請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92043完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許良彥 | zh_TW |
| dc.contributor.advisor | Liang-Yan Hsu | en |
| dc.contributor.author | 翁詩涵 | zh_TW |
| dc.contributor.author | Shih-Han Weng | en |
| dc.date.accessioned | 2024-03-04T16:15:10Z | - |
| dc.date.available | 2024-03-05 | - |
| dc.date.copyright | 2024-03-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-31 | - |
| dc.identifier.citation | [1] P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6:4370, 1972.
[2] Gregory D Scholes and Graham R Fleming. On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to b850 energy transfer. J. Phys. Chem. B, 104(8):1854, 2000. [3] Masoud Mohseni, Patrick Rebentrost, Seth Lloyd, and Alán Aspuru-Guzik. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys., 129:174106, 2008. [4] PG Wu and Ludwig Brand. Resonance energy transfer: methods and applications. Anal. Biochem., 218(1):1, 1994. [5] Eric M Brustad, Edward A Lemke, Peter G Schultz, and Ashok A Deniz. A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer. J. Am. Chem. Soc., 130(52):17664, 2008. [6] Haifeng Dong, Wenchao Gao, Feng Yan, Hanxu Ji, and Huangxian Ju. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem., 82(13):5511, 2010. [7] Allison M Dennis, Won Jong Rhee, David Sotto, Steven N Dublin, and Gang Bao. Quantum dot–fluorescent protein fret probes for sensing intracellular ph. ACS nano, 6(4):2917, 2012. [8] S Matthew Menke and Russell J Holmes. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci., 7(2):499, 2014. [9] Oleksandr V. Mikhnenko, Paul W. M. Blom, and Thuc-Quyen Nguyen. Exciton diffusion in organic semiconductors. Energy Environ. Sci., 8:1867, 2015. [10] Kerstin Hummer and Claudia Ambrosch-Draxl. Oligoacene exciton binding energies: Their dependence on molecular size. Phys. Rev. B, 71:081202, 2005. [11] S Kraner, R Scholz, Felix Plasser, C Koerner, and Karl Leo. Exciton size and binding energy limitations in one-dimensional organic materials. J. Chem. Phys., 143:244905, 2015. [12] Daniele Sanvitto and Stéphane Kéna-Cohen. The road towards polaritonic devices. Nat. Mater., 15:1061, 2016. [13] Amrit Poudel, Xin Chen, and Mark A. Ratner. Enhancement of resonant energy transfer due to an evanescent wave from the metal. J. Phys. Chem. Lett., 7(6):955, 2016. [14] Mahi R. Singh and Chris Racknor. Nonlinear energy transfer in quantum dot and metallic nanorod nanocomposites. J. Opt. Soc. Am. B, 32(10):2216, 2015. [15] Mahi R. Singh and Patrick D. Persaud. Dipole–dipole interaction in two-photon spectroscopy of metallic nanohybrids. J. Phys. Chem. C, 124(11):6311, 2020. [16] Qiu Hong Cui, Qian Peng, Yi Luo, Yuqian Jiang, Yongli Yan, Cong Wei, Zhigang Shuai, Cheng Sun, Jiannian Yao, and Yong Sheng Zhao. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci. Adv., 4(3):eaap9861, 2018. [17] Changhao Meng, Xin Chen, and Zhenghua An. Förster resonant energy transfer mediated by the evanescent fields of nanophotonic particles. J. Phys. Chem. C, 123(49):29900–29907, 2019. [18] Rui Su, Antonio Fieramosca, Qinghua Zhang, Hai Xuan Nguyen, Emmanuelle Deleporte, Zhanghai Chen, Daniele Sanvitto, Timothy Chi, and Jie Xiong. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater., 20:1315, 2021. [19] Pooja Bhatt, Jhuma Dutta, Kuljeet Kaur, and Jino George. Long-range energy transfer in strongly coupled donor–acceptor phototransistors. Nano Lett., 23(11):5004, 2023. [20] Lukas Novotny and Bert Hecht. Principles of nano-optics. Cambridge university press, 2012. [21] Katrin Kneipp, Martin Moskovits, and Harald Kneipp. Surface-enhanced raman scattering : physics and applications. Springer, 2006. [22] Katherine A. Willets and Richard P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58:267, 2007. [23] Saumyakanti Khatua, Pedro M. R. Paulo, Haifeng Yuan, A K Gupta, Peter Zijlstra, and Michel Orrit. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano, 8:4440, 2014. [24] Tian Ming, Lei Zhao, Zhi Yang, Huanjun Chen, Ling-Dong Sun, Jianfang Wang, and Chun-Hua Yan. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett., 9:3896, 2009. [25] Yi Fu, Jian Zhang, and Joseph R. Lakowicz. Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J. Am. Chem. Soc., 132:5540, 2010. [26] Jiangtian Li, Scott K. Cushing, Fanke Meng, Tess R. Senty, Alan D. Bristow, and Nianqiang Wu. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics, 9:601, 2015. [27] Diego Martín-Cano, Luis Martín-Moreno, Francisco J. García-Vidal, and Esteban Moreno. Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. Nano Lett., 10:3129, 2010. [28] Michael Seitz, Alvaro J. Magdaleno, Nerea Alcázar-Cano, Marc Meléndez, Tim J. Lubbers, Sanne W. Walraven, Sahar Pakdel, Elsa Prada, Rafael Delgado-Buscalioni, and Ferry Prins. Exciton diffusion in two-dimensional metal-halide perovskites. Nat. Commun., 11:2035, 2020. [29] Gianni Cario and J Franck. Über zerlegung von wasserstoffmolekülen durch angeregte quecksilberatome. Eur. Phys. J. A, 11:161, 1922. [30] Theodor Forster. Intermolecular energy migration and fluorescence. Ann. Phys., 437:55, 1948. [31] Liang-Yan Hsu, Wendu Ding, and George C. Schatz. Plasmon-coupled resonance energy transfer. J. Phys. Chem. Lett., 8:2357, 2017. [32] Elizabeth A Jares-Erijman and Thomas M Jovin. Fret imaging. Nat. Biotechnol., 21:1387, 2003. [33] Hong Wei, Deng Pan, Shunping Zhang, Zhipeng Li, Qiang Li, Ning Liu, Wenhui Wang, and Hongxing Xu. Plasmon waveguiding in nanowires. Chem. Rev., 118(6):2882, 2018. [34] Jhih-Sheng Wu, Yen Cheng Lin, Yae-Lin Sheu, and Liang-Yan Hsu. Characteristic distance of resonance energy transfer coupled with surface plasmon polaritons. J. Phys. Chem. Lett., 9:7032, 2018. [35] David L. Andrews and Brad S. Sherborne. Resonant excitation transfer: A quantum electrodynamical study. J. Chem. Phys, 86:4011, 1987. [36] Edwin A. Power and Thuraiappah Thirunamachandran. Quantum electrodynamics with nonrelativistic sources. iii. intermolecular interactions. Phys. Rev. A, 28:2671, 1983. [37] Ho Trung Dung, Ludwig Knöll, and Dirk-Gunnar Welsch. Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics. Phys. Rev. A, 57:3931, 1998. [38] Ho Trung Dung, Ludwig Knöll, and Dirk-Gunnar Welsch. Spontaneous decay in the presence of dispersing and absorbing bodies: General theory and application to a spherical cavity. Phys. Rev. A, 62:053804, 2000. [39] Ho Trung Dung, Ludwig Knöll, and Dirk-Gunnar Welsch. Intermolecular energy transfer in the presence of dispersing and absorbing media. Phys. Rev. A, 65:043813, 2002. [40] Wendu Ding, Liang-Yan Hsu, and George C. Schatz. Plasmon-coupled resonance energy transfer: a real-time electrodynamics approach. J. Chem. Phys., 146:064109, 2017. [41] Wendu Ding, Liang-Yan Hsu, Charles W. Heaps, and George C. Schatz. Plasmon-coupled resonance energy transfer ii: Exploring the peaks and dips in the electromagnetic coupling factor. J. Phys. Chem. C, 122:22650, 2018. [42] M Grover and Robert J Silbey. Exciton migration in molecular crystals. J. Chem. Phys., 54:4843, 1971. [43] Hermann Haken and Gert Strobl. An exactly solvable model for coherent and incoherent exciton motion. Z. Phys. A, 262(2):135, 1973. [44] Steven W Haan and Robert Zwanzig. Förster migration of electronic excitation between randomly distributed molecules. J. Chem. Phys, 68:1879, 1978. [45] Seogjoo Jang, Kook Joe Shin, and Sangyoub Lee. Effects of excitation migration and translational diffusion in the luminescence quenching dynamics. J. Chem. Phys., 102:815, 1995. [46] Seogjoo Jang. Theory of multichromophoric coherent resonance energy transfer: A polaronic quantum master equation approach. J. Chem. Phys., 135:034105, 2011. [47] Y. C. Cheng and R. J. Silbey. Coherence in the b800 ring of purple bacteria lh2. Phys. Rev. Lett., 96, 2006. [48] T Kunsel, TLC Jansen, and J Knoester. Scaling relations of exciton diffusion in linear aggregates with static and dynamic disorder. J. Chem. Phys., 155(13), 2021. [49] Siwei Wang, Yi-Ting Chuang, and Liang-Yan Hsu. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. i. formalism. J. Chem. Phys, 157:184107, 2022. [50] Yi-Ting Chuang and Liang-Yan Hsu. Quantum dynamics of molecular ensembles coupled with quantum light: Counter-rotating interactions as an essential component, 2023. [51] Gleb M Akselrod, Christos Argyropoulos, Thang B Hoang, Cristian Ciracì, Chao Fang, Jiani Huang, David R Smith, and Maiken H Mikkelsen. Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas. Nat. Photonics, 8(11):835, 2014. [52] Christopher E Petoukhoff, Zeqing Shen, Manika Jain, AiMei Chang, and Denis M O’Carroll. Plasmonic electrodes for bulk-heterojunction organic photovoltaics: a review. J. Photonics Energy, 5:057002, 2015. [53] Myung-Gyu Kang, Ting Xu, Hui Joon Park, Xiangang Luo, and L. Jay Guo. Efficiency enhancement of organic solar cells using transparent plasmonic ag nanowire electrodes. Adv. Mater., 22:4378, 2010. [54] A. B. Lamonda, D. F. Coker, and W. Ding. Resonance tunability and ultra-long