-03-05 | - |
| dc.date.copyright | 2024-03-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-14 | - |
| dc.identifier.citation | [1] 經濟部能源局, ”2013年非生產性質行業能源查核年報”
[2] 經濟部能源局, “2022年非生產性質行業能源查核年報” [3] A. K. KHATRY, M. S. SODHA,M. A. S. MALIK, “Periodic variation of ground temperature with depth”, Solar Energy Vol. 20, pp. 425-427, 1977 [4] 經濟部, “能源轉型白皮書”, 2022 [5] G. Riyan Aditya, Olga Mikhaylova, Guillermo A. Narsilio, Ian W. Johnston, “Comparative costs of ground source heat pump systems against other forms of heating and cooling for different climatic conditions”, Sustainable Energy Technologies and Assessments, Volume 42, 2020 [6] Peter Bayer, Guillaume Attard, Philipp Blum, Kathrin Menberg, “The geothermal potential of cities”, Renewable and Sustainable Energy Reviews, 2019 [7] 蔡岳勳, “美國地熱能源法規與政策發展”, 台灣能源期刊, pp.41-54, 2016 [8] Saeed Maddah, Marjan Goodarzi, Mohammad Reza Safaei, “Comparative study of the performance of air and geothermal sources of heat pumps cycle operating with various refrigerants and vapor injection”, Alexandria Engineering Journal, 2020 [9] J.F. Urchueguía, M. Zacarés, J.M. Corberán, Á. Montero, J. Martos, H. Witte, “Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast”, Energy Conversion and Management, Volume 49, Issue 10, 2008 [10] Onder Ozgener, Arif Hepbasli, “Modeling and performance evaluation of ground source (geothermal) heat pump systems”, Energy and Buildings, Volume 39, Issue 1, 2007 [11] X.Q. Zhai, Y. Yang, “Experience on the application of a ground source heat pump system in an archives building”, Energy and Buildings, Volume 43, Issue 11, 2011 [12] D.A. Ball, R.D. Fischer, “Design methods for ground-source heat pumps”, ASHRAE Transactions, pp.416-440, 1983 [13] Ioan Sarbu, Calin Sebarchievici, “General review of ground-source heat pump systems for heating and cooling of buildings”, Energy and Buildings, 2013 [14] A.S.H.R.A.E Handbook, “American Society of Heating”, Refrigerating and Air–Conditioning Engineers, 2011. [15] Abdeen Mustafa Omer, “Ground-source heat pumps systems and applications”, Renewable and Sustainable Energy Review, 2008 [16] Shuyang Zhang, Lun Zhang, Hongyang Wei, Jun Jing, Xin Zhou, Xiaosong Zhang,“Field testing and performance analyses of ground source heat pump systems for residential applications in Hot Summer and Cold Winter area in China”, Energy and Buildings, Volume 133, 2016 [17] H. Yang, P. Cui, Z. Fang,” Vertical-borehole ground-coupled heat pumps: A review of models and systems”, Applied Energy, Volume 87, Issue 1, 2010 [18] James M. Calm, “The next generation of refrigerants – Historical review, considerations, and outlook”, Refrigeration, 2008 [19] Y. Heredia-Aricapa, J.M. Belman-Flores, A. Mota-Babiloni , J. Serrano-Arellano , Juan J. García-Pabón , “Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A”, International Journal of Refrigeration, 2019 [20] 黎錦鵬, “多U行地埋管熱交換器應用於地源熱泵系統之分析”, 碩士, 機械工程研究所, 國立台灣大學, 2019 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92069 | - |
| dc.description.abstract | 本研究利用宜蘭地下水資源作為淺層溫能來源,透過抽取地下水和熱泵進行直接熱交換,形成地源熱泵系統應用於建築中的供暖和製冷需求。淺層溫能具有溫度穩定的特性,作為熱泵中蒸氣壓縮冷凍循環中的冷源或熱源都能有效降低壓縮機之負荷,就能減少耗電量,達到節能的效果。
實驗對本地源熱泵系統的三種模式進行分析,三種模式藉由冷媒不同循環所做區分,分別為沒有利用淺層溫能同時製熱水和冰水的雙效模式、製熱模式、製冷模式。結果顯示雙效模式的製熱COP可達3.3;製冷COP為2.1,製熱模式因有淺層溫能減少高壓端的負荷,製熱COP可達到4.2。除了製熱水外,藉由改變水路管線使熱水能經過風機模擬暖氣,數據顯示可使出風口溫差達到40°C,具備市面暖氣機性能,室內和室外的溫差可達8°C,符合中央空調系統之標準。製冷模式COP可達6.3,冰水經過風機能使出風口溫度達15°C,符合夏季冷氣水系統出風口溫度,冷房能力可達20.8kW,相當於7噸冷氣效能。 本熱泵系統的冷媒管線在製冷模式上有兩片熱交換器串聯之情形,透過水側進水順序不同可達到回收冷媒在熱水端熱交換器所散失的部分顯熱,使製熱COP可達5.47,相比原本製熱模式的COP上升30%。利用此管路配置進行雙效模式測試,也能分別提升製熱COP達3.6約上升8%;製冷COP達2.5約上升16%。 | zh_TW |
| dc.description.abstract | This research explores the use of groundwater resources in Yilan as a shallow geothermal energy source. The approach involves extracting groundwater and utilizing heat pumps for direct heat exchange, creating a ground source heat pump system for heating and cooling in buildings. Shallow geothermal energy exhibits temperature stability, effectively reducing the compressor load in the vapor compression refrigeration cycle of heat pumps when used as a cold or heat source. This reduction leads to lower power consumption, achieving energy efficiency.
