Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟
dc.contributor.authorSung-Min Yangen
dc.contributor.author楊淞閔zh_TW
dc.date.accessioned2021-05-20T20:12:53Z-
dc.date.available2009-07-30
dc.date.available2021-05-20T20:12:53Z-
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citation1. Urban J, Roberts S, Ralphs J. The Nucleus of the Intervertebral Disc from Development to Degeneration 1: Soc Integ Comp Biol, 2000:53-61.
2. Singh K, Masuda K, Thonar EJ, et al. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine 2009;34:10-6.
3. Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 2004;29:2691-9.
4. Roberts S. Disc morphology in health and disease. Biochem Soc Trans 2002;30:864-9.
5. Yao H, Justiz MA, Flagler D, et al. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann Biomed Eng 2002;30:1234-41.
6. Meakin JR, Hukins DW. Effect of removing the nucleus pulposus on the deformation of the annulus fibrosus during compression of the intervertebral disc. J Biomech 2000;33:575-80.
7. Wang JL, Wu TK, Lin TC, et al. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine 2008;33:1863-9.
8. Vresilovic E, Johannessen W, Elliott D. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery. Journal of Biomechanical Engineering 2006;128:823.
9. Roughley PJ, Melching LI, Heathfield TF, et al. The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 2006;15 Suppl 3:S326-32.
10. Allen M, VetMB P, Schoonmaker J, et al. Preclinical Evaluation of a Poly (Vinyl Alcohol) Hydrogel Implant as a Replacement for the Nucleus Pulposus. Spine 2004;29:515.
11. Malko JA, Hutton WC, Fajman WA. An in vivo magnetic resonance imaging study of changes in the volume (and fluid content) of the lumbar intervertebral discs during a simulated diurnal load cycle. Spine 1999;24:1015-22.
12. Frank Netter M. Atlas of Human Anatomy, 1989.
13. Urban J, Roberts S. Degeneration of the intervertebral disc. Arthritis Research and Therapy 2003;5:120-38.
14. Adams M, Roughley P. What is intervertebral disc degeneration, and what causes it? Spine 2006;31:2151.
15. Adams M, Freeman B, Morrison H, et al. Mechanical initiation of intervertebral disc degeneration. Spine 2000;25:1625.
16. Adams M, Hutton W. The effect of fatigue on the lumbar intervertebral disc. Journal of Bone & Joint Surgery, British Volume 1983;65:199-203.
17. Adams M, Hutton W, CEng M. Gradual disc prolapse. Spine 1985;10:524.
18. GORDON S, YANG K, MAYER P, et al. Mechanism of disc rupture: a preliminary report. Spine 1991;16:450.
19. Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 2004;29:2724-32.
20. Yu CY, Tsai KH, Hu WP, et al. Geometric and morphological changes of the intervertebral disc under fatigue testing. Clin Biomech (Bristol, Avon) 2003;18:S3-9.
21. Wang JL, Tsai YC, Wang YH. The leakage pathway and effect of needle gauge on degree of disc injury post anular puncture: a comparative study using aged human and adolescent porcine discs. Spine 2007;32:1809-15.
22. Roughley P, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 2002;30:869-74.
23. McNally DS, Shackleford IM, Goodship AE, et al. In vivo stress measurement can predict pain on discography. Spine 1996;21:2580-7.
24. Adams MA, McNally DS, Dolan P. 'Stress' distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 1996;78:965-72.
25. Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999;24:2468-74.
26. Roberts S, Caterson B, Menage J, et al. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 2000;25:3005-13.
27. Yerramalli C, Chou A, Miller G, et al. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomechanics and Modeling in Mechanobiology 2007;6:13-20.
28. Perie D, Iatridis JC, Demers CN, et al. Assessment of compressive modulus, hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI. J Biomech 2006;39:1392-400.
29. Perie DS, Maclean JJ, Owen JP, et al. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann Biomed Eng 2006;34:769-77.
30. Roberts S, Menage J, Sivan S, et al. Bovine explant model of degeneration of the intervertebral disc. BMC Musculoskelet Disord 2008;9:24.