range enhancement of plasmon-coupled resonance energy transfer facilitated by silver nanorods (i): An overview via computational study. ChemRxiv preprint 10.26434/chemrxiv-2023-sjl2p. [55] Yurij. Fedutik, Vasily. V. Temnov, Oliver Schöps, Ulrike Woggon, and Mikhail V. Artemyev. Exciton-plasmon-photon conversion in plasmonic nanostructures. Phys. Rev. Lett., 99:136802, 2007. [56] Sean M. Collins, Olivia Nicoletti, David Rossouw, Tomas Ostasevicius, and Paul A. Midgley. Excitation dependent fano-like interference effects in plasmonic silver nanorods. Phys. Rev. B, 90:155419, 2014. [57] Juan de Torres, Patrick Ferrand, Gérard Colas des Francs, and Jérôme Wenger. Coupling emitters and silver nanowires to achieve long-range plasmon-mediated fluorescence energy transfer. ACS Nano, 10(4):3968, 2016. [58] Mikhail Baibakov, Satyajit Patra, Jean-Benoît Claude, Antonin Moreau, Julien Lumeau, and Jérôme Wenger. Extending single-molecule förster resonance energy transfer (fret) range beyond 10 nanometers in zero-mode waveguides. ACS Nano, 13(7):8469, 2019. [59] Ming-Wei Lee and Liang-Yan Hsu. Controllable frequency dependence of resonance energy transfer coupled with localized surface plasmon polaritons. J. Phys. Chem. Lett, 11:6796, 2020. [60] Siwei Wang, Gregory D. Scholes, and Liang-Yan Hsu. Coherent-to-incoherent transition of molecular fluorescence controlled by surface plasmon polaritons. J. Phys. Chem. Lett., 11(15):5948, 2020. [61] Yi-Ting Chuang, Siwei Wang, and Liang-Yan Hsu. Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. II. Polariton-mediated population dynamics in a dimer system. J. Chem. Phys., 157(23):234109, 2022. [62] David Beljonne, Carles Curutchet, Gregory D. Scholes, and Robert J. Silbey. Beyond förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B, 113:6583, 2009. [63] Gregory D. Scholes. Long-rangeresonanceenergytransfer inmolecularsystems. Annu. Rev. Phys. Chem., 54:57, 2003. [64] V.M. Kenkre. Simple connection between signals in transient grating experiments and memories in generalized master equations for excitons. Phys. Lett. A, 82(2):100, 1981. [65] Seogjoo Jang, Marshall D. Newton, and Robert J. Silbey. Multichromophoric förster resonance energy transfer. Phys. Rev. Lett., 92:218301, 2004. [66] J. W. Haus and K. W. Kehr. Diffusion in regular and disordered lattices. Phys. Rep., 150:263, 1987. [67] Josiah A. Bjorgaard and Muhammet Erkan Köse. Simulations of singlet exciton diffusion in organic semiconductors: a review. RSC Adv., 5:8432, 2015. [68] Qiongqiong Zhang, Cankun Zhang, Lingyun Cao, Zi Wang, Bing An, Zekai Lin, Ruiyun Huang, Zhi-Ming Zhang, Cheng Wang, and Wenbin Lin. Förster energy transport in metal–organic frameworks is beyond step-by-step hopping. J. Am. Chem. Soc., 138:5308, 2016. [69] Siwei Wang, Ming-Wei Lee, Yi-Ting Chuang, Gregory D. Scholes, and Liang-Yan Hsu. Theory of molecular emission power spectra. i. macroscopic quantum electrodynamics formalism. J. Chem. Phys., 153:184102, 2020. [70] Jianrong Wu