Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92021
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 鄭秋萍 | zh_TW |
dc.contributor.advisor | Chiu-Ping Cheng | en |
dc.contributor.author | 林津伸 | zh_TW |
dc.contributor.author | Andre Fortunatus Karim | en |
dc.date.accessioned | 2024-02-27T16:35:47Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2022-09-23 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 莊嘉茹。2020。番茄與印度梨形孢菌之共生與誘導番茄系統性抗病之研究。國立台灣大學植物科學研究所碩士論文。
Abdelaziz, M.E., Abdelsattar, M., Abdeldaym, E.A., Atia, M.A., Mahmoud, A.W.M., Saad, M.M., and Hirt, H. (2019). Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Scientia Horticulturae 256, 108532. Aiese Cigliano, R., Sanseverino, W., Cremona, G., Ercolano, M.R., Conicella, C., and Consiglio, F.M. (2013). Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics 14, 1-20. Akum, F.N., Steinbrenner, J., Biedenkopf, D., Imani, J., and Kogel, K.-H. (2015). The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. Frontiers in Plant Science 6, 906. Ali, A., Shah, L., Rahman, S., Riaz, M.W., Yahya, M., Xu, Y.J., Liu, F., Si, W., Jiang, H., and Cheng, B. (2018). Plant defense mechanism and current understanding of salicylic acid and NPRs in activating SAR. Physiological and Molecular Plant Pathology 104, 15-22. Ali, R., Ma, W., Lemtiri-Chlieh, F., Tsaltas, D., Leng, Q., von Bodman, S., and Berkowitz, G.A. (2007). Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. The Plant Cell 19, 1081-1095. Amoozadeh, S., Johnston, J., and Meisrimler, C.-N. (2021). Exploiting structural modelling tools to explore host-translocated effector proteins. International Journal of Molecular Sciences 22, 12962. Andrade-Linares, D.R., Müller, A., Fakhro, A., Schwarz, D., and Franken, P. (2013). Impact of Piriformospora indica on tomato. In Piriformospora indica (Springer), pp. 107-117. Asai, S., and Yoshioka, H. (2009). Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Molecular Plant-Microbe Interactions 22, 619-629. Audenaert, K., De Meyer, G.B., and Höfte, M.M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiology 128, 491-501. Azizi, M., Fard, E.M., and Ghabooli, M. (2021). Piriformospora indica affect drought tolerance by regulation of genes expression and some morphophysiological parameters in tomato (Solanum lycopersicum L.). Scientia Horticulturae 287, 110260. Baghaie, A.H., and Aghili, F. (2021). Contribution of Piriformospora indica on improving the nutritional quality of greenhouse tomato and its resistance against Cu toxicity after humic acid addition to soil. Environmental Science and Pollution Research 28, 64572-64585. Balint‐Kurti, P. (2019). The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology 20, 1163-1178. Borg, M., Jiang, D., and Berger, F. (2021). Histone variants take center stage in shaping the epigenome. Current Opinion in Plant Biology 61, 101991. 57 Boutemy, L.S., King, S.R., Win, J., Hughes, R.K., Clarke, T.A., Blumenschein, T.M., Kamoun, S., and Banfield, M.J. (2011). Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity. Journal of Biological Chemistry 286, 35834-35842. Bruce, T.J., Matthes, M.C., Napier, J.A., and Pickett, J.A. (2007). Stressful “memories” of plants: evidence and possible mechanisms. Plant Science 173, 603-608. Burke, R., Schwarze, J., Sherwood, O.L., Jnaid, Y., McCabe, P.F., and Kacprzyk, J. (2020). Stressed to death: The role of transcription factors in plant programmed cell death induced by abiotic and biotic stimuli. Frontiers in Plant Science 11, 1235. Camehl, I., Sherameti, I., Venus, Y., Bethke, G., Varma, A., Lee, J., and Oelmüller, R. (2010). Ethylene signalling and ethylene‐targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytologist 185, 1062-1073. Cameron, D.D., Neal, A.L., van Wees, S.C., and Ton, J. (2013). Mycorrhiza-induced resistance: more than the sum of its parts? Trends in Plant Science 18, 539-545. Caron, D.A., Worden, A.Z., Countway, P.D., Demir, E., and Heidelberg, K.B. (2009). Protists are microbes too: a perspective. The ISME Journal 3, 4-12. Caten, C., and Jinks, J. (1968). Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Canadian Journal of Botany 46, 329-348. Chang, M., Chen, H., Liu, F., and Fu, Z.Q. (2021). PTI and ETI: convergent pathways with diverse elicitors. Trends in Plant Science. Chaudhry, V., Runge, P., Sengupta, P., Doehlemann, G., Parker, J.E., and Kemen, E. (2021). Shaping the leaf microbiota: plant–microbe–microbe interactions. Journal of Experimental Botany 72, 36-56. Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.I., and Cheng, C.P. (2009). Virus‐induced gene silencing reveals the involvement of ethylene‐, salicylic acid‐and mitogen‐activated protein kinase‐related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum 136, 324-335. Cheng, Y.T., Zhang, L., and He, S.Y. (2019). Plant-microbe interactions facing environmental challenge. Cell Host & Microbe 26, 183-192. Chern, L., Ann, P., and Young, H. (1998). Root and foot rot of loquat in Taiwan caused by Phytophthora. Plant Disease 82, 651-656. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500. Chuberre, C., Plancot, B., Driouich, A., Moore, J.P., Bardor, M., Gügi, B., and Vicré, M. (2018). Plant immunity is compartmentalized and specialized in roots. Frontiers in Plant Science 9, 1692. Collemare, J., O'Connell, R., and Lebrun, M.H. (2019). Nonproteinaceous effectors: the terra incognita of plant–fungal interactions. New Phytologist 223, 590-596. De-la-Peña, C., Badri, D.V., Lei, Z., Watson, B.S., Brandão, M.M., Silva-Filho, M.C., Sumner, L.W., and Vivanco, J.M. (2010). Root secretion of defense-related proteins is development-dependent and correlated with flowering time. Journal of Biological Chemistry 285, 30654-30665. De Coninck, B., Timmermans, P., Vos, C., Cammue, B.P., and Kazan, K. (2015). What lies beneath: belowground defense strategies in plants. Trends in Plant Science 20, 91-101. de Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., and Padilla, A. (2015). Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLOS Pathogens 11, e1005228. De Vega, D., Newton, A.C., and Sadanandom, A. (2018). Post‐translational modifications in priming the plant immune system: ripe for exploitation? FEBS Letters 592, 1929-1936. Deb, S., Ghosh, P., Patel, H.K., and Sonti, R.V. (2020). Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses. The Plant Journal 104, 332-350. Desaki, Y., Miyata, K., Suzuki, M., Shibuya, N., and Kaku, H. (2018). Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immunity 24, 92-100. Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weiss, M., Waller, F., and Kogel, K.-H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences 103, 18450-18457. Devanna, B.N., Jain, P., Solanke, A.U., Das, A., Thakur, S., Singh, P.K., Kumari, M., Dubey, H., Jaswal, R., and Pawar, D. (2022). Understanding the dynamics of blast resistance in rice-Magnaporthe oryzae interactions. Journal of Fungi 8, 584. Díaz-Valle, A., López-Calleja, A.C., and Alvarez-Venegas, R. (2019). Enhancement of pathogen resistance in common bean plants by inoculation with Rhizobium etli. Frontiers in Plant Science 10, 1317. Ding, B., Bellizzi, M.d.R., Ning, Y., Meyers, B.C., and Wang, G.-L. (2012). HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. The Plant Cell 24, 3783-3794. Du, Q., Fang, Y., Jiang, J., Chen, M., Fu, X., Yang, Z., Luo, L., Wu, Q., Yang, Q., and Wang, L. (2022). Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor. BMC Genomics 23, 1-17. El Oirdi, M., El Rahman, T.A., Rigano, L., El Hadrami, A., Rodriguez, M.C., Daayf, F., Vojnov, A., and Bouarab, K. (2011). Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. The Plant Cell 23, 2405-2421. Fabro, G. (2022). Oomycete intracellular effectors: specialised weapons targeting strategic plant processes. New Phytologist 233, 1074-1082. Fakhro, A., Andrade-Linares, D.R., von Bargen, S., Bandte, M., Buttner, C., Grosch, R., Schwarz, D., and Franken, P. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20, 191-200. Feldman, D., Yarden, O., and Hadar, Y. (2020). Seeking the roles for fungal small-secreted proteins in affecting saprophytic lifestyles. Frontiers in Microbiology 11, 455. Foroozani, M., Holder, D.H., and Deal, R.B. (2022). Histone variants in the specialization of plant chromatin. Annual Review of Plant Biology 73, 149. Franceschetti, M., Maqbool, A., Jiménez-Dalmaroni, M.J., Pennington, H.G., Kamoun, S., and Banfield, M.J. (2017). Effectors of filamentous plant 59 pathogens: commonalities amid diversity. Microbiology and Molecular Biology Reviews 81, e00066-00016. Ghezel Sefloo, N., Wieczorek, K., Steinkellner, S., and Hage-Ahmed, K. (2019). Serendipita species trigger cultivar-specific responses to fusarium wilt in tomato. Agronomy 9, 595. Ghorbani, A., Razavi, S., Ghasemi Omran, V., and Pirdashti, H. (2018). Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology 20, 729-736. Gill, S.S., Gill, R., Trivedi, D.K., Anjum, N.A., Sharma, K.K., Ansari, M.W., Ansari, A.A., Johri, A.K., Prasad, R., and Pereira, E. (2016). Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in microbiology 7, 332. Giovannetti, M., and Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 489-500. Gong, C., Su, H., Li, Z., Mai, P., Sun, B., Li, Z., Heng, Z., Xu, X., Yang, S., and Li, T. (2021). Involvement of histone acetylation in tomato resistance to Ralstonia solanacearum. Scientia Horticulturae 285, 110163. Gu, X., Jiang, D., Yang, W., Jacob, Y., Michaels, S.D., and He, Y. (2011). Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLOS Genetics 7, e1002366. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166, 557-580. He, Q., McLellan, H., Boevink, P.C., and Birch, P.R. (2020). All roads lead to susceptibility: The many modes of action of fungal and oomycete intracellular effectors. Plant Communications 1, 100050. He, Y., and Li, Z. (2018). Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends in Genetics 34, 856-866. Heidarianpour, M.B., Aliasgharzad, N., and Olsson, P.A. (2020). Positive effects of co-inoculation with Rhizophagus irregularis and Serendipita indica on tomato growth under saline conditions, and their individual colonization estimated by signature lipids. Mycorrhiza 30, 455-466. Hogenhout, S.A., Van der Hoorn, R.A., Terauchi, R., and Kamoun, S. (2009). Emerging concepts in effector biology of plant-associated organisms. Molecular plant-microbe interactions 22, 115-122. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. Journal of Integrative Plant Biology 50, 875-885. Holsters, M., Silva, B., Van Vliet, F., Genetello, C., De Block, M., Dhaese, P., Depicker, A., Inzé, D., Engler, G., and Villarroel, R. (1980). The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3, 212-230. Hood, E.E., Gelvin, S.B., Melchers, L.S., and Hoekema, A. (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic research 2, 208-218. Hou, S., Liu, Z., Shen, H., and Wu, D. (2019). Damage-associated molecular pattern-triggered immunity in plants. Frontiers in Plant Science 10, 646. Hu, H., and Du, J. (2022). Structure and mechanism of histone methylation dynamics in Arabidopsis. Current Opinion in Plant Biology 67, 102211. Hu, S.-P., Li, J.-J., Dhar, N., Li, J.-P., Chen, J.-Y., Jian, W., Dai, X.-F., and Yang, X.-Y. (2021). Lysin Motif (LysM) proteins: Interlinking manipulation of plant immunity and fungi. International Journal of Molecular Sciences 22, 3114. Hu, Y., Lu, Y., Zhao, Y., and Zhou, D.-X. (2019). Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress. Frontiers in Plant Science 10, 1236. Hu, Z., Shao, S., Zheng, C., Sun, Z., Shi, J., Yu, J., Qi, Z., and Shi, K. (2018). Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta 247, 1217-1227. Huang, D., Lan, W., Ma, W., Huang, R., Lin, W., Li, M., Chen, C.Y., Wu, K., and Miao, Y. (2022). WHIRLY1 recruits the histone deacetylase HDA15 repressing leaf senescence and flowering in Arabidopsis. Journal of Integrative Plant Biology. Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., Kogel, K.H., and Schafer, P. (2011). Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology 156, 726-740. Jambunathan, N. (2010). Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. In Plant Stress Tolerance (Springer), pp. 291-297. Jaunet, T.X., and Wang, J.-F. (1999). Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89, 320-327. Jiang, J.-F., Li, J.-G., and Dong, Y.-H. (2013). Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum. European Journal of Plant Pathology 136, 547-555. Jiang, J., Ding, A.B., Liu, F., and Zhong, X. (2020). Linking signaling pathways to histone acetylation dynamics in plants. Journal of Experimental Botany 71, 5179-5190. Jiang, J., Lu, Y., Li, J., Li, L., He, X., Shao, H., and Dong, Y. (2014). Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt). PLOS one 9, e97753. Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., and Tang, D. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175. Jogawat, A., Meena, M.K., Kundu, A., Varma, M., and Vadassery, J. (2020). Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. Journal of Experimental Botany 71, 2752-2768. Kachroo, A., and Kachroo, P. (2020). Mobile signals in systemic acquired resistance. Current Opinion in Plant Biology 58, 41-47. Kado, C., and Heskett, M. (1970). Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60, 969-976. Kang, M.J., Jin, H.S., Noh, Y.S., and Noh, B. (2015). Repression of flowering under a noninductive photoperiod by the HDA 9‐AGL 19‐FT module in Arabidopsis. New Phytologist 206, 281-294. Khatabi, B., Molitor, A., Lindermayr, C., Pfiffi, S., Durner, J., Von Wettstein, D., Kogel, K.-H., and Schäfer, P. (2012). Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLOS One 7, e35502. 61 Kim, J.-H. (2021). Multifaceted chromatin structure and transcription changes in plant stress response. International Journal of Molecular Sciences 22, 2013. Kim, K.-C., Lai, Z., Fan, B., and Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. The Plant Cell 20, 2357-2371. Kim, S., Kim, C.-Y., Park, S.-Y., Kim, K.-T., Jeon, J., Chung, H., Choi, G., Kwon, S., Choi, J., and Jeon, J. (2020). Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature communications 11, 1-11. King, E.O., Ward, M.K., and Raney, D.E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of laboratory and clinical medicine 44, 301-307. Kloppholz, S., Kuhn, H., and Requena, N. (2011). A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current Biology 21, 1204-1209. Koch, A., and Wassenegger, M. (2021). Host‐induced gene silencing–mechanisms and applications. New Phytologist 231, 54-59. Kogel, K.-H., Franken, P., and Hückelhoven, R. (2006). Endophyte or parasite–what decides? Current opinion in plant biology 9, 358-363. Konappa, N.M., Maria, M., Uzma, F., Krishnamurthy, S., Nayaka, S.C., Niranjana, S.R., and Chowdappa, S. (2016). Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Scientia Horticulturae 207, 183-192. Kretschmer, M., Damoo, D., Djamei, A., and Kronstad, J. (2019). Chloroplasts and plant immunity: where are the fungal effectors? Pathogens 9, 19. Kumar, A., and Verma, J.P. (2018). Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiological Research 207, 41-52. Kumar, V., Thakur, J.K., and Prasad, M. (2021). Histone acetylation dynamics regulating plant development and stress responses. Cellular and Molecular Life Sciences 78, 4467-4486. Lacaze, A., and Joly, D.L. (2020). Structural specificity in plant–filamentous pathogen interactions. Molecular Plant Pathology 21, 1513-1525. Lämke, J., and Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology 18, 1-11. Langin, G., Gouguet, P., and Üstün, S. (2020). Microbial effector proteins–a journey through the proteolytic landscape. Trends in Microbiology 28, 523-535. Lanver, D., Tollot, M., Schweizer, G., Lo Presti, L., Reissmann, S., Ma, L.-S., Schuster, M., Tanaka, S., Liang, L., and Ludwig, N. (2017). Ustilago maydis effectors and their impact on virulence. Nature Reviews Microbiology 15, 409-421. Larebeke, N.v., Engler, G., Holsters, M., DEN ELSACKER, S., Zaenen, I., Schilperoort, R., and Schell, J. (1974). Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252, 169-170. Latrasse, D., Jégu, T., Li, H., de Zelicourt, A., Raynaud, C., Legras, S., Gust, A., Samajova, O., Veluchamy, A., and Rayapuram, N. (2017). MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biology 18, 1-19. Lavale, S.A., Debnath, P., Mathew, D., and Abdelmotelb, K.F. (2022). Two decades of omics in bacterial wilt resistance in Solanaceae, What we learned? Plant Stress, 100099. Lee Díaz, A.S., Macheda, D., Saha, H., Ploll, U., Orine, D., and Biere, A. (2021). Tackling the context-dependency of microbial-induced resistance. Agronomy 11, 1293. Lee, H.G., and Seo, P.J. (2019). MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nature Communications 10, 1-14. Lee, Y.W., Wang, J., Newton, H.J., and Lithgow, T. (2020). Mapping bacterial effector arsenals: in vivo and in silico approaches to defining the protein features dictating effector secretion by bacteria. Current Opinion in Microbiology 57, 13-21. Li, L., Kim, P., Yu, L., Cai, G., Chen, S., Alfano, J.R., and Zhou, J.-M. (2016). Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. Cell host & microbe 20, 504-514. Lin, Y.M., Chou, I.C., Wang, J.F., Ho, F.I., Chu, Y.J., Huang, P.C., Lu, D.K., Shen, H.L., Elbaz, M., Huang, S.M., and Cheng, C.P. (2008). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Molecular Plant Microbe Interaction 21, 1261-1270. Liu, A.C., and Cheng, C.P. (2017). Pathogen‐induced ERF68 regulates hypersensitive cell death in tomato. Molecular plant pathology 18, 1062-1074. Liu, C., Chen, L., Zhao, R., Li, R., Zhang, S., Yu, W., Sheng, J., and Shen, L. (2019a). Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. Journal of Agricultural and Food Chemistry 67, 6116-6124. Liu, H., Brettell, L.E., Qiu, Z., and Singh, B.K. (2020a). Microbiome-mediated stress resistance in plants. Trends in Plant Science 25, 733-743. Liu, L., Huang, L., Lin, X., and Sun, C. (2020b). Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings. Plant Cell Reports 39, 567-575. Liu, L., Xu, L., Jia, Q., Pan, R., Oelmüller, R., Zhang, W., and Wu, C. (2019b). Arms race: diverse effector proteins with conserved motifs. Plant Signaling & Behavior 14, 1557008. Liu, X., Yang, S., Zhao, M., Luo, M., Yu, C.-W., Chen, C.-Y., Tai, R., and Wu, K. (2014). Transcriptional repression by histone deacetylases in plants. Molecular Plant 7, 764-772. Liu, Y., Schiff, M., and Dinesh‐Kumar, S. (2002). Virus‐induced gene silencing in tomato. The Plant Journal 31, 777-786. Maximiano, M., Santos, L., Santos, C., Aragão, F., Dias, S., Franco, O., and Mehta, A. (2022). Host induced gene silencing of Sclerotinia sclerotiorum effector genes for the control of white mold. Biocatalysis and Agricultural Biotechnology 40, 102302. McCombe, C.L., Greenwood, J.R., Solomon, P.S., and Williams, S.J. (2022). Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays in Biochemistry. Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Tripathi, Y.N., Zehra, A., Marwal, A., and Upadhyay, R.S. (2020). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology 60, 828-861. Messner, S., and Hottiger, M.O. (2011). Histone ADP-ribosylation in DNA repair, replication and transcription. Trends in Cell Biology 21, 534-542. Millner, P., and Kitt, D. (1992). The Beltsville method for soilless production of vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 2, 9-15. 63 Mukhi, N., Gorenkin, D., and Banfield, M.J. (2020). Exploring folds, evolution and host interactions: understanding effector structure/function in disease and immunity. New Phytologist 227, 326-333. Naveed, Z.A., Wei, X., Chen, J., Mubeen, H., and Ali, G.S. (2020). The PTI to ETI continuum in Phytophthora-plant interactions. Frontiers in Plant Science 11, 593905. Nguyen, H.P., Chakravarthy, S., Velásquez, A.C., McLane, H.L., Zeng, L., Nakayashiki, H., Park, D.-H., Collmer, A., and Martin, G.B. (2010). Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Molecular Plant-Microbe Interactions 23, 991-999. Oelmüller, R., Sherameti, I., Tripathi, S., and Varma, A. (2009). Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49, 1-17. Ökmen, B., Bachmann, D., and De Wit, P.J. (2019). A conserved GH17 glycosyl hydrolase from plant pathogenic Dothideomycetes releases a DAMP causing cell death in tomato. Molecular Plant Pathology 20, 1710-1721. Ökmen, B., Schwammbach, D., Bakkeren, G., Neumann, U., and Doehlemann, G. (2021). The Ustilago hordei–barley interaction is a versatile system for characterization of fungal effectors. Journal of Fungi 7, 86. Panda, S., Busatto, N., Hussain, K., and Kamble, A. (2019). Piriformospora indica-primed transcriptional reprogramming induces defense response against early blight in tomato. Scientia Horticulturae 255, 209-219. Panigrahi, G.K., Sahoo, A., and Satapathy, K.B. (2021). Insights to plant immunity: Defense signaling to epigenetics. Physiological and Molecular Plant Pathology 113, 101568. Pel, M.J., and Pieterse, C.M. (2013). Microbial recognition and evasion of host immunity. Journal of experimental botany 64, 1237-1248. Prasad, R., Pham, H.G., Kumari, R., Singh, A., Yadav, V., Sachdev, M., Garg, A.P., Peskan, T., Hehl, S., and Sherameti, I. (2005). Sebacinaceae: culturable mycorrhiza-like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In In vitro culture of mycorrhizas (Springer), pp. 291-312. Presti, L.L., and Kahmann, R. (2017). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology 38, 19-24. Priller, J.P.R., Reid, S., Konein, P., Dietrich, P., and Sonnewald, S. (2016). The Xanthomonas campestris pv. vesicatoria type-3 effector XopB inhibits plant defence responses by interfering with ROS production. PLOS One 11, e0159107. Pusztahelyi, T. (2018). Chitin and chitin-related compounds in plant–fungal interactions. Mycology 9, 189-201. Qiang, X., Weiss, M., Kogel, K.H., and Schafer, P. (2012). Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. Moleculat Plant Pathology 13, 508-518. Qiong, T., ZHENG, X.-d., Jun, G., and Ting, Y. (2022). Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways. Journal of Integrative Agriculture 21, 697-709. Rai, M., Acharya, D., Singh, A., and Varma, A. (2001). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11, 123-128. Ramirez-Prado, J.S., Abulfaraj, A.A., Rayapuram, N., Benhamed, M., and Hirt, H. (2018). Plant immunity: from signaling to epigenetic control of defense. Trends in Plant Science 23, 833-844. Redkar, A., Sabale, M., Zuccaro, A., and Di Pietro, A. (2022). Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. Current Opinion in Plant Biology 67, 102226. Roylawar, P., Panda, S., and Kamble, A. (2015). Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight. Physiological and Molecular Plant Pathology 91, 88-95. Saijo, Y., Loo, E.P.i., and Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. The Plant Journal 93, 592-613. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual. (Cold spring harbor laboratory press). Schulze, S., Kay, S., Büttner, D., Egler, M., Eschen‐Lippold, L., Hause, G., Krüger, A., Lee, J., Müller, O., and Scheel, D. (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytologist 195, 894-911. Schwessinger, B., and Ronald, P.C. (2012). Plant innate immunity: perception of conserved microbial signatures. Annual Review of Plant Biology 63, 451-482. Sezonov, G., Joseleau-Petit, D., and d'Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of bacteriology 189, 8746-8749. Sharma, R., Xia, X., Cano, L.M., Evangelisti, E., Kemen, E., Judelson, H., Oome, S., Sambles, C., van den Hoogen, D.J., and Kitner, M. (2015). Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC genomics 16, 1-23. Shen, Q., Liu, Y., and Naqvi, N.I. (2018). Fungal effectors at the crossroads of phytohormone signaling. Current Opinion in Microbiology 46, 1-6. Shen, Y., Lei, T., Cui, X., Liu, X., Zhou, S., Zheng, Y., Guérard, F., Issakidis‐Bourguet, E., and Zhou, D.X. (2019). Arabidopsis histone deacetylase HDA 15 directly represses plant response to elevated ambient temperature. The Plant Journal 100, 991-1006. Shu, B., Xie, Y., Zhang, F., Zhang, D., Liu, C., Wu, Q., and Luo, C. (2021). Genome-wide identification of citrus histone acetyltransferase and deacetylase families and their expression in response to arbuscular mycorrhizal fungi and drought. Journal of Plant Interactions 16, 367-376. Singh, P., Yekondi, S., Chen, P.-W., Tsai, C.-H., Yu, C.-W., Wu, K., and Zimmerli, L. (2014). Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1–dependent manner. The Plant Cell 26, 2676-2688. Smakowska, E., Kong, J., Busch, W., and Belkhadir, Y. (2016). Organ-specific regulation of growth-defense tradeoffs by plants. Current Opinion in Plant Biology 29, 129-137. Stassen, J.H., Boer, E.d., Vergeer, P.W., Andel, A., Ellendorff, U., Pelgrom, K., Pel, M., Schut, J., Zonneveld, O., and Jeuken, M.J. (2013). Specific in planta recognition of two GKLR proteins of the downy mildew Bremia lactucae revealed in a large effector screen in lettuce. Molecular Plant-Microbe Interactions 26, 1259-1270. Stein, E., Molitor, A., Kogel, K.-H., and Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires 65 jasmonic acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology 49, 1747-1751. Tahir, M.S., and Tian, L. (2021). HD2-type histone deacetylases: Unique regulators of plant development and stress responses. Plant Cell Reports 40, 1603-1615. Takken, F.L., Luderer, R., Gabriëls, S.H., Westerink, N., Lu, R., De Wit, P.J., and Joosten, M.H. (2000). A functional cloning strategy, based on a binary PVX‐expression vector, to isolate HR‐inducing cDNAs of plant pathogens. The Plant Journal 24, 275-283. Truong, H.A., Lee, S., Trịnh, C.S., Lee, W.J., Chung, E.-H., Hong, S.-W., and Lee, H. (2021). Overexpression of the HDA15 gene confers resistance to salt stress by the induction of NCED3, an ABA biosynthesis enzyme. Frontiers in Plant Science 12, 640443. Valandro, F., Menguer, P.K., Cabreira-Cagliari, C., Margis-Pinheiro, M., and Cagliari, A. (2020). Programmed cell death (PCD) control in plants: New insights from the Arabidopsis thaliana deathosome. Plant Science 299, 110603. Vannier, N., Agler, M., and Hacquard, S. (2019). Microbiota-mediated disease resistance in plants. PLOS Pathogens 15, e1007740. Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Bütehorn, B., and Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90, 896-903. Vlot, A.C., Sales, J.H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., and Nayem, S. (2021). Systemic propagation of immunity in plants. New Phytologist 229, 1234-1250. Voß, S., Betz, R., Heidt, S., Corradi, N., and Requena, N. (2018). RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus Rhizophagus irregularis, functions in arbuscule development. Frontiers in Microbiology 9, 2068. Wagner, S., Grin, I., Malmsheimer, S., Singh, N., Torres-Vargas, C.E., and Westerhausen, S. (2018). Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiology Letters 365, fny201. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K.-H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences 102, 13386-13391. Wang, H., Zheng, J., Ren, X., Yu, T., Varma, A., Lou, B., and Zheng, X. (2015). Effects of Piriformospora indica on the growth, fruit quality and interaction with Tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant Growth Regulation 76, 303-313. Wang, L., Ahmad, B., Liang, C., Shi, X., Sun, R., Zhang, S., and Du, G. (2020). Bioinformatics and expression analysis of histone modification genes in grapevine predict their involvement in seed development, powdery mildew resistance, and hormonal signaling. BMC Plant Biology 20, 1-20. Wang, P., Jiang, H., Boeren, S., Dings, H., Kulikova, O., Bisseling, T., and Limpens, E. (2021a). A nuclear‐targeted effector of Rhizophagus irregularis interferes with histone 2B mono‐ubiquitination to promote arbuscular mycorrhization. New Phytologist 230, 1142-1155. Wang, Y., and Wang, Y. (2018). Trick or treat: Microbial pathogens evolved apoplastic effectors modulating plant susceptibility to infection. Molecular Plant-Microbe Interactions 31, 6-12. Wang, Y., Pruitt, R.N., Nürnberger, T., and Wang, Y. (2022). Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 1-16. Wang, Y., Li, X., Fan, B., Zhu, C., and Chen, Z. (2021b). Regulation and function of defense-related callose deposition in plants. International Journal of Molecular Sciences 22, 2393. Wang, Y., Hu, Q., Wu, Z., Wang, H., Han, S., Jin, Y., Zhou, J., Zhang, Z., Jiang, J., and Shen, Y. (2017). HISTONE DEACETYLASE 6 represses pathogen defence responses in Arabidopsis thaliana. Plant, Cell & Environment 40, 2972-2986. Wang, Y., Feng, G., Zhang, Z., Liu, Y., Ma, Y., Wang, Y., Ma, F., Zhou, Y., Gross, R., and Xu, H. (2021c). Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. Plant Science 302, 110702. Wilson, R.A., and McDowell, J.M. (2022). Recent advances in understanding of fungal and oomycete effectors. Current Opinion in Plant Biology 68, 102228. Wood, K.J., Nur, M., Gil, J., Fletcher, K., Lakeman, K., Gann, D., Gothberg, A., Khuu, T., Kopetzky, J., and Naqvi, S. (2020). Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLOS Pathogens 16, e1009012. Wu, K., Zhang, L., Zhou, C., Yu, C.-W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. Journal of Experimental Botany 59, 225-234. Wu, S., Shan, L., and He, P. (2014). Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Science 228, 118-126. Xi, Y., Cesari, S., and Kroj, T. (2022). Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays in Biochemistry. Xu, L., Wu, C., Oelmuller, R., and Zhang, W. (2018). Role of phytohormones in Piriformospora indica-induced growth promotion and stress tolerance in plants: More questions than answers. Frontiers in Microbiology 9, 1646. Xu, Z., Pehlivan, N., Ghorbani, A., and Wu, C. (2022). Effects of Azorhizobium caulinodans and Piriformospora indica co-inoculation on growth and fruit quality of tomato (Solanum lycopersicum L.) under salt stress. Horticulturae 8, 302. Yan, C., Rizwan, H.M., Liang, D., Reichelt, M., Mithöfer, A., Scholz, S.S., Oelmüller, R., and Chen, F. (2021). The effect of the root-colonizing Piriformospora indica on passion fruit (Passiflora edulis) development: Initial defense shifts to fitness benefits and higher fruit quality. Food Chemistry 359, 129671. Yang, L., Chen, X., Wang, Z., Sun, Q., Hong, A., Zhang, A., Zhong, X., and Hua, J. (2020). HOS15 and HDA9 negatively regulate immunity through histone deacetylation of intracellular immune receptor NLR genes in Arabidopsis. New Phytologist 226, 507-522. Yruela, I., Moreno-Yruela, C., and Olsen, C.A. (2021). Zn2+-dependent histone deacetylases in plants: structure and evolution. Trends in Plant Science 26, 741-757. Yu, C.-W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology 156, 173-184. Yu, K., Pieterse, C.M., Bakker, P.A., and Berendsen, R.L. (2019). Beneficial microbes going underground of root immunity. Plant, Cell & Environment 42, 2860-2870. Yu, T.-Y., Sun, M.-K., and Liang, L.-K. (2021). Receptors in the induction of the plant innate immunity. Molecular Plant-Microbe Interactions 34, 587-601. 67 Yu, X., Feng, B., He, P., and Shan, L. (2017). From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology 55, 109. Yuan, M., Ngou, B.P.M., Ding, P., and Xin, X.-F. (2021). PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology 62, 102030. Yun, J., Kim, Y.-S., Jung, J.-H., Seo, P.J., and Park, C.-M. (2012). The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. Journal of Biological Chemistry 287, 15307-15316. Zeng, T., Rodriguez‐Moreno, L., Mansurkhodzaev, A., Wang, P., van den Berg, W., Gasciolli, V., Cottaz, S., Fort, S., Thomma, B.P., and Bono, J.J. (2020). A lysin motif effector subverts chitin‐triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytologist 225, 448-460. Zhang, K., Sridhar, V.V., Zhu, J., Kapoor, A., and Zhu, J.-K. (2007). Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLOS One 2, e1210. Zhang, S., Li, C., Si, J., Han, Z., and Chen, D. (2022). Action mechanisms of effectors in plant-pathogen interaction. International Journal of Molecular Sciences 23, 6758. Zhang, S., Wang, L., Zhao, R., Yu, W., Li, R., Li, Y., Sheng, J., and Shen, L. (2018). Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. Journal of Agricultural and Food Chemistry 66, 8949-8956. Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. The Plant Cell 17, 1196-1204. Zhou, J., Tang, X., and Martin, G.B. (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. The EMBO Journal 16, 3207-3218. Zhou, J., Tang, X., Frederick, R., and Martin, G. (1998). Pathogen recognition and signal transduction by the Pto kinase. Journal of Plant Research 111, 353-356. Zhou, W., Zhu, Y., Dong, A., and Shen, W.H. (2015). Histone H2A/H2B chaperones: from molecules to chromatin‐based functions in plant growth and development. The Plant Journal 83, 78-95. Zuccaro, A., Lahrmann, U., Guldener, U., Langen, G., Pfiffi, S., Biedenkopf, D., Wong, P., Samans, B., Grimm, C., Basiewicz, M., Murat, C., Martin, F., and Kogel, K.H. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLOS Pathogens 7, e1002290. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92021 | - |
dc.description.abstract | Pattern-triggered immunity (PTI) 是一種植物為了抵抗微生物而引起的廣效初級免疫反應。有益真菌 Piriformospora indica 藉由茉莉酸 (JA) 信號傳導抑制阿拉伯芥 PTI 反應並與其共生。本研究室先前發現 P. indica 與番茄共生過程中,植物根部的賀爾蒙訊息傳遞路徑調節與阿拉伯芥的調控機制非常相似。P. indica 表現多種效應蛋白質會促進其在番茄根系的共生。先前研究顯示在不同共生階段差異表現之兩種 P. indica 效應蛋白質 PIIN_09643 與 PIIN_04363 會降低植物防禦反應。本研究第一個目的是闡明 PIIN_09643 與 PIIN_04363 對番茄 PTI 反應的影響。結果顯示,在共生後期表達的PIIN_04363 能夠強烈抑制根部癒傷葡聚醣與 H2O2 的累積,卻會促進 SlPTI5 的轉錄表現。另一方面,共生早期大量表現的PIIN_09643 則中度抑制根部癒傷葡聚醣與 H2O2 的累積,並延遲 SlPTI5的轉錄表現。此外,兩種效應蛋白質皆不會抑制本研究室所檢測的葉部 PTI 反應。然而,在植物中大量表現 PIIN_04363 會導致細胞凋亡,與抑制 JA 路徑及過量表現 PIIN_04363會增強植物對 B. cinerea 的感病性之現象具關連性。鑑於已知植物 PTI 反應亦會涉及表觀遺傳的調控,本研究第二個目是為了闡明 SlHDA3 和 SlHDA8(阿拉伯芥組蛋白去乙醯酶 AtHDA6 與 AtHDA15 之番茄同源基因)對根部 PTI 反應的影響。結果顯示 SlHDA3 為番茄根部癒傷葡聚糖累積之負向調控者與抵抗青枯病之正向調控者。相較之下,SlHDA8 對於癒傷葡聚糖累積與抵抗青枯病中可能沒有重要影響。預期以上研究結果將有助於提供番茄與微生物相互作用中PTI反應調節之研究,以確保全球糧食的生產和安全。 | zh_TW |
dc.description.abstract | Pattern-triggered immunity (PTI) is a broad spectrum basal defense of plants against microbial communities. For the beneficial fungus Piriformospora indica, suppression of Arabidopsis PTI responses is regulated by JA signaling and is required for its colonization. Our previous studies showed the regulation of phytohormones signaling pathways in roots during tomato-P. indica symbiosis closely resembles that of Arabidopsis. P. indica expressed a plethora of effectors to promote root colonization in tomato. Previous studies showed that two P. indica effectors, PIIN_09643 and PIIN_04363, which are expressed at different stages of colonization reduced plant disease defense. The first aim of this study was to evaluate the effects of PIIN_09643 and PIIN_04363 on tomato PTI responses. The results showed that PIIN_04363, which is expressed at the late stage during symbiosis, strongly suppressed callose deposition and H2O2 accumulation in roots, but increased the expression of SlPTI5. On the other hand, PIIN_09643, which is highly expressed at early stages during symbiosis, moderately suppressed callose deposition and H2O2 accumulation, and delayed the expression of SlPTI5 in roots. Furthermore, both effectors did not suppress the examined PTI responses in leaves. However, overexpression of PIIN_04363 caused spontaneous cell death, which along with the repression of the JA pathway, is consistent with the enhanced susceptibility of PIIN_04363-overexpressing plants to B. cinerea. Given the known involvement of epigenetic regulation in plant PTI, the second aim of this study was to evaluate the effects of SlHDA3 and SlHDA8, the tomato homolog of Arabidopsis histone deacetylases AtHDA6 and AtHDA15, respectively, on root PTI responses. SlHDA3 was found to be a negative regulator of callose deposition in tomato roots and a positive regulator of bacterial wilt resistance. In contrast, SlHDA8 might not play an important role in callose deposition and bacterial wilt resistance. These results are expected to enrich the study on the PTI regulation in tomato-microbe interactions which are expected to ensure global food production and security. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-27T16:35:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-27T16:35:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 ........................................................................................................... i 謝誌 .................................................................................................................... ii
中文摘要 ................................................................................................................... iii Abstract ................................................................................................................... iv List of abbreviations ......................................................................................................... v Table of contents ........................................................................................................... viii List of tables .................................................................................................................. xii List of figures ................................................................................................................ xiii List of supplemental tables ............................................................................................ xiv List of supplemental figures ........................................................................................... xv 1 Introduction ................................................................................................................ 1 1.1 Plant-microbe interaction .................................................................................... 1 1.1.1 Pattern-triggered immunity (PTI) ................................................................... 1 1.1.2 Effector-triggered susceptibility (ETS) .......................................................... 2 1.1.3 Systemic induced resistance ........................................................................... 3 1.2 Microbial effectors .............................................................................................. 4 1.2.1 Effectors of fungi and oomycetes ................................................................... 5 1.2.2 Effectors of mycorrhizal fungi ....................................................................... 7 1.3 Piriformospora indica ......................................................................................... 7 1.3.1 Life cycle and symbiosis establishment by P. indica ..................................... 8 1.3.2 P. indica effectors ........................................................................................... 9 1.3.3 Induced systemic resistance by P. indica ..................................................... 10 1.3.4 Previous studies on tomato-P. indica symbiosis .......................................... 11 1.4 Epigenetic regulation ........................................................................................ 13 1.4.1 Classification of plant HDAs ........................................................................ 14 1.4.2 Gene regulation by Plant HDAs ................................................................... 15 1.4.3 HDAs in phytohormone regulations and immunity ..................................... 17 1.5 Previous studies on the P. indica-tomato interaction ........................................ 19 1.6 Motivation ......................................................................................................... 19 2 Materials and methods .............................................................................................. 21 2.1 Plant materials and cultivation method ............................................................. 21 ix 2.1.1 Tomato cultivars ........................................................................................... 21 2.1.2 Tomato hydroponic cultivation .................................................................... 21 2.1.3 Tomato soil cultivation ................................................................................. 22 2.1.4 Nicotiana benthamiana ................................................................................ 22 2.2 Microbial cultivation and inoculation ............................................................... 22 2.2.1 P. indica ........................................................................................................ 22 2.2.2 Escherichia coli DH5α ................................................................................. 23 2.2.3 Agrobacterium tumefaciens strain GV3101 and MOG101 .......................... 23 2.2.4 Ralstonia solanacearum strain Pss4 ............................................................. 23 2.2.5 Pectobacterium carotovorum subsp. Carotovorum ..................................... 24 2.2.6 Botrytis cinerea ............................................................................................ 24 2.2.7 Phytophthora infestans ................................................................................. 25 2.2.8 Phytophthora parasitica ............................................................................... 25 2.2.9 R. solanacearum strain Pss4 hrpG- .............................................................. 25 2.2.10 P. syringae pv. tomato DC3000 strain hrcC-................................................ 26 2.3 Fungal spore and mycelium staining and root colonization assessment ........... 26 2.3.1 Trypan blue staining ..................................................................................... 26 2.3.2 Wheat germ agglutinin Alexa Fluor 488 staining ........................................ 27 2.4 Cloning .............................................................................................................. 27 2.4.1 Polymerase chain reaction ............................................................................ 27 2.4.2 DNA agarose gel electrophoresis ................................................................. 28 2.4.3 DNA gel purification .................................................................................... 28 2.4.4 DNA restriction enzyme digestion ............................................................... 29 2.4.5 DNA ligation ................................................................................................ 29 2.4.6 TOPO® cloning & LR recombination ......................................................... 30 2.4.7 Heat shock transformation of E. coli ............................................................ 30 2.4.8 Agrobacterium electro-competent cell preparation ...................................... 30 2.4.9 Agrobacterium electroporation ..................................................................... 31 2.4.10 E. coli plasmid isolation ............................................................................... 31 2.5 Extraction of plant and fungal DNA ................................................................. 32 2.6 Extraction of plant and fungal RNA and reverse transcription PCR ................ 33 2.6.1 RNA extraction ............................................................................................. 33 2.6.2 Synthesis of first strand of cDNA................................................................. 34 2.6.3 Semi-quantitative PCR (sqPCR) .................................................................. 34 2.6.4 Quantitative PCR (qPCR) ............................................................................. 34 2.7 Virus-mediated gene overexpression (VOX) and virus-induced gene silencing (VIGS) ............................................................................................................... 35 2.8 PTI assays ......................................................................................................... 36 2.8.1 Callose deposition assay ............................................................................... 36 2.8.2 H2O2 detection .............................................................................................. 37 2.8.3 Expression of PTI marker genes ................................................................... 38 2.9 Sequence analysis ............................................................................................. 38 2.10 Statistical analysis ............................................................................................. 38 3 Results .................................................................................................................. 39 3.1 Roles of P. indica effectors in tomato PTI responses ....................................... 39 3.1.1 PIIN_04363 and PIIN_09643 interfere with PTI responses in tomato roots 39 3.1.2 PIIN_04363, but not PIIN_09643, promotes cell death and PTI in tomato leaves ............................................................................................................ 41 3.2 Roles of tomato histone deacetylases on tomato PTI responses ....................... 42 3.2.1 Identification of AtHDA6 and AtHDA15 homologs in tomato ................... 42 3.2.2 SlHDA3 plays a negative role in callose deposition in tomato roots ............ 43 3.2.3 SlHDA3 plays a positive role in bacterial wilt resistance ............................. 43 3.2.4 Co-silencing of SlHDA1/2/3/4 reduced callose deposition in tomato roots . 44 4 Discussion ................................................................................................................. 45 4.1 The effect of PIIN_04363 on tomato PTI responses. ........................................ 45 4.1.1 PIIN_04363 suppresses root PTI to promote root colonization in tomato. .. 45 4.1.2 PIIN_04363 promotes cell death and PTI in tomato leaves. ........................ 47 4.2 The effect of PIIN_09643 in tomato PTI responses. ........................................ 48 4.2.1 PIIN_09643 suppresses root PTI in tomato. ................................................. 48 4.2.2 PIIN_09643 increased the expression of SlPTI5 in leaves, but not callose deposition and H2O2 accumulation. .............................................................. 49 4.3 PIIN_04363 and PIIN_09643 suppress a similar set of PTI responses at different colonization time. .............................................................................................. 50 4.4 PIIN_04363 and PIIN_09643 might have tissue specific function. .................. 51 4.5 SIHDA3 increases bacterial wilt resistance in tomato, independent of callose deposition state. ................................................................................................. 52 xi 4.6 SlHDA8 might not play a role in tested PTI responses and bacterial wilt resistance in tomato. .......................................................................................................... 53 4.7 Conclusions ....................................................................................................... 55 | - |
dc.language.iso | en | - |
dc.title | 探討印度梨形孢菌效應蛋白與番茄組蛋白去乙醯酶參與番茄初級免疫反應之角色 | zh_TW |
dc.title | Roles of P. indica effectors and tomato histone deacetylases in tomato PTI responses | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 葉開溫;詹明オ;王淑珍;楊淑怡 | zh_TW |
dc.contributor.oralexamcommittee | Kai-Wun Yeh;Ming-Tsair Chan;Shu-Jen Wang;Shu-Yi Yang | en |
dc.subject.keyword | PTI,印度梨形孢菌,效應蛋白質,表觀遺傳,組蛋白去乙醯酶, | zh_TW |
dc.subject.keyword | PTI,Piriformospora indica,effector,epigenetic,histone deacetylases, | en |
dc.relation.page | 137 | - |
dc.identifier.doi | 10.6342/NTU202203672 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2022-09-22 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
Appears in Collections: | 全球農業科技與基因體科學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-110-2.pdf Restricted Access | 6.37 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.