Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92029
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 董致韡 | zh_TW |
dc.contributor.advisor | Chih-Wei Tung | en |
dc.contributor.author | Aisyah Fitri Rohani | zh_TW |
dc.contributor.author | Aisyah Fitri Rohani | en |
dc.date.accessioned | 2024-02-27T16:38:38Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2022-10-14 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Ahmed, M., & Ahmad, S. (2017). Climate variability impact on rice production: adaptation and mitigation strategies. In Quantification of climate variability, adaptation and mitigation for agricultural sustainability (pp. 91-111). Springer.
Alamdari, K., Fisher, K., Sinson, A., Chory, J., & Woodson, J. (2020). Roles for chloroplast-localized PPR Protein 30 and the “Mitochondrial” Transcription Termination Factor 9 in chloroplast quality control. The Plant 104(3), 735-751. Alves, K. S., Guimarães, M., Ascari, J. P., Queiroz, M. F., Alfenas, R. F., Mizubuti, E. S. G., & Del Ponte, E. M. (2022). RGB-based phenotyping of foliar disease severity under controlled conditions. Tropical Plant Pathology, 47(1), 105-117. Asch, F., Becker, M., & Kpongor, D. S. (2005). A quick and efficient screen for resistance to iron toxicity in lowland rice. Journal of Plant Nutrition and Soil Science, 168(6), 764-773. Audebert, A., & Fofana, M. (2009). Rice yield gap due to iron toxicity in West Africa. Journal of Agronomy and Crop Science, 195(1), 66-76. Audebert, A., & Sahrawat, K. L. (2000). Mechanisms for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition, 23(11-12), 1877-1885. Aung, M. S., & Masuda, H. (2020). How does rice defend against excess iron?: Physiological and molecular mechanisms. Frontiers in plant science, 11, 1102. Aung, M. S., Masuda, H., Kobayashi, T., & Nishizawa, N. K. (2018). Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Science and Plant Nutrition, 64(3), 370-385. Balk, J., & Schaedler, T. A. (2014). Iron cofactor assembly in plants. Annual Review of Plant Biology, 65, 125-153. Bar-Ness, E., Chen, Y., Hadar, Y., Marschner, H., & Römheld, V. (1991). Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. In Iron nutrition and interactions in plants (pp. 271-281). Springer. Bashir, K., Hanada, K., Shimizu, M., Seki, M., Nakanishi, H., & Nishizawa, N. K. (2014). Transcriptomic analysis of rice in response to iron deficiency and excess. Rice, 7(1), 1-15. Becker, M., & Asch, F. (2005). Iron toxicity in rice—conditions and management concepts. Journal of Plant Nutrition and Soil Science, 168(4), 558-573. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. Briat, J.-F., Curie, C., & Gaymard, F. (2007). Iron utilization and metabolism in plants. Current opinion in plant biology, 10(3), 276-282. Chang, T.-T. (1976). The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica, 25(1), 425-441. Couturier, J., Touraine, B., Briat, J.-F., Gaymard, F., & Rouhier, N. (2013). The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Frontiers in plant science, 4, 259. D'Autréaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature reviews Molecular cell biology, 8(10), 813-824. Dakshinamurti, K., & Chauhan, J. (1989). Biotin. Vitamins & Hormones, 45, 337-384. do Amaral, E. S., Vieira Silva, D., Dos Anjos, L., Schilling, A. C., Dalmolin, Â. C., & Mielke, M. S. (2019). Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage. New Forests, 50(3), 377-388. Dobermann, A., Fairhurst, T., & Institute, I. R. R. (2000). Rice: Nutrient Disorders & Nutrient Management. Potash & Phosphate Institute, East & Southeast Asia Programs. Dufey, I., Draye, X., Lutts, S., Lorieux, M., Martinez, C., & Bertin, P. (2015). Novel QTLs in an interspecific backcross Oryza sativa × Oryza glaberrima for resistance to iron toxicity in rice. Euphytica, 204(3), 609-625. Dufey, I., Hakizimana, P., Draye, X., Lutts, S., & Bertin, P. (2009). QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica, 167(2), 143-160. Dufey, I., Hiel, M. P., Hakizimana, P., Draye, X., Lutts, S., Koné, B., Dramé, K., Konaté, K., Sie, M., & Bertin, P. (2012). Multienvironment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous iron toxicity in rice. Crop Science, 52(2), 539-550. Dufey, I., Mathieu, A.