請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92028
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧彥文 | zh_TW |
dc.contributor.advisor | Yen-Wen Lu | en |
dc.contributor.author | 鄭宇翔 | zh_TW |
dc.contributor.author | Yu-Hsiang Cheng | en |
dc.date.accessioned | 2024-02-27T16:38:18Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2022-09-30 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | A. J. Tüdős, G. A. Besselink, and R. B. Schasfoort, "Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry," Lab on a Chip, vol. 1, no. 2, pp. 83-95, 2001.
G. M. Whitesides, "The origins and the future of microfluidics," nature, vol. 442, no. 7101, pp. 368-373, 2006. L. Gervais, N. De Rooij, and E. Delamarche, "Microfluidic chips for point‐of‐care immunodiagnostics," Advanced materials, vol. 23, no. 24, pp. H151-H176, 2011. M. G. Pollack, A. D. Shenderov, and R. B. Fair, "Electrowetting-based actuation of droplets for integrated microfluidics," Lab on a Chip, vol. 2, no. 2, pp. 96-101, 2002. R. Sista et al., "Development of a digital microfluidic platform for point of care testing," Lab on a Chip, vol. 8, no. 12, pp. 2091-2104, 2008. W. C. Nelson and C.-J. C. Kim, "Droplet actuation by electrowetting-on-dielectric (EWOD): A review," Journal of Adhesion Science and Technology, vol. 26, no. 12-17, pp. 1747-1771, 2012. M. J. Jebrail, M. S. Bartsch, and K. D. Patel, "Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine," Lab on a Chip, vol. 12, no. 14, pp. 2452-2463, 2012. S.-K. Fan, W.-J. Chen, T.-H. Lin, T.-T. Wang, and Y.-C. Lin, "Reconfigurable liquid pumping in electric-field-defined virtual microchannels by dielectrophoresis," Lab on a Chip, vol. 9, no. 11, pp. 1590-1595, 2009. N. A. Mousa et al., "Droplet-scale estrogen assays in breast tissue, blood, and serum," Science translational medicine, vol. 1, no. 1, pp. 1ra2-1ra2, 2009. D. J. Boles et al., "Droplet-based pyrosequencing using digital microfluidics," Analytical chemistry, vol. 83, no. 22, pp. 8439-8447, 2011. J. Li, "Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics," Lab on a Chip, vol. 20, no. 10, pp. 1705-1712, 2020. X. Rui, S. Song, W. Wang, and J. Zhou, "Applications of electrowetting-on-dielectric (EWOD) technology for droplet digital PCR," Biomicrofluidics, vol. 14, no. 6, p. 061503, 2020. A. B. Košir et al., "Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR," Analytical and bioanalytical chemistry, vol. 409, no. 28, pp. 6689-6697, 2017. K. R. Emslie, J. L. H. McLaughlin, K. Griffiths, M. Forbes-Smith, L. B. Pinheiro, and D. G. Burke, "Droplet volume variability and impact on digital PCR copy number concentration measurements," Analytical chemistry, vol. 91, no. 6, pp. 4124-4131, 2019. Q. Song et al., "A nanoliter self-priming compartmentalization chip for point-of-care digital PCR analysis," Biomedical microdevices, vol. 17, no. 3, pp. 1-8, 2015. B. Lin, Z. Guo, Z. Geng, S. Jakaratanopas, B. Han, and P. Liu, "A scalable microfluidic chamber array for sample-loss-free and bubble-proof sample compartmentalization by simple pipetting," Lab on a Chip, vol. 20, no. 16, pp. 2981-2989, 2020. Y. Hong and F. Wang, "Flow rate effect on droplet control in a co-flowing microfluidic device," Microfluidics and Nanofluidics, vol. 3, no. 3, pp. 341-346, 2007. H. Gu, M. H. Duits, and F. Mugele, "Droplets formation and merging in two-phase flow microfluidics," International Journal of molecular sciences, vol. 12, no. 4, pp. 2572-2597, 2011. H.-T. Li, H.-F. Wang, Y. Wang, J.-Z. Pan, and Q. Fang, "A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay," Talanta, vol. 217, p. 120997, 2020. S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, "General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting," Lab on a Chip, vol. 9, no. 9, pp. 1236-1242, 2009. F. Mugele and J.-C. Baret, "Electrowetting: from basics to applications," Journal of physics: condensed matter, vol. 17, no. 28, p. R705, 2005. T. B. Jones, M. Gunji, M. Washizu, and M. Feldman, "Dielectrophoretic liquid actuation and nanodroplet formation," Journal of applied Physics, vol. 89, no. 2, pp. 1441-1448, 2001. U.-C. Yi and C.-J. Kim, "Characterization of electrowetting actuation on addressable single-side coplanar electrodes," Journal of Micromechanics and Microengineering, vol. 16, no. 10, p. 2053, 2006. M. Abdelgawad and A. R. Wheeler, "Rapid prototyping in copper substrates for digital microfluidics," Advanced Materials, vol. 19, no. 1, pp. 133-137, 2007. D. Brassard, L. Malic, F. Normandin, M. Tabrizian, and T. Veres, "Water-oil core-shell droplets for electrowetting-based digital microfluidic devices," Lab on a Chip, vol. 8, no. 8, pp. 1342-1349, 2008. J. Gong and C.-J. Kim, "Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board," Journal of microelectromechanical systems, vol. 17, no. 2, pp. 257-264, 2008. H. Moon, S. K. Cho, R. L. Garrell, and C.-J. C. Kim, "Low voltage electrowetting-on-dielectric," Journal of applied physics, vol. 92, no. 7, pp. 4080-4087, 2002. C. G. Cooney, C.-Y. Chen, M. R. Emerling, A. Nadim, and J. D. Sterling, "Electrowetting droplet microfluidics on a single planar surface," Microfluidics and Nanofluidics, vol. 2, no. 5, pp. 435-446, 2006. J. Berthier, Micro-drops and digital microfluidics, Chapter 5. William Andrew, 2012. R. Ahmed and T. Jones, "Dispensing picoliter droplets on substrates using dielectrophoresis," Journal of electrostatics, vol. 64, no. 7-9, pp. 543-549, 2006. D. Chugh and K. V. Kaler, "Integrated liquid and droplet dielectrophoresis for biochemical assays," Microfluidics and Nanofluidics, vol. 8, no. 4, pp. 445-456, 2010. S. K. Cho, H. Moon, and C.-J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Journal of Microelectromechanical systems, vol. 12, no. 1, pp. 70-80, 2003. Y. Guan et al., "Stripped electrode based electrowetting-on-dielectric digital microfluidics for precise and controllable parallel microdrop generation," Langmuir, vol. 36, no. 32, pp. 9540-9550, 2020. N. Y. J. B. Nikapitiya, M. M. Nahar, and H. Moon, "Accurate, consistent, and fast droplet splitting and dispensing in electrowetting on dielectric digital microfluidics," Micro and Nano Systems Letters, vol. 5, no. 1, p. 24, 2017/06/16 2017, doi: 10.1186/s40486-017-0058-6. W. Wang, "Precise Droplet Dispensing in Digital Microfluidics with Dumbbell-Shaped Electrodes," Micromachines, vol. 13, no. 3, p. 484, 2022. [Online]. Available: https://www.mdpi.com/2072-666X/13/3/484. C. Dong et al., "A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips," Lab on a Chip, vol. 17, no. 5, pp. 896-904, 2017. B. Koo and C.-J. Kim, "Evaluation of repeated electrowetting on three different fluoropolymer top coatings," Journal of Micromechanics and Microengineering, vol. 23, no. 6, p. 067002, 2013. J.-Y. Yoon and R. L. Garrell, "Preventing biomolecular adsorption in electrowetting-based biofluidic chips," Analytical chemistry, vol. 75, no. 19, pp. 5097-5102, 2003. J. Gong, S.-K. Fan, and C. Chang-Jin, "Portable digital microfluidics platform with active but disposable lab-on-chip," in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, 2004: IEEE, pp. 355-358. J. Cheng and C.-L. Chen, "Adaptive beam tracking and steering via electrowetting-controlled liquid prism," Applied physics letters, vol. 99, no. 19, p. 191108, 2011. A. G. Bedeian and K. W. Mossholder, "On the use of the coefficient of variation as a measure of diversity," Organizational Research Methods, vol. 3, no. 3, pp. 285-297, 2000. H. Abdi, "Coefficient of variation," Encyclopedia of research design, vol. 1, pp. 169-171, 2010. D. Rose, "Microdispensing technologies in drug discovery," Drug discovery today, vol. 4, no. 9, pp. 411-419, 1999. H. Ren, R. B. Fair, and M. G. Pollack, "Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering," Sensors and Actuators B: Chemical, vol. 98, no. 2-3, pp. 319-327, 2004. M. M. Nahar, G. S. Bindiganavane, J. Nikapitiya, and H. Moon, "Numerical modeling of 3D electrowetting droplet actuation and cooling of a hotspot," in Proceedings of the 2015 COMSOL Conference, Boston, MA, USA, 2015, pp. 7-9. X.-S. Wang, S.-W. Cui, L. Zhou, S.-H. Xu, Z.-W. Sun, and R.-Z. Zhu, "A generalized Young’s equation for contact angles of droplets on homogeneous and rough substrates," Journal of Adhesion Science and Technology, vol. 28, no. 2, pp. 161-170, 2014. H. Ren, "An Initial Study for Droplet Transportation, Creation and On-chip Digital Dilution," Ph. D. thesis, Duke University, Durham, NC, 2004. S. W. Walker and B. Shapiro, "Modeling the fluid dynamics of electrowetting on dielectric (EWOD)," Journal of Microelectromechanical Systems, vol. 15, no. 4, pp. 986-1000, 2006. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92028 | - |
dc.description.abstract | 數位微流體已廣泛用於複雜、多步驟的生物應用。然而因為現有的三電極式分裂方法無法快速地產生液珠,一些需要大量液珠的檢測如分子的並行多重檢測或者數位核酸放大檢測對於數位微流體設備仍然是很大的挑戰。為了解決這項問題,在基於電濕潤的數位微流體晶片上,我們提出了一種使用鋸齒狀電極的新穎的液珠分裂方式。它需要兩步驟控制:首先液體將被拉伸填滿列電極,然後再由電極陣列切斷液體,便能同時產生多個液珠。鋸齒狀電極產生了彎月形液體填充的現象,與傳統的電極手指設計相比,液體與電極有著更大的初始重疊面積,進而穩定了產生的液珠體積。實驗在不同角度的1公分鋸齒狀電極同時產生20個奈升等級液滴 (6~8nL),若排除在列兩端的液滴,液滴的體積變異係數(CV)僅有1.26%。此外,液珠的數量取決於列電極的長度及列數,且不會影響CV值。這方法展示了在數位微流體晶片上進行並行多重檢測及數位核酸放大測試的巨大潛力。 | zh_TW |
dc.description.abstract | Digital microfluidics (DMF) has been widely used in biological applications that involve complex and multistep protocols. However, parallel multiple analysis in molecular or digital nucleic acid amplification tests which require numerous droplets are still a challenge for DMF device because the existing three-electrode splitting method cannot generate droplets rapidly. To solve the problem, a novel splitting method with a zigzag row-electrode design on electrowetting-based DMF chips is proposed. It requires a two-step actuation control: the liquid is first stretched on the row-electrode and then split by the electrode array to simultaneously generate multiple droplets. The zigzag electrode promotes the meniscus filling phenomena and provides a larger initial overlapping area between the liquid and the electrode array than the traditional electrode fingers design, thereby stabilizing the volume of droplets generated. Twenty (20) nanoliter droplets (of 6~8 nL) are simultaneously generated in 1 cm zigzag row-electrode with different angles. Excluding the droplets at the both ends of the row, the coefficient of variance (CV) of droplet volume is only 1.26%. Furthermore, the number of the droplets can be controlled by the length and the number of the row-electrodes without affecting CV. It shows a high potential for parallel multiple analyses or digital nucleic acid amplification tests on DMF chips. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-27T16:38:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-27T16:38:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Table of Contents
誌謝 i 中文摘要 ii Abstract iii List of Figures iv List of Tables vii Table of Contents viii Chapter1 Introduction 1 1.1 DMF Technology 1 1.2 Overall Structure of Thesis 3 Chapter2 Literature Review 5 2.1 Microfluidics-Based 7 2.2 Droplet-Based 8 2.2.1 Open-System 9 2.2.2 Covered-System 11 2.3 Techniques Comparison 13 Chapter3 Materials and Methods 15 3.1 Device Fabrication 17 3.2 Systems Setup 20 3.3 Data Analysis 21 Chapter4 Designs and Results 23 4.1 Split Droplet in Covered-System 24 4.2 Design 1: Straight row electrode 27 4.2.1 Design 1 without fingers 27 4.2.2 Design 1 with fingers 29 4.2.3 Design 1: Results 30 4.3 Design 2: Zigzag row electrode 36 4.3.1 Meniscus Filling in Corners 37 4.3.2 Design 2: Results 40 Chapter5 Discussions 45 5.1 Design 1: Improvement 45 5.2 Design 2: Analysis of droplet-splitting process 46 5.3 Design 1 vs Design 2 50 5.4 Higher Throughput 52 5.5 Filling Medium 53 Chapter6 Conclusions 56 6.1 Conclusions 56 6.2 Future Prospects 57 Appendix I 60 Reference 63 | - |
dc.language.iso | en | - |
dc.title | 在數位微流體晶片上同時產生複數液珠 | zh_TW |
dc.title | Simultaneous Multiple-Droplet Generation on Digital Microfluidics Chip | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖英志;饒達仁;范士岡 | zh_TW |
dc.contributor.oralexamcommittee | Ying-Chih Liao;Da-Jeng Yao;Shih-Kang Fan | en |
dc.subject.keyword | 液珠生成,電濕潤,鋸齒電極,數位微流體, | zh_TW |
dc.subject.keyword | droplet generation,electrowetting,zigzag electrode,digital microfluidic, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU202203587 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-22 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物機電工程學系 | - |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf | 4.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。