The experiment analyzes three modes of the local ground source heat pump system, distinguished by different refrigerant cycles: the dual-effect mode that simultaneously produces hot water and ice water without utilizing shallow geothermal energy, the heating mode, and the cooling mode. Results indicate that the dual-effect mode achieves a heating COP of 3.3 and a cooling COP of 2.1. The heating mode, benefiting from shallow geothermal energy, reduces the high-pressure side load, resulting in a heating COP of 4.2. Additionally, by modifying the water pipeline, hot water can be simulated through a fan to achieve an outlet temperature difference of 40°C, meeting central heating system standards with an indoor-outdoor temperature difference of 8°C. In the cooling mode, the COP reaches 6.3, and the use of ice water through a fan achieves an outlet temperature of 15°C, meeting the requirements for summer air conditioning system outlet temperature. The cooling capacity can reach 20.8 kW, equivalent to the performance of a 7-ton air conditioner. The refrigerant pipeline in this heat pump system features two heat exchangers in series during the cooling mode. Varying the water inlet sequence allows the recovery of sensible heat lost in the heat exchanger at the hot water end, resulting in a heating COP of 5.47 and 30% increase compared to the original heating mode COP. Testing the dual-effect mode with this pipeline configuration also leads to an increase of approximately 8% in the heating COP (reaching 3.6) and 16% increase in the cooling COP (reaching 2.5). | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:22:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-04T16:22:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 IX 符號說明 X 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 淺層溫能 4 1.2.2 地源熱泵和空氣源熱泵 5 1.2.3 地源熱泵種類 7 1.2.4 地源熱泵熱交換模式-直接/間接 9 1.3 研究動機與目的 10 第2章 基礎理論背景 11 2.1 熱泵基礎原理 11 2.1.1 理想蒸氣壓縮冷凍循環 11 2.1.2 實際蒸氣壓縮冷凍循環 12 2.1.3 蒸氣壓縮冷凍循環四大元件 13 2.2 蒸氣壓縮冷凍循環性能係數 14 2.3 冷媒 15 第3章 實驗裝置及研究流程 17 3.1 地源熱泵系統簡介 17 3.1.1 熱泵規格 18 3.1.2 熱泵系統冷媒管線 19 3.1.3 水泵 20 3.2 實驗量測儀器 23 3.2.1 溫度感測器(熱電偶) 23 3.2.2 資料擷取器 24 3.2.3 電力分析儀 25 3.2.4 流量計 25 3.3 實驗流程及步驟 28 3.3.1 製熱模式實驗流程 28 3.3.2 製冷模式實驗流程 29 3.3.3 雙效模式實驗流程 30 第4章 實驗結果與分析 31 4.1 淺層溫能結合熱泵之製熱性能分析 31 4.1.1 淺層溫能製熱模式實驗操作條件 31 4.1.2 水側溫度變化和能量分析 31 4.1.3 模擬暖氣模式 35 4.2 淺層溫能結合熱泵之製冷性能分析 38 4.2.1 淺層溫能製冷模式實驗操作條件 38 4.2.2 水側溫度變化和能量分析 38 4.3 雙效模式性能分析 41 4.3.1 雙效模式實驗操作條件 41 4.3.2 水側溫度變化和能量分析 41 4.4 冷媒顯熱回收實驗 44 4.4.1 冷媒顯熱回收實驗操作條件 44 4.4.2 系統迴路分析 44 4.4.3 冷媒顯熱回收結果分析 46 第5章 結論與建議 52 5.1 結論 52 5.2 未來展望與建議 53 參考文獻 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 淺層溫能 | zh_TW |
| dc.subject | 性能係數 | zh_TW |
| dc.subject | 地源熱泵 | zh_TW |
| dc.subject | Coefficient of Performance | en |
| dc.subject | Ground Source Heat Pump | en |
| dc.subject | Shallow Geothermal Energy | en |
| dc.title | 地源熱泵應用於建築之供暖和製冷性能分析及改善 | zh_TW |
| dc.title | Analysis and Improvement of Heating and Cooling Performance in Buildings Using Ground Source Heat Pump | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江沅晉;王榮昌 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Jin Jiang;Rong-Chang Wang | en |
| dc.subject.keyword | 淺層溫能,地源熱泵,性能係數, | zh_TW |
| dc.subject.keyword | Ground Source Heat Pump,Shallow Geothermal Energy,Coefficient of Performance, | en |
| dc.relation.page | 55 | - |
| dc.identifier.doi | 10.6342/NTU202400326 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