31. Sasaki M, Takahashi T, Miyahara K, et al. Effects of chondroitinase ABC on intradiscal pressure in sheep: an in vivo study. Spine 2001;26:463-8.
32. Mwale F, Demers CN, Michalek AJ, et al. Evaluation of quantitative magnetic resonance imaging, biochemical and mechanical properties of trypsin-treated intervertebral discs under physiological compression loading. J Magn Reson Imaging 2008;27:563-73.
33. Boxberger JI, Sen S, Yerramalli CS, et al. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J Orthop Res 2006;24:1906-15.
34. Peng B, Chen J, Kuang Z, et al. Expression and role of connective tissue growth factor in painful disc fibrosis and degeneration. Spine 2009;34:E178-82.
35. Norcross JP, Lester GE, Weinhold P, et al. An in vivo model of degenerative disc disease. J Orthop Res 2003;21:183-8.
36. Boxberger JI, Auerbach JD, Sen S, et al. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine 2008;33:146-54.
37. Sung HW, Chang Y, Liang IL, et al. Fixation of biological tissues with a naturally occurring crosslinking agent: fixation rate and effects of pH, temperature, and initial fixative concentration. J Biomed Mater Res 2000;52:77-87.
38. Liang CC, Tsao HK. Sol-Gel Transition and Microemulsion-Organogel Transition of Gelatin. Graduate Institute of Chemical Engineering and Materials Engineering : National Central University 2002.
39. Hedman TP, Saito H, Vo C, et al. Exogenous cross-linking increases the stability of spinal motion segments. Spine 2006;31:E480-5.
40. Chuang SY, Odono RM, Hedman TP. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clin Biomech (Bristol, Avon) 2007;22:14-20.
41. Chuang S, Lin L, Tsai Y, et al. Exogenous crosslinking recovers the functional integrity of intervertebral disc secondary to a stab injury. Journal of Biomedical Materials Research Part A 2009.
42. Lin TC, Wang JL. Effect of Fatigue and Rest on the Rheological Properties of Intact Intervertebral Disc: Institute of Biomedical Engineering College of Medicine and Engineering:National Taiwan University,Taiwan, 2008.
43. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755-62.
44. George SZ, Bialosky JE, Fritz JM. Physical therapist management of a patient with acute low back pain and elevated fear-avoidance beliefs. Phys Ther 2004;84:538-49.
45. George SZ, Fritz JM, Bialosky JE, et al. The effect of a fear-avoidance-based physical therapy intervention for patients with acute low back pain: results of a randomized clinical trial. Spine 2003;28:2551-60.
46. Von Korff M, Saunders K. The course of back pain in primary care. Spine 1996;21:2833-7; discussion 8-9.
47. Duance VC, Crean JK, Sims TJ, et al. Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine 1998;23:2545-51.
48. Dath R, Ebinesan AD, Porter KM, et al. Anatomical measurements of porcine lumbar vertebrae. Clin Biomech (Bristol, Avon) 2007;22:607-13.