and Keith M. Berland. Propagators and time-dependent diffusion coefficients for anomalous diffusion. Biophys. J., 95:2049, 2008. [71] V. M. Burlakov, K. Kawata, H. E. Assender, G. A. D. Briggs, A. Ruseckas, and I. D. W. Samuel. Discrete hopping model of exciton transport in disordered media. Phys. Rev. B, 72:075206, 2005. [72] Alexander J. Sneyd, Tomoya Fukui, David Paleček, Suryoday Prodhan, Isabella Wagner, Yifan Zhang, Jooyoung Sung, Sean M. Collins, Thomas J. A. Slater, Zahra Andaji-Garmaroudi, Liam R. MacFarlane, J. Diego Garcia-Hernandez, Linjun Wang, George R. Whittell, Justin M. Hodgkiss, Kai Chen, David Beljonne, Ian Manners, Richard H. Friend, and Akshay Rao. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv., 7:eabh4232, 2021. [73] Lumerical Inc. https://www.ansys.com/products/photonics. [74] Hai Du, Ru-Chun Amy Fuh, Junzhong Li, L. Andrew Corkan, and Jonathan S. Lindsey. Photochemcad: A computer-aided design and research tool in photochemistry. Photochem. Photobiol., 68:141, 1998. [75] James M. Dixon, Masahiko Taniguchi, and Jonathan S. Lindsey. Photochemcad 2: A refined program with accompanying spectral databases for photochemical calculations¶. Photochem. Photobiol., 81:212, 2005. [76] G.A. Reynolds and K.H. Drexhage. New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Opt. Commun., 13:222, 1975. [77] Guilford Jones, William F Jackson, Chol Yoo Choi, and William R Bergmark. Solvent effects on emission yield and lifetime for coumarin laser dyes. requirements for a rotatory decay mechanism. J. Phys. Chem., 89:294, 1985. [78] Edwin Albert Power and S. Zienau. Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines. Philos. Trans. Royal Soc. A, 251:427, 1959. [79] H. Varguet, A. A. Díaz-Valles, S. Guérin, H. R. Jauslin, and G. Colas des Francs. Collective strong coupling in a plasmonic nanocavity. J. Chem. Phys., 154:084303, 2021. [80] Björn Hellenkamp, Sonja Schmid, Olga Doroshenko, Oleg Opanasyuk, Ralf Kühnemuth, Soheila Rezaei Adariani, Benjamin Ambrose, Mikayel Aznauryan, Anders Barth, Victoria Birkedal, Mark E. Bowen, Hongtao Chen, Thorben Cordes, Tobias Eilert, Carel Fijen, Christian Gebhardt, Markus Götz, Giorgos Gouridis, Enrico Gratton, Taekjip Ha, Pengyu Hao, Christian A. Hanke, Andreas Hartmann, Jelle Hendrix, Lasse L. Hildebrandt, Verena Hirschfeld, Johannes Hohlbein, Boyang Hua, Christian G. Hübner, Eleni Kallis, Achillefs N. Kapanidis, Jae-Yeol Kim, Georg Krainer, Don C. Lamb, Nam Ki Lee, Edward A. Lemke, Brié Levesque, Marcia Levitus, James J. McCann, Nikolaus Naredi-Rainer, Daniel Nettels, Thuy Ngo, Ruoyi Qiu, Nicole C. Robb, Carlheinz Röcker, Hugo Sanabria, Michael Schlierf, Tim Schröder, Benjamin Schuler, Henning Seidel, Lisa Streit, Johann Thurn, Philip Tinnefeld, Swati Tyagi, Niels Vandenberk, Andrés Manuel Vera, Keith R. Weninger, Bettina Wünsch, Inna S. Yanez-Orozco, Jens Michaelis, Claus A. M. Seidel, Timothy D. Craggs, and Thorsten Hugel. Precision and accuracy of single-molecule fret measurements—a multi-laboratory benchmark study. Nat. Methods, 15:669, 2018. [81] Freddy T. Rabouw, Stephan A. den Hartog, Tim Senden, and Andries Meijerink. Photonic effects on the förster resonance energy transfer efficiency. Nat. Commun., 5:3610, 2014. [82] Sébastien Bidault, Alexis Devilez, Petru Ghenuche, Brian Stout, Nicolas Bonod, and Jérôme Wenger. Competition between förster resonance energy transfer and donor photodynamics in plasmonic dimer nanoantennas. ACS Photonics, 3:895, 2016. [83] Ganesh Agam, Christian Gebhardt, Milana Popara, Rebecca Mächtel, Julian Folz, Benjamin Ambrose, Neharika Chamachi, Sang Yoon Chung, Timothy D. Craggs, Marijn de Boer, Dina Grohmann, Taekjip Ha, Andreas Hartmann, Jelle Hendrix, Verena Hirschfeld, Christian G. Hübner, Thorsten Hugel, Dominik Kammerer, Hyun-Seo Kang, Achillefs N. Kapanidis, Georg Krainer, Kevin Kramm, Edward A. Lemke, Eitan Lerner, Emmanuel Margeat, Kirsten Martens, Jens Michaelis, Jaba Mitra, Gabriel G. Moya Muñoz, Robert B. Quast, Nicole C. Robb, Michael Sattler, Michael Schlierf, Jonathan Schneider, Tim Schröder, Anna Sefer, Piau Siong Tan, Johann Thurn, Philip Tinnefeld, John van Noort, Shimon Weiss, Nicolas Wendler, Niels Zijlstra, Anders Barth, Claus A. M. Seidel, Don C. Lamb, and Thorben Cordes. Reliability and accuracy of single-molecule fret studies for characterization of structural dynamics and distances in proteins. Nat. Methods, 20:523, 2023. [84] Nam Ki Lee, Achillefs N. Kapanidis, You Wang, Xavier Michalet, Jayanta Mukhopadhyay, Richard H. Ebright, and Shimon Weiss. Accurate fret measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J., 88:2939, 2005. [85] Hui‐Qing Peng, Li‐Ya Niu, Yuzhe Chen, Li‐Zhu Wu, Chen‐Ho Tung, and Qing‐Zheng Yang. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem. Rev., 115:7502, 2015. [86] A. Shabani, M. Mohseni, H. Rabitz, and S. Lloyd. Efficient estimation of energy transfer efficiency in light-harvesting complexes. Phys. Rev. E, 86, 2012. [87] I. V. Gopich and A. Szabo. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule fret. Proc. Natl. Acad. Sci., 109:7747, 2012. [88] Eion G McRae and Michael Kasha. Enhancement of phosphorescence ability upon aggregation of dye molecules. J. Chem. Phys., 28(4):721, 1958. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92043 | - |
| dc.description.abstract | 在能源和光學的相關應用中,深入探究分子系統中的激發能量轉移機制並學習如何巧妙操控,是一個重要而引人關注的議題。
最近的研究工作致力於探索與電漿子耦合之激發能量轉移,因為電漿子材料會放大界面附近的散射場。 藉由這些特性,我們利用速率定律式的方法結合宏觀量子電動力學所得的激發能量傳遞速率以及能量耗散速率,研究了電漿子耦合激子輸運的機制。 由於銀材料介電響應的色散性質,我們發現銀奈米棒會導致激發能量的傳輸會對分子激發頻率有高依賴性。 另外,與真空中的相同系統相比,透過將共振能量轉移過程與奈米棒的局域表面電漿子耦合,可以實現大幅提高的激子擴散係數(高達1000倍)。 我們的分析還指出,若是在計算過程中採用最近鄰耦合近似,所得到的激子擴散係數比原始結果小約10倍,強調了遠距離耦合的能量傳遞途徑在與受電漿子影響的激子輸運中的重要性。 除了探索動力學體系之外,我們透過量子動力學體系研究了電漿子提高激發能量轉移效率的潛力。 這項研究不僅為探索研究電漿子耦合激子輸送的方法鋪路,而且為創新電漿子輔助光伏應用的設計提供了重要的見解。 | zh_TW |
| dc.description.abstract | Excitation energy transfer in molecular systems and how to manipulate such mechanism in a complex environment are essential to many energy and optical-related applications.
Recent research efforts have been dedicated to the exploration of plasmon-coupled excitation energy transfer. Plasmonic materials would amplify the scattering field in the vicinity of the interface. By using these properties, the mechanism of plasmon-coupled exciton transport is investigated by using the Pauli master equation approach, combined with kinetic rates derived from macroscopic quantum electrodynamics. Through our theoretical framework, we demonstrate that the presence of a silver nanorod induces significant frequency dependence in the ability to transport exciton through a molecule chain, indicated by the exciton diffusion coefficient, due to the dispersive nature of the silver dielectric response. Compared with the same system in vacuum, great enhancement (up to a factor of 1000) in the diffusion coefficient can be achieved by coupling the resonance energy transfer process to localized surface plasmon polariton modes of the nanorod. Furthermore, our analysis reveals that the diffusion coefficients with the nearest-neighbor coupling approximation are around 10 times smaller than the results obtained beyond this approximation, emphasizing the significance of long-range coupling in exciton transport influenced by plasmonic nanostructures. In addition to exploring the kinetic regime, we investigate the potential enhancement in excitation energy transfer efficiency through plasmon-induced effects in the quantum dynamic regime. This study not only paves the way for exploring practical approaches to studying plasmon-coupled exciton transport but also provides crucial insights for the design of innovative plasmon-assisted photovoltaic applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:15:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-04T16:15:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要v Abstract vii Contents ix List of Figures xiii Denotation xvii Chapter 1 Introduction 1 1.1 Plasmonic effect 1 1.2 Excitation energy transfer 2 1.3 Exciton transport 4 1.4 Motivation 5 Chapter 2 Plasmon-coupled exciton diffusion 7 2.1 One-dimensional dipole chain on the silver nanorod 7 2.2 Theory of plasmon-coupled exciton transport 8 2.2.1 Definition of the transition rates 10 2.2.2 Definition of exciton diffusion coefficient 11 2.3 Simulation Procedures 12 2.3.1 Calculation of RET rate and SE rate 12 2.3.2 Calculation of exciton diffusion coefficient D 15 Chapter 3 Enhanced plasmon-coupled exciton diffusion coefficient 17 3.1 Comparison with the vacuum case 17 3.1.1 Analytical formulas for the vacuum case 18 3.1.2 Enhancement in the nanorod case 19 3.2 Interaction with the plasmonic modes of the silver nanorod 21 3.3 Significant contribution from the chromophores that beyond nearest-neighbor approximation 22 3.4 Effect of static orientation disorder in the chromophore chain 23 Chapter 4 Transition to quantum dynamic method 29 4.1 Model Hamiltonian in the MQED framework 29 4.2 Markovian-approximated quantum dynamic 31 4.3 Connection to the kinetic equation methods 33 Chapter 5 Plasmon-coupled energy transfer efficiency 37 5.1 Current monitoring technique for evaluating energy transfer efficiency 37 5.2 Definition of energy transfer efficiency among one donor-acceptor pair 39 5.3 Effect of detuning in the vacuum case 40 5.4 Enhanced efficiency in the proximity of silver nanorod 44 Chapter 6 Conclusion 45 References 47 Appendix A — Derivation of analytical formulas 61 A.1 Derivation of the analytical diffusion constant Eq. 3.1 61 A.2 Derivation of diffusion constant in vacuum in Eq. 3.2 66 A.3 Derivation of the SE rate in Eq. 2.4 67 A.4 Derivation of excitation energy transfer efficiency in Eq. 5.1 71 | - |
| dc.language.iso | en | - |
| dc.subject | 銀奈米棒 | zh_TW |
| dc.subject | 激子擴散係數 | zh_TW |
| dc.subject | 激發能量傳遞效率 | zh_TW |
| dc.subject | 光激發能量傳遞 | zh_TW |
| dc.subject | 電漿子材料 | zh_TW |
| dc.subject | Plasmonic materials | en |
| dc.subject | Excitation energy transfer efficiency | en |
| dc.subject | Excitation energy transfer | en |
| dc.subject | Exciton diffusion coefficient | en |
| dc.subject | Silver nanorod | en |
| dc.title | 以理論模擬探討材料之表面電漿對傳遞光激發能量的影響 | zh_TW |
| dc.title | Exploring the plasmonic effect on the excitation energy transfer by numerical simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭原忠;許昭萍 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chung Cheng;Chao-Ping Hsu | en |
| dc.subject.keyword | 光激發能量傳遞,電漿子材料,銀奈米棒,激子擴散係數,激發能量傳遞效率, | zh_TW |
| dc.subject.keyword | Excitation energy transfer,Plasmonic materials,Silver nanorod,Exciton diffusion coefficient,Excitation energy transfer efficiency, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202400177 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-02 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 3.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