-S., Draye, X., Lutts, S., & Bertin, P. (2015). Construction of an integrated map through comparative studies allows the identification of candidate regions for resistance to ferrous iron toxicity in rice. Euphytica, 203(1), 59-69. Durrett, T. P., Gassmann, W., & Rogers, E. E. (2007). The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant physiology, 144(1), 197-205. Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in plant sciences, 2(7), 1400033. Eitel, J. U., Vierling, L. A., Long, D. S., Litvak, M., & Eitel, K. C. (2011). Simple assessment of needleleaf and broadleaf chlorophyll content using a flatbed color scanner. Canadian journal of forest research, 41(7), 1445-1451. Engel, K. (2009). Efficiency of adaptation mechanisms of rice to diverse conditions of iron toxicity. Engel, K., Asch, F., & Becker, M. (2012). Classification of rice genotypes based on their mechanisms of adaptation to iron toxicity. Journal of Plant Nutrition and Soil Science, 175(6), 871-881. Fageria, N., Carvalho, G., Santos, A., Ferreira, E., & Knupp, A. (2011). Chemistry of lowland rice soils and nutrient availability. Communications in Soil Science and Plant Analysis, 42(16), 1913-1933. Fageria, N., Santos, A., Barbosa Filho, M., & Guimarães, C. (2008). Iron toxicity in lowland rice. Journal of Plant Nutrition, 31(9), 1676-1697. FAO. (2022, February 17). Crops and livestock products. Retrieved 4/11 from https://www.fao.org/food-agriculture-statistics/data-release/crop-livestock-and-food/en/ Frei, M., Tetteh, R. N., Razafindrazaka, A. L., Fuh, M. A., Wu, L.-B., & Becker, M. (2016). Responses of rice to chronic and acute iron toxicity: genotypic differences and biofortification aspects. Plant and soil, 408(1), 149-161. Fukuda, A., Shiratsuchi, H., Fukushima, A., Yamaguchi, H., Mochida, H., Terao, T., & Ogiwara, H. (2012). Detection of chromosomal regions affecting iron concentration in rice shoots subjected to excess ferrous iron using chromosomal segment substitution lines between Japonica and Indica. Plant Production Science, 15(3), 183-191. Gebreyesus, G., Buitenhuis, A., Poulsen, N. A., Visker, M., Zhang, Q., Van Valenberg, H., Sun, D., & Bovenhuis, H. (2019). Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. BMC genomics, 20(1), 1-16. Gotoh, S., & Patrick Jr, W. (1974). Transformation of iron in a waterlogged soil as influenced by redox potential and pH. Soil Science Society of America Journal, 38(1), 66-71. Green, L. S., & Rogers, E. E. (2004). FRD3 controls iron localization in Arabidopsis. Plant physiology, 136(1), 2523-2531. Gupta, P., Naithani, S., Tello-Ruiz, M. K., Chougule, K., D’Eustachio, P., Fabregat, A., Jiao, Y., Keays, M., Lee, Y. K., Kumari, S. M., Joseph Olson, Andre , Preece, J., Stein, J., Wei, S., Weiser, J., Huerta, L. P., Robert Kersey, Paul , Stein, L. D., Ware, D., & Jaiswal, P. (2016). Gramene database: navigating plant comparative genomics resources. Current plant biology, 7, 10-15. Gyana, R., & Sunita, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1-24. Harushima, Y., Yano, M., Shomura, A., Sato, M., Shimano, T., Kuboki, Y., Yamamoto, T., Lin, S. Y., Antonio, B. A., Parco, A., Kajiya, H., Huang, N., Yamamoto, K., Nagamura, Y., Kurata, N., Khush, G. S., & Sasaki, T. (1998). A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 148(1), 479-494. Hsu, S.-K., & Tung, C.-W. (2015). Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice. Rice, 8(1), 1-12. Ismunadji, M. (1990). Alleviating iron toxicity in lowland rice. Indonesian Agricultural Research and Development Journal, 12(4), 67-72. Kabir, A. H., Begum, M. C., Haque, A., Amin, R., Swaraz, A., Haider, S. A., Paul, N. K., & Hossain, M. M. (2016). Genetic variation in Fe toxicity tolerance is associated with the regulation of translocation and chelation of iron along with antioxidant defence in shoots of rice. Functional Plant Biology, 43(11), 1070-1081. Kaewcheenchai, R., Vejchasarn, P., Hanada, K., Shirai, K., Jantasuriyarat, C., & Juntawong, P. (2021). Genome-Wide Association Study of Local Thai Indica Rice Seedlings Exposed to Excessive Iron. Plants, 10(4), 798. Kearsey, M., & Farquhar, A. (1998). QTL analysis in plants; where are we now? Heredity, 80(2), 137-142. Kim, S. A., & Guerinot, M. L. (2007). Mining iron: iron uptake and transport in plants. FEBS letters, 581(12), 2273-2280. Kobayashi, T., Nakanishi Itai, R., & Nishizawa, N. K. (2014). Iron deficiency responses in rice roots. Rice, 7(1), 1-11. Korkmaz, A., & Akınoğlu, G. (2021). Determination of some paddy varieties resistant to iron toxicity. Korol, A., Frenkel, Z., Orion, O., & Ronin, Y. (2012). Some ways to improve QTL mapping accuracy. Animal Genetics, 43, 36-44. Kurata, N., Nonomura, K. i., & Harushima, Y. (2002). Rice genome organization: the centromere and genome interactions. Annals of botany, 90(4), 427-435. Lee, J.-S., Sajise, A. G. C., Gregorio, G. B., Kretzschmar, T., Ismail, A. M., & Wissuwa, M. (2017). Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis. Theoretical and Applied Genetics, 130(9), 1903-1914. Lee, K., Park, S. J., Han, J. H., Jeon, Y., Pai, H.-S., & Kang, H. (2019). A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development. BMC plant biology, 19(1), 1-10. Liang, X., Qin, L., Liu, P., Wang, M., & Ye, H. (2014). Genes for iron–sulphur cluster assembly are targets of abiotic stress in rice, O ryza sativa. Plant, cell & environment, 37(3), 780-794. Lindsay, W. L., & Schwab, A. (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5(4-7), 821-840. Liu, L., Mei, Q., Yu, Z., Sun, T., Zhang, Z., & Chen, M. (2013). An integrative bioinformatics framework for genome-scale multiple level network reconstruction of rice. Journal of integrative bioinformatics, 10(2), 94-102. Liu, X., Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.-Q., Luan, S., Li, J., & He, Z.-H. (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences, 110(38), 15485-15490. Mahender, A., Swamy, B., Anandan, A., & Ali, J. (2019). Tolerance of iron-deficient and-toxic soil conditions in rice. Plants, 8(2), 31. Marschner, H., Römheld, V., & Kissel, M. (1986). Different strategies in higher plants in mobilization and uptake of iron. Journal of Plant Nutrition, 9(3-7), 695-713. Maruapey, A., Wicaksana, N., Karuniawan, A., Windarsih, G., & Utami, D. W. (2020). Swampy rice lines for iron toxicity tolerance and yield components performance under inland swamp at Sorong, West Papua, Indonesia. Biodiversitas Journal of Biological Diversity, 21(11). Marwanto, S., & Pangestu, F. (2021). Food Estate Program in Central Kalimantan Province as An Integrated and Sustainable Solution for Food Security in Indonesia. IOP Conference Series: Earth and Environmental Science, Masganti, M., Susilawati, A., Khairullah, I., & Anwar, K. (2020). Pengendalian keracunan besi untuk peningkatan produktivitas padi di lahan rawa pasang surut bukaan baru. Sumberdaya Lahan, 13, 103-113. Matthus, E., Wu, L.-B., Ueda, Y., Höller, S., Becker, M., & Frei, M. (2015). Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.). Theoretical and Applied Genetics, 128(10), 2085-2098. Mielke, M. S., Lobo, L. S., da Costa, G. S., Schilling, A. C., dos Santos, M. S., & Dalmolin, Â. C. (2021). Predictions of chlorophyll concentrations in the leaves of seedlings of two congeneric tropical trees from RGB digital image components. Southern Forests: a Journal of Forest Science, 83(2), 177-184. Mori, S., Nishizawa, N., Hayashi, H., Chino, M., Yoshimura, E., & Ishihara, J. (1991). Why are young rice plants highly susceptible to iron deficiency? In Iron nutrition and interactions in plants (pp. 175-188). Springer. Morrissey, J., & Guerinot, M. L. (2009). Iron uptake and transport in plants: the good, the bad, and the ionome. Chemical reviews, 109(10), 4553-4567. Nugraha, Y., Ardie, S., Ghulamahdi, M., & Aswidinnoor, H. (2016). Generation mean analysis of leaf bronzing associated with iron toxicity in rice seedlings using digital imaging methods. SABRAO Journal of Breeding & Genetics, 48(4). Nugraha, Y., Utami, D. W., Rosdianti, I., Ardie, S. W., Ghulammahdi, M., Suwarno, S., & Aswidinnoor, H. (2016). Markers-traits association for iron toxicity tolerance in selected Indonesian rice varieties. Biodiversitas Journal of Biological Diversity, 17(2). Onyango, D. A., Entila, F., Egdane, J., Pacleb, M., Katimbang, M. L., Dida, M. M., Ismail, A. M., & Drame, K. N. (2020). Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 2. Root oxidation ability and oxidative stress control. Functional Plant Biology, 47(2), 145-155. Pawar, S., Pandit, E., Mohanty, I., Saha, D., & Pradhan, S. (2021). Population genetic structure and association mapping for iron toxicity tolerance in rice. PloS one, 16(3), e0246232. Pereira, E. G., Oliva, M. A., Rosado-Souza, L., Mendes, G. C., Colares, D. S., Stopato, C. H., & Almeida, A. M. (2013). Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Science, 201, 81-92. Pereira, E. G., Oliva, M. A., Siqueira-Silva, A. I., Rosado-Souza, L., Pinheiro, D. T., & Almeida, A. M. (2014). Tropical rice cultivars from lowland and upland cropping systems differ in iron plaque formation. Journal of Plant Nutrition, 37(9), 1373-1394. Prasetyo, B., Suharta, N., Subagyo, H., & Hikmatullah, H. (2001). Chemical and mineralogical properties of Ultisols of Sasamba area, East Kalimantan. Prasetyo, B., & Suriadikarta, d. A. (2006). Karakteristik, potensi, dan teknologi pengelolaan tanah ultisol untuk pengembangan pertanian lahan kering di Indonesia. Jurnal Litbang Pertanian, 25(2), 39-46. Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., Lutts, S., & Lefevre, I. (2012). Combined transcriptomic and physiological approaches reveal strong differences between short‐and long‐term response of rice (Oryza sativa) to iron toxicity. Plant, cell & environment, 35(10), 1837-1859. Regon, P., Dey, S., Chowardhara, B., Saha, B., Kar, S., Tanti, B., & Panda, S. K. (2021). Physio-biochemical and molecular assessment of Iron (Fe 2+) toxicity responses in contrasting indigenous aromatic Joha rice cultivars of Assam, India. Protoplasma, 258(2), 289-299. Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature, 397(6721), 694-697. Rogers, E. E., & Guerinot, M. L. (2002). FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. The Plant Cell, 14(8), 1787-1799. Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1-24. Sahrawat, K. L. (2005). Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition, 27(8), 1471-1504. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611. Sharif, M. K., Butt, M. S., Anjum, F. M., & Khan, S. H. (2014). Rice bran: a novel functional ingredient. Critical reviews in food science and nutrition, 54(6), 807-816. Shimizu, A. (2009). QTL analysis of genetic tolerance to iron toxicity in rice (Oryza Sativa L.) by quantification of bronzing score. Journal of New Seeds, 10(3), 171-179. Shimizu, A., Guerta, C. Q., Gregorio, G. B., Kawasaki, S., & Ikehashi, H. (2005). QTLs for nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity. Plant and soil, 275(1), 57-66. Sikirou, M., Shittu, A., Konaté, K., Maji, A., Ngaujah, A., Sanni, K., Ogunbayo, S., Akintayo, I., Saito, K., & Dramé, K. (2018). Screening African rice (Oryza glaberrima) for tolerance to abiotic stresses: I. Fe toxicity. Field crops research, 220, 3-9. Stein, R. J., Duarte, G. L., Scheunemann, L., Spohr, M. G., de Araújo Júnior, A. T., Ricachenevsky, F. K., Rosa, L. M. G., Zanchin, N. I. T., Santos, R. P. d., & Fett, J. P. (2019). Genotype variation in rice (Oryza sativa L.) tolerance to Fe toxicity might be linked to root cell wall lignification. Frontiers in plant science, 10, 746. Stein, R. J., Lopes, S. I. G., & Fett, J. P. (2014). Iron toxicity in field-cultivated rice: contrasting tolerance mechanisms in distinct cultivars. Theoretical and Experimental Plant Physiology, 26(2), 135-146. Tadano, T. (1975). Devices of rice roots to tolerate high iron concentration in growth media. Japan Agricultural Research Quarterly, 9, 34-39. Tan, J., Tan, Z., Wu, F., Sheng, P., Heng, Y., Wang, X., Ren, Y., Wang, J., Guo, X., Zhang, X., Cheng, Z., Jang, L., Liu, X., Wang, H., & Wan, J. (2014). A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Molecular Plant, 7(8), 1329-1349. Turhadi, T., Hamim, H., Ghulamahdi, M., & Miftahudin, M. (2019). Iron toxicity-induced physiological and metabolite profile variations among tolerant and sensitive rice varieties. Plant signaling & behavior, 14(12), 1682829. Verma, T., & Tripathi, B. (1983). Zinc and iron interaction in submerged paddy. Plant and soil, 72(1), 107-116. Vose, P. (1982). Iron nutrition in plants: a world overview. Journal of Plant Nutrition, 5(4-7), 233-249. Wan, J.-L., Zhai, H.-Q., & Wan, J.-M. (2005). Mapping of QTLs for ferrous iron toxicity tolerance in rice (Oryza sativa L.). Acta genetica Sinica, 32(11), 1156-1166. Wan, J.-l., Zhai, H.-q., Wan, J.-m., & Ikehashi, H. (2003). Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L. Euphytica, 131(2), 201-206. Wang, Y., Wang, M., Ye, X., Liu, H., Takano, T., Tsugama, D., Liu, S., & Bu, Y. (2020). Biotin plays an important role in Arabidopsis thaliana seedlings under carbonate stress. Plant Science, 300, 110639. West, L., Beinroth, F., Sumner, M., & Kang, B. (1997). Ultisols: characteristics and impacts on society. Advances in Agronomy, 63, 179-236. White, M. D., & Flashman, E. (2016). Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Current Opinion in Chemical Biology, 31, 126-135. Wu, L.-B., Shhadi, M. Y., Gregorio, G., Matthus, E., Becker, M., & Frei, M. (2014). Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice, 7(1), 1-12. Wu, L. B., Ueda, Y., Lai, S. K., & Frei, M. (2017). Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant, cell & environment, 40(4), 570-584. Wu, P., Hu, B., Liao, C., Zhu, J., Wu, Y., Senadhira, D., & Paterson, A. (1998). Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant and soil, 203(2), 217-226. Wu, P., Luo, A., Zhu, J., Yang, J., Huang, N., & Senadhira, D. (1997). Molecular markers linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant and soil, 196(2), 317-320. Xing, H., Fu, X., Yang, C., Tang, X., Guo, L., Li, C., Xu, C., & Luo, K. (2018). Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. Scientific reports, 8(1), 1-9. Yadav, S. P., Ibaraki, Y., & Gupta, S. D. (2010). Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell, Tissue and Organ Culture (PCTOC), 100(2), 183-188. Yang, J., Rahardja, S., & Fränti, P. (2019). Outlier detection: how to threshold outlier scores? Proceedings of the international conference on artificial intelligence, information processing and cloud computing, Yokosho, K., Yamaji, N., & Ma, J. F. (2010). Isolation and characterisation of two MATE genes in rye. Functional Plant Biology, 37(4), 296-303. Yokosho, K., Yamaji, N., Ueno, D., Mitani, N., & Ma, J. F. (2009). OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant physiology, 149(1), 297-305. Yoshida, S. (1981). Fundamentals of Rice Crop Science. The International Rice Research Institute. Yoshida, S., & Tadano, T. (1978). Adaptation of plants to submerged soils. Crop tolerance to suboptimal land conditions, 32, 233-256. Zhang, H., Liu, X.-L., Zhang, R.-X., Yuan, H.-Y., Wang, M.-M., Yang, H.-Y., Ma, H.-Y., Liu, D., Jiang, C.-J., & Liang, Z.-W. (2017). Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Frontiers in plant science, 8, 1580. Zhang, J., Chen, K., Pang, Y., Naveed, S. A., Zhao, X., Wang, X., Wang, Y., Dingkuhn, M., Pasuquin, J., Li, Z., & Xu, J. (2017). QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. BMC genomics, 18(1), 1-15. Zhou, G., Delhaize, E., Zhou, M., & Ryan, P. R. (2013). The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley. Annals of botany, 112(3), 603-612. Zhou, Y., Wang, Z., Gong, L., Chen, A., Liu, N., Li, S., Sun, H., Yang, Z., & You, J. (2019). Functional characterization of three MATE genes in relation to aluminum-induced citrate efflux from soybean root. Plant and soil, 443(1), 121-138. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92029 | - |
dc.description.abstract | None | zh_TW |
dc.description.abstract | Rice (Oryza sativa L.) demand is on the rise worldwide due to population growth, which has forced several countries to increase their production. Excessive iron (Fe) as abiotic stress, which often occurs in several countries, proved to be one of the obstacles in rice production. Screening for varieties tolerant to Fe toxicity would be critical for breeders to identify the varieties with the most desirable performance as donor parents in the breeding program, and for a researcher to develop molecular markers used in the selection process. The first step that needs to be done is to look for the chromosomal region related to Fe toxicity defense mechanism. To search for this region, QTL analysis was carried out. In this experiment, 104 RILs derived from IR64 and Nipponbare were treated with 400ppm Fe2SO4.7H2O for 11 days. Phenotyping was conducted by using two evaluating systems to inspect the leaf bronzing level. The first method is to analyze the Red (R) and Green (G) color channels of the scanned leaf images using Adobe Photoshop CS3, the other is to visually assign bronzing score according to the scale described in Shimizu A. (2009). These two independent phenotyping results were combined with 41,256 SNP markers for QTL analysis. The result from single marker analysis showed a peak marker at 8.98Mb on chromosome 8 and two peak markers at 1.06 Mb on chromosome 1 and 6.01Mb on chromosome 3 for R/G index and leaf bronzing score, respectively. Gene function annotation indicates that two genes in these regions are linked to Fe tolerance through ROS scavenging and two genes are linked to Fe transport. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-27T16:38:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-27T16:38:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Certificate of Thesis Approval i
ABSTRACT ii Table of Contents iii List of Table vi List of Figure vii Abbreviation viii Chapter 1. Introduction 1 Rice 1 Fe in plants 2 Fe uptake 3 Fe toxicity and tolerance 4 Previous QTL research 7 Objectives of this study 11 Chapter 2. Materials and Methods 12 Plant Materials 12 Preliminary test 12 Evaluation of Fe toxicity-related traits 13 Phenotyping: eyes inspection (LBS) 14 Phenotyping: Flatbed scanner (R/G index) 14 Data analysis 15 Genotypes used for QTL analysis 15 Single marker analysis 15 GO enrichment analysis and ortholog identification 16 Haplotype analysis 16 Chapter 3. Results 18 Identify the experimental conditions for screening the RILs 18 Single marker analysis 19 Candidate gene mining 20 GO enrichment and pathway analysis 21 Haplotype analysis 22 Chapter 4. Discussions 25 Fe toxicity experimental design 25 Phenotyping methods 25 Mapping candidate gene associated with Fe toxicity tolerance 28 GO enrichment analysis 29 Fe toxicity defense mechanisms: ROS scavenging 30 Fe toxicity defense mechanism: Fe uptake and transport 31 Chapter 5. Conclusion and Perspective 34 Tables and Figures 35 References 55 Supplementary Data 69 | - |
dc.language.iso | en | - |
dc.title | 水稻幼苗期之鐵耐受性數量性狀基因座定位 | zh_TW |
dc.title | Mapping of Quantitative Trait Loci Associated to Fe Stress Tolerance in the Rice Seedling | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 林雅芬;Takeshi Itoh | zh_TW |
dc.contributor.coadvisor | Ya-Fen Lin;Takeshi Itoh | en |
dc.contributor.oralexamcommittee | zh_TW | |
dc.subject.keyword | 水稻,數量 性狀 基因 座 分析,單標記分析,重組自交系,鐵毒性, | zh_TW |
dc.subject.keyword | Oryza sativa,QTL,single-marker analysis,RILs,Fe toxicity, | en |
dc.relation.page | 69 | - |
dc.identifier.doi | 10.6342/NTU202203078 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-09-07 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
Appears in Collections: | 全球農業科技與基因體科學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-110-2.pdf Access limited in NTU ip range | 1.77 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.