49. McLain RF, Yerby SA, Moseley TA. Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine 2002;27:E200-6.
50. Wilke HJ, Kettler A, Wenger KH, et al. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 1997;247:542-55.
51. Nettles DL, Richardson WJ, Setton LA. Integrin expression in cells of the intervertebral disc. J Anat 2004;204:515-20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9204-
dc.description.abstract目的:探討椎間核變性水解與外生性交聯對椎間盤動態性質的影響。
背景:椎間盤受傷後,會造成椎間盤的生化組成的變化,因而影響椎間盤的力學功能,若椎間盤的力學特性產生不可逆的變化,在日經月累的負重之下可能引起其他脊椎疾病的發生。然而椎間盤受傷於急性期基質降解與亞急性期交聯產生後的力學反應仍不清楚。
材料與方法:使用六個月大的豬隻腰椎運動單元作為試樣(L1-L2,L3-L4,共45副),椎間核水解組有27組,椎間環損傷組有18組。在椎間核水解組,18組試樣為注射1毫升胰蛋白酶入椎間盤降解椎間核細胞基質,並施予第一次30分鐘循環負載,隨後給予24小時休息修復,然後在施於第二次30分鐘循環負載。第一次30分鐘循環負載後,將9組試樣直接浸泡生理食鹽水,另9組為注射1毫升梔子素溶液後在浸泡生理食鹽水,進行24小時休息修復。其餘9組試樣為沒有注射任何溶液的健康椎間盤,直接施予第一次30分鐘循環負載,隨後給予24小時浸泡生理食鹽水中休息修復,然後在施於第二次30分鐘循環負載。在循環負載其間每十分鐘間隔會施予一次衝擊測試。椎間環損傷組為施予第一次2小時循環負載產生椎間環傷害,隨後給予24小時休息修復,然後再施於第二次2小時循環負載。第一次2小時循環負載後,將9組試樣直接浸泡生理食鹽水,另9組為浸泡梔子素溶液中,進行24小時休息修復。在2小時循環負載期間在0、0.5、1和2小時時間點上會施予一次衝擊測試。椎間盤勁度係數K(N/mm)及阻尼係數C(Ns/mm)由衝擊過程的資料求的。
結果:椎間核降解椎間盤阻尼係數則顯著性的小於健康椎間盤。降解椎間盤經由外生性交聯後,降解椎間盤的動態性質都有顯著性上升,勁度初始值與健康椎間盤的無顯著性差異,但在循環負載其間都顯著小於健康椎間盤;而阻尼係數雖顯著性的小於健康椎間盤,但都已顯著的大於降解椎間盤。椎間環斷裂組中,本實驗重現了文獻相同的實驗結果,在0.5小時循環負載後,椎間環斷裂椎間盤的動態性質就到達穩態。而經由外生性交聯後,勁度初始值與健康椎間盤無顯著性差異,則阻尼係數初始值時明顯沒有恢復;但在循環負載其間勁度都顯著小於健康椎間盤,而阻尼係數則與健康椎間盤相同。
結論:本實驗的模擬結果顯示,當椎間盤受傷處於急性期時,因椎間核基質降解,使的椎間盤的緩衝能力下降,且椎間盤孔洞性也變大。而當椎間盤受傷來到亞急性期時,因膠原蛋白交聯的增生,使的受傷椎間盤孔洞收縮,且緩衝能力提升,但增生交聯組織卻會降低膠原纖維對循環負載的耐受力,最後使椎間盤整體強度降低。
zh_TW
dc.description.abstractObjective: The purpose of this study is to evaluate the effect of nucleus denaturation and exogenous crosslinking on disc dynamic properties.
Summary of Background Data: Fatigue loading can damage disc structure integrity. In early stage of tissue healing post disc injury, disc matrix crosslinkings, especially nucleus pulposus, are denatured by disc enzymes. In the following subacute stage, new crosslinking forms with the growth of fibrosis tissue from the injured sites. Howerer, the interaction of nucleus denaturation and crosslinking generation with the disc dynamic properties remains unclear.
Methods: In total of 45 porcine lumbar body-disc-body constructs (L1-L2, L3-L4) were assigned to “nucleus pulposus (NP) denaturation protocol” (n=27) and “anular fibrosus (AF) damage protocol” (n=18). For the “NP denaturation protocol”, 9 specimens were selected as “healthy discs”, receiving no injection, and applied with a 30 min fatigue loadings twice. These discs rehydrated in saline solution for 24 hr before and after the first fatigue loading. The other 18 specimens were injected with 1ml trypsin solution, immersed in saline solution for 24 hr and then loaded with a 30 min fatigue loading. After the fatigue loading, 9 discs out of these 18 specimens were immersed in saline bath for 24 hr, while the other 9 discs were injected with 1ml 0.33% genipin solution before saline bath immersion. Each disc was then loaded with another 30 min fatigue loading. An impulse test was applied to every disc in NP-denatured group at 0, 10, 20, and 30 min of second fatigue loading. For the “AF damage protocol”, each specimen was loaded with 2 hr fatigue loading first, followed by a 24 hr rest, and then applied with another 2 hr fatigue loading. After the first 2 hr fatigue loading, 9 specimens were immersed in saline bath, while the other 9 specimens were immersed in 0.33% genipin solution. During the second 2 hr fatigue loading, an impulse test was applied at time point of 0, 0.5, 1, and 2 hr. The stiffness (K, N/mm) and damping coefficient (C, Ns/mm) of disc was calculated using the one-dimension spring-damping model and impulse test loading information.
Results: (1) NP denaturation protocol: compared to the healthy disc, NP denaturation did not change the disc stiffness but significantly decreased the damping coefficient (P= 0.000) at the end of fatigue loading. NP degeneration also increased the change rate of disc stiffness and damping coefficient with the fatigue loading time. In comparison with the NP-denatured disc, after crosslinking generation the disc stiffness significantly decreased (P= 0.024) but the damping coefficient significantly increased (P= 0.024) at the end of fatigue loading. The change rates of disc stiffness and damping coefficient was the same as those of healthy discs. (2) AF damage protocol: the disc stiffness and damping coefficient reached plateau at 1 hr of the first fatigue loading but at 0.5 hr of the second fatigue loading. The plateau value of disc stiffness and damping coefficient were the same comparing the first and the second fatigue loading. After crosslinking, the disc stiffness and damping coefficient reached plateau at 1 hr of the second fatigue loading. The plateau value of disc stiffness significantly decreased (P= 0.042), while that of damping coefficient was not changed.
Conclusion: Faster fluid outflows during fatigue loading is caused by both of NP denaturation and AF damage based on the increased change rate of disc dynamic properties. Disc damping coefficient decreases after NP denaturation and recovers after crosslinking generation in NP, indicating positive relation between shock attenuation capacity and NP crosslinking level. The crosslinking generation in disc decreases disc stiffness, reducing disc strength to external loading.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:12:53Z (GMT). No. of bitstreams: 1
ntu-98-R96548040-1.pdf: 1507636 bytes, checksum: ff27d99e8e36c53384081271da6e530d (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 i
中文摘要 ii
英文摘要 iv
第一章 前言 1
1-1 脊椎的基本構造 1
1-2 椎間盤的構造及功能 1
1-3 椎間盤傷害 5
1-4 組織癒合過程的急性期 5
1-5 組織癒合過程的亞急性期 7
1-6椎間盤力學性質與循環負載 9
1-7研究動機與實驗目的 9
第二章 實驗設備 11
2-1 連續式衝擊測試平台(Continuous Impact Testing Apparatus) 11
2-2 衝擊錘(Impactor) 12
2-3 撞擊承受器(Impounder) 12
2-4 往復式衝擊模組(Cyclic Loading) 12
2-5 線性電位計(Potentiometer) 14
2-6 線性位移計(Liner Variable Differential Transformer) 14
2-7 一維測力元(1-D Load Cell) 14
2-8 訊號擷取處理及控制系統 15
第三章 材料與方法 16
3-1試樣準備 16
3-2實驗流程 17
3-2-1 椎間核變性水解模型流程 17
3-2-2椎間環損傷模型流程 17
3-3實驗方法 18
3-4數學模型 20
3-5統計分析方法 21
第四章 結果 22
4-1椎間核變性降解/外生性交聯產生後的椎間盤之動態性質分析 22
4-2椎間環破裂/外生性交聯產生後的椎間盤之動態性質分析 26
4-3椎間盤切面觀察 28
第五章 討論 30
5-1椎間盤動態性質隨循環負載時間增加的變化 30
5-2椎間盤傷害對椎間盤動態性質的影響 30
5-3外生性交聯對椎間盤傷害的影響 31
5-4實驗限制 33
第六章 結論與未來展望 35
6-1結論 35
6-2未來展望 35
參考文獻 36
dc.language.isozh-TW
dc.title椎間核變性水解與外生性交聯對椎間盤動態性質的影響zh_TW
dc.titleEffect of Nucleus Pulposus Denaturation and
Exogenous Crosslinking on the Dynamic Properties of Intervertebral Disc
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾永輝,孫瑞昇,黃世欽
dc.subject.keyword椎間盤傷害,基質降解,外生性交&#63895,動態性質,zh_TW
dc.subject.keyworddisc injury,matrix denaturation,crosslinking,dynamic properties,en
dc.relation.page39
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf1.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved