請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳亮嘉 | zh_TW |
| dc.contributor.advisor | Liang-Chia Chen | en |
| dc.contributor.author | 陳泓叡 | zh_TW |
| dc.contributor.author | Hong-Ruei Chen | en |
| dc.date.accessioned | 2024-02-27T16:24:07Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2022-03-15 | - |
| dc.date.issued | 2021 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] R. Asgari, "Copper Pillar and Micro Bump Inspection Requirements and Challenges," in Proceedings International Wafer-Level Packaging Conference, 2009, pp. 186-188.
[2] M. Marvin, "Microscopy apparatus," ed: Google Patents, 1961. [3] P. Davidovits and M. D. Egger, "Scanning laser microscope," Nature, vol. 223,no. 5208, pp. 831-831, 1969. [4] D. M. Maurice, "A scanning slit optical microscope," Investigative Ophthalmology & Visual Science, vol. 13, no. 12, pp. 1033-1037, 1974. [5] D. Burns, R. Hatangadi, and F. Spelman, "Scanning slit aperture confocal microscopy for three‐dimensional imaging," Scanning, vol. 12, no. 3, pp. 156-160, 1990. [6] M. Petráň, M. Hadravský, M. D. Egger, and R. Galambos, "Tandem-scanning reflected-light microscope," JOSA, vol. 58, no. 5, pp. 661-664, 1968. [7] G. Xiao, T. R. Corle, and G. Kino, "Real‐time confocal scanning optical microscope," Applied physics letters, vol. 53, no. 8, pp. 716-718, 1988. [8] T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, "High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks," Applied Optics, vol. 41, no. 22, pp. 4704-4708, 2002. [9] M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple- aperture confocal imaging systems with coherent illumination," Optics letters, vol. 22, no. 11, pp. 751-753, 1997. [10] C. M. Taylor and E. M. McCabe, "Programmable array microscope employing two ferroelectric liquid crystal spatial light modulators," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VIII, 2001, vol. 4261: International Society for Optics and Photonics, pp. 33-39. [11] G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, "Focus-wavelength encoded optical profilometer," Optics communications, vol. 49, no. 4, pp. 229-233, 1984. [12] M. Browne, O. Akinyemi, and A. Boyde, "Confocal surface profiling utilizing chromatic aberration," Scanning, vol. 14, no. 3, pp. 145-153, 1992. [13] B. S. Chun, K. Kim, and D. Gweon, "Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope," Review of Scientific instruments, vol. 80, no. 7, p. 073706, 2009. [14] P. C. Lin, P.-C. Sun, L. Zhu, and Y. Fainman, "Single-shot depth-section imaging through chromatic slit-scan confocal microscopy," Applied optics, vol.37, no. 28, pp. 6764-6770, 1998. [15] H. J. Tiziani and H.-M. Uhde, "Three-dimensional image sensing by chromatic confocal microscopy," Applied optics, vol. 33, no. 10, pp. 1838-1843, 1994. [16] S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, and Y. Fainman, "3D profilometry using a dynamically configurable confocal microscope," in Three- Dimensional Image Capture and Applications II, 1999, vol. 3640: International Society for Optics and Photonics, pp. 246-253. [17] S. Li and R. Liang, "DMD-based three-dimensional chromatic confocal microscopy," Applied optics, vol. 59, no. 14, pp. 4349-4356, 2020. [18] D. Luo et al., "Area scanning method for 3D surface profilometry based on an adaptive confocal microscope," Optics and Lasers in Engineering, vol. 124, p.105819, 2020. [19] Q. Cui and R. Liang, "Chromatic confocal microscopy using liquid crystal display panels," Applied optics, vol. 58, no. 8, pp. 2085-2090, 2019. [20] M. Hillenbrand et al., "Parallelized chromatic confocal sensor systems," in Optical Measurement Systems for Industrial Inspection VIII, 2013, vol. 8788: International Society for Optics and Photonics, p. 87880V. [21] T. Kim, S. H. Kim, D. Do, H. Yoo, and D. Gweon, "Chromatic confocal microscopy with a novel wavelength detection method using transmittance," Optics express, vol. 21, no. 5, pp. 6286-6294, 2013. [22] M.-J. Jiang and L.-C. Chen, "Novel quasi-full-field chromatic confocal surface microscopy using dual LCoS panels and a transmittance-based wavelength plate," in Imaging Systems and Applications, 2020: Optical Society of America, p. IF3E. 4. [23] J. W. Goodman, "Introduction to Fourier Optics, Roberts & Co," Publishers, Englewood, Colorado, 2005. [24] C. J. R. Sheppard, "MICROSCOPY | Overview," in Encyclopedia of Modern Optics, R. D. Guenther Ed. Oxford: Elsevier, 2005, pp. 61-69. [25] C. J. R. Sheppard, "Scanning Confocal Microscopy," in Encyclopedia of Optical Engineering: Dekker, 2003, pp. 2525-2544. [26] T. Wilson and C. Sheppard, Theory and practice of scanning optical microscopy. Academic Press London, 1984. [27] T. Wilson, "Resolution and optical sectioning in the confocal microscope," Journal of microscopy, vol. 244, no. 2, pp. 113-121, 2011. [28] T. Wilson, "The role of the pinhole in confocal imaging system," in Handbook of biological confocal microscopy: Springer, 1995, pp. 167-182. [29] T. Wilson and A. Carlini, "Size of the detector in confocal imaging systems," Optics letters, vol. 12, no. 4, pp. 227-229, 1987. [30] C. Chen et al., "Influence of optical aberrations on the peak extraction in confocal microscopy," Optics Communications, vol. 449, pp. 24-32, 2019. [31] T. Wilson and A. Carlini, "The effect of aberrations on the axial response of confocal imaging systems," Journal of Microscopy, vol. 154, no. 3, pp. 243-256, 1989. [32] C. Sheppard and X. Mao, "Confocal microscopes with slit apertures," Journal of Modern Optics, vol. 35, no. 7, pp. 1169-1185, 1988. [33] T. Wilson, S. Hewlett, and C. J. Sheppard, "Use of objective lenses with slit pupil functions in the imaging of line structures," Applied optics, vol. 29, no. 31, pp. 4705-4714, 1990. [34] A. K. Ruprecht, K. Koerner, T. F. Wiesendanger, H. J. Tiziani, and W. Osten, "Chromatic confocal detection for high-speed microtopography measurements," in Three-Dimensional Image Capture and Applications VI, 2004, vol. 5302: International Society for Optics and Photonics, pp. 53-60. [35] F. Bitte, G. Dussler, and T. Pfeifer, "3D micro-inspection goes DMD," Optics and lasers in engineering, vol. 36, no. 2, pp. 155-167, 2001. [36] M. Rahlves, B. Roth, and E. Reithmeier, "Confocal signal evaluation algorithms for surface metrology: uncertainty and numerical efficiency," Applied optics, vol. 56, no. 21, pp. 5920-5926, 2017. [37] J. Bai, X. Li, X. Wang, Q. Zhou, and K. Ni, "Chromatic confocal displacement sensor with optimized dispersion probe and modified centroid peak extraction algorithm," Sensors, vol. 19, no. 16, p. 3592, 2019. [38] R. A. Caruana, R. B. Searle, T. Heller, and S. I. Shupack, "Fast algorithm for the resolution of spectra," Analytical chemistry, vol. 58, no. 6, pp. 1162-1167, 1986. [39] A. Ruprecht, T. Wiesendanger, and H. Tiziani, "Chromatic confocal microscopy with a finite pinhole size," Optics letters, vol. 29, no. 18, pp. 2130-2132, 2004. [40] 阮廷阮, "使光學像差及表面性質精準最佳化之創新線型彩色共焦顯微術之發展," 機械工程學研究所, 國立臺灣大學, 2019 年, 2019. [41] P. J. De Groot, "The meaning and measure of vertical resolution in optical surface topography measurement," Applied Sciences, vol. 7, no. 1, p. 54, 2017. [42] C. L. Giusca, R. K. Leach, and F. Helery, "Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness," Measurement Science and Technology, vol. 23, no. 6, p. 065005, 2012. [43] "ISO 5436-1:2000 Geometrical Product Specifications (GPS) — Surface texture: Profile method; Measurement standards." [44] R. K. Leach, C. L. Giusca, and K. Naoi, "Development and characterisation of a new instrument for the traceable measurement of areal surface texture," Measurement Science and Technology, vol. 20, no. 12, p. 125102, 2009. [45] M. Ritter, T. Dziomba, A. Kranzmann, and L. Koenders, "A landmark-based 3D calibration strategy for SPM," Measurement Science and Technology, vol. 18, no. 2, p. 404, 2007. [46] R. Leach, Optical measurement of surface topography. Springer, 2011. [47] L.-C. Chen, T.-Y. Lin, Y.-W. Chang, and S.-T. Lin, "Chromatic confocal surface profilometry employing signal recovering methodology for simultaneously resolving lateral and axial cross talk problems," in Eighth International Symposium on Precision Engineering Measurement and Instrumentation, 2013, vol. 8759: International Society for Optics and Photonics, p. 87594I. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91988 | - |
| dc.description.abstract | 隨著半導體產業步入3D封裝甚至晶圓級封裝,製程中關鍵尺寸的檢測出現 前所未有的技術挑戰,目前主流的量測技術為雷射三角法等,但因其天生的遮蔽 效應,在量測密集排列的凸起結構或是高深寬比的結構具有相對劣勢,然而這些 微結構卻是如今先進封裝設計中常用之幾何特徵,使低遮蔽效應的量測技術成為 半導體三維量測必要元素。因此同軸架構且量測速度快的彩色共焦系統具有相當 大的發展潛力。
為滿足半導體製程線上高速、高解析度的量測需求,本研究以發展全域式彩 色共焦量測方法為主要目標。針對上述條件,本研究之關鍵技術主要可列為兩項, 首先,為滿足全域式的量測,所研發之光學量測系統需具遠心特性,以避免不同 軸向深度的量測範圍不一之常見問題,且保持量測視野內之光學波前的一致性。 二,為增加量測速度,採用線型照明搭配光學掃描振鏡,以達到量測範圍內快速 之全域性三維形貌的量測能力。其主要優勢在於,此光學量測架構不需透過系統 與樣品之間的相對運動,可完全避免平台移動時的震動影響且減少位移所造成的 體積誤差。此外,振鏡旋轉小角度之響應時間遠小於過去多點式彩色共焦系統所 用之空間濾波器,如數位微鏡裝置(DMD)、液晶面板(LCD),或液晶覆矽面板 (LCoS)等等其他方式,且所提出的線型照明具備多點式特性,其光的使用效率更 佳,因此可達更快速的量測。相較於其他彩色共焦多點式策略,本研究的架構可 避免常見光譜解析與量測速度互相限制的問題,使所研發的量測系統可達到更高 量測速度的同時,維持彩色共焦系統的量測精度水準。 本研究所實現之振鏡掃描式全域彩色共焦系統,經平面鏡與標準階高塊30次量測驗證,其深度量測範圍達到190 μm,量測偏差0.239 μm,量測標準差0.126 μm,且量測速度達250 lines/s。相較於單點型共焦系統,量測速率大幅提升,且 深度量測效能維持於次微米等級,使本系統具有相當大之未來發展性。 | zh_TW |
| dc.description.abstract | As the semiconductor industry enters 3D packaging and even wafer-level packaging, there are unprecedented technical challenges in detecting critical dimensions in the process. The current mainstream measurement technology is laser triangulation. However, its inherent shadowing effect is not suitable for measuring high densely arranged structures or structures with a high aspect ratio. These structures are geometric features commonly used in today's advanced package design, making measurement techniques with low shadowing effects essential for three-dimensional semiconductor measurement. Therefore, a chromatic confocal system with a coaxial structure and a fast measurement speed have considerable development potential.
In order to meet the high-speed, high-resolution measurement requirements of the semiconductor production line, this research aims to develop a full-field chromatic confocal system. Given the above conditions, the key technologies of this study can be listed as two points. First, the developed optical system must have telecentric characteristics to make the field of view the same in the whole depth measurement range to achieve full-field measurement. Second, in order to increase the measurement speed, line illumination is used with an optical scanning galvanometer to accomplish a fast, full-field three-dimensional surface profile measurement. The main advantage is that the optical measurement design does not need the relative movement between the system and the sample, which can avoid the impact of vibration when the platform moves and reduce the error caused by displacement. In addition, the response time of the galvanometer rotating at a slight angle is much shorter than the spatial filters used in the multi-point chromatic confocal systems, such as digital micro-mirror devices (DMD), liquid crystal panels (LCD), or liquid crystal on silicon panels (LCoS). The proposed line-type illumination has features of multi-point measurement and high light efficiency to achieve faster measurement. Compared with other multi-point chromatic confocal strategies, the proposed system can avoid the mutual trade-off between spectral resolution and measurement speed. The developed system can achieve higher measurement speed while maintaining the precision of the chromatic confocal system. Thirty measurement times of a flat mirror and the standard height step have verified the galvanometer-scan full-field chromatic confocal system of this research. The depth measurement range reaches 190 μm, the accuracy is 0.239 μm, the standard deviation is 0.126 μm, and the measurement speed can achieve 250 lines/s. Compared with the single-point confocal system, the measurement rate is significantly increased. The depth measurement performance is maintained at the sub-micron scale, which makes this system have considerable development potential. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-27T16:24:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-27T16:24:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
致謝..I 摘要..II Abstract..III 目錄..V 圖目錄..IX 表目錄..XVI 符號表..XVII 第 1 章 緒論.. 1 1.1 研究背景..1 1.2 研究動機與目的..3 1.3 研究創新性..3 1.4 論文架構..4 第 2 章 文獻回顧 ..7 2.1 引言..7 2.2 單色共焦顯微術..8 2.2.1 點掃描..8 2.2.2 線掃描..9 2.2.3 多點式掃描..10 2.3 彩色共焦顯微術..13 2.3.1 點型彩色共焦系統 ..13 2.3.2 線型彩色共焦系統 ..16 2.3.3 多點型彩色共焦系統..16 2.4 彩色共焦術波長與深度編碼..19 2.5 文獻分析與總結..21 第 3 章 系統原理與技術..25 3.1 光學繞射現象..25 3.1.1 概述..25 3.1.2 繞射積分[23]..25 3.1.3 點擴散函數(point spread function, PSF)..27 3.1.4 光學解析能力..29 3.2 單色共焦顯微術..30 3.2.1 掃描量測機制..30 3.2.2 量測原理..31 3.2.3 共焦顯微術之點擴散函數..32 3.2.4 光學表現..34 3.2.5 影響共焦顯微術的光學表現之參數..36 3.2.6 線型共焦顯微術..39 3.3 彩色共焦技術之原理 ..41 3.3.1 色散現象..41 3.3.2 量測原理..42 3.4 彩色共焦感測原理..43 3.5 光束掃描原理 ..45 3.6 峰值偵測與訊號處理 ..46 3.6.1 峰值偵測演算法..46 3.6.2 訊號處理..49 3.7 系統原理與技術總結 ..51 第 4 章 系統架構與設計..53 4.1 系統架構..53 4.2 彩色共焦掃描模組..54 4.2.1 色散物鏡..54 4.2.2 光學掃描振鏡..62 4.2.3 F-θ 掃描鏡..62 4.3 照明模組..69 4.3.1 光源與光纖導管..70 4.3.2 圓柱透鏡..72 4.3.3 光學狹縫..74 4.3.4 照明模組之設計與模擬..74 4.4 感測模組..77 4.4.1 攝譜儀..77 4.4.2 光學狹縫..78 4.4.3 凹面鏡..78 4.4.4 光柵 ..79 4.4.5 影像感測器 ..80 4.4.6 感測模組之光學表現..81 4.5 系統整合..82 4.5.1 硬體控制..82 4.5.2 控制軟體及 GUI ..83 4.5.3 光機探頭..84 4.6 演算法及系統校正 ..86 4.6.1 峰值偵測..86 4.6.2 深度校正..86 第 5 章 系統性能與量測結果分析..89 5.1 模組性能驗證 ..89 5.1.1 空間光強均勻度..89 5.1.2 振鏡表現分析..90 5.2 峰值偵測演算法..94 5.2.1 方法及參數評估..94 5.2.2 峰值偵測演算法小結..99 5.3 系統量測性能 ..99 5.3.1 深度響應曲線..99 5.3.2 深度量測範圍..101 5.4 系統重複度..108 5.4.1 驗證流程..108 5.4.2 驗證數據..110 5.4.3 量測重覆度驗證小結..115 5.5 樣品量測 ..115 5.5.1 平面鏡 ..115 5.5.2 標準階高塊規 ..121 5.5.3 微球柵陣列(micro-ball grid array)..122 5.5.4 晶圓錫膏槽..124 5.6 系統優化之探討 ..126 第 6 章 結論與未來展望 .. 133 6.1 結論..133 6.2 未來展望 ..135 參考文獻..137 圖目錄 圖 1-1 微凸塊高度與共面度[1] ..2 圖 2-1 共焦顯微系統發展魚骨圖..8 圖 2-2 單點共焦顯微鏡 ..8 圖 2-3 線型光束掃描共焦顯微鏡[5]..10 圖 2-4 微透鏡圓盤與 Nipkow 圓盤的掃描式共焦顯微鏡[8]..11 圖 2-5 使用空間光調制器(DMD)掃描之架構[9] ..12 圖 2-6 使用液晶空間光調制器之共焦顯微系統[10] ..13 圖 2-7 以波長編碼的多焦點光學輪廓儀[11] ..14 圖 2-8 單點彩色共焦量測系統[12]..14 圖 2-9 光束掃描式彩色共焦系統[13] ..15 圖 2-10 使用繞射透鏡之線型彩色共焦量測系統[14]..16 圖 2-11 針孔陣列彩色共焦量測架構[15] ..17 圖 2-12 基於 DMD 之面型彩色共焦量測系統[17] ..18 圖 2-13 基於液晶面板之彩色共焦量測系統[19] ..18 圖 2-14 (a)針孔陣列 (b)感測器接收到的光譜訊號[19]..19 圖 2-15 (a)針孔陣列光譜訊號 (b)感光元件旋轉擺放後之光譜訊號[20] ..20 圖 2-16 穿透式感測之單點彩色共焦系統[21]..20 圖 3-1 光波繞射空間分布 ..26 圖 3-2 正規化之焦面上徑向光強分布..28 圖 3-3 正規化之軸向光強分布..28 圖 3-4 正規化之點擴散函數空間光強分布..29 圖 3-5 Rayleigh criterion 光學解析度示意圖 ..30 圖 3-6 單色共焦顯微鏡架構簡圖 ..32 圖 3-7 共焦顯微術量測原理示意圖..32 圖 3-8 正規化之共焦顯微術點擴散函數..34 圖 3-9 Airy disk 與共焦顯微術 PSF 的徑向光強分布圖..35 圖 3-10 Airy disk 與共焦顯微術 PSF 的軸向光強分布圖..35 圖 3-11 不同針孔大小與深度響應曲線之FWHM關係圖[28]..37 圖 3-12 點物與面物的光強-深度響應曲線..37 圖 3-13 不同數值孔徑與深度響應曲線關係圖[25]..38 圖 3-14 像差對深度響應曲線之影響(a)球面像差(b)慧差(c)像散[30]..39 圖 3-15 垂直與平行狹縫之徑向點擴散函數分布..40 圖 3-16 線型共焦之深度響應曲線..41 圖 3-17 軸向色散示意圖..42 圖 3-18 彩色共焦顯微鏡架構簡圖..43 圖 3-19 閃耀光柵繞射示意圖..45 圖 3-20 波長深度轉換原理..45 圖 3-21 光束掃描示意圖..46 圖 3-22 不同閾值設置對曲線擬合影響 (a)原始資料 (b)閾值 0.5 (c)閾值 0.3 ..50 圖 3-23 訊號濾波前後比較示意圖..51 圖 3-24 線型光束掃描式彩色共焦系統設計示意圖..52 圖 4-1 振鏡掃描式全域彩色共焦顯微系統架構..54 圖 4-2 (a)非平場非遠心光學架構示意圖 (b)平場非遠心光學架構示意圖..56 圖 4-3 物端遠心光學架構示意圖..56 圖 4-4 (a)像端非遠心光學架構示意圖 (b)像端遠心光學架構示意圖..57 圖 4-5 色散物鏡之 Zemax 設計圖..58 圖 4-6 色散物鏡實體圖..58 圖 4-7 色散物鏡之軸向色散曲線..58 圖 4-8 (a)波長 0.45 μm 之聚焦點圖 (b)波長 0.45 μm 之 MTF ..59 圖 4-9 (a)波長 0.50 μm 之聚焦點圖 (b)波長 0.50 μm 之 MTF ..59 圖 4-10 (a)波長 0.55 μm 之聚焦點圖 (b)波長 0.55 μm 之 MTF ..59 圖 4-11 (a)波長 0.60 μm 之聚焦點圖 (b)波長 0.60 μm 之 MTF ..60 圖 4-12 (a)波長 0.65 μm 之聚焦點圖 (b)波長 0.65 μm 之 MTF ..60 圖 4-13 光學掃描振鏡,型號 ScannerMAX Saturn 5B ..62 圖 4-14 (a)平場掃描鏡光路簡圖 (b)F-θ 掃描鏡光路簡圖..63 圖 4-15 (a)平場掃描振鏡連接遠心物鏡簡圖 (b)遠心掃描振鏡連接遠心物鏡簡圖..64 圖 4-16 遠心消色差 F-θ 掃描鏡,型號 Thorlabs LSM03-VIS ..65 圖 4-17 LSM03-VIS之光學掃描角度與聚焦光點大小關係圖..66 圖 4-18 LSM03-VIS之軸向色散曲線..67 圖 4-19 LSM03-VIS與色散物鏡之光路模擬圖..67 圖 4-20 LSM03-VIS與色散物鏡相接後之軸向色散曲線..67 圖 4-21 LSM03-VIS 之 F-Theta 畸變模擬..68 圖 4-22 LSM03-VIS之場曲模擬..68 圖 4-23 (a)氙燈架構圖 (b)氙燈燈泡..70 圖 4-24 氙燈與白光 LED 光譜分布圖 ..71 圖 4-25 (a)氙燈燈箱,型號 HAYASHI LA-410UV (b) 白光LED燈箱,型號REVOX SLG-150V ..71 圖 4-26 線型光纖導管..72 圖 4-27 圓柱透鏡聚焦示意圖..72 圖 4-28 消色差圓柱透鏡 (a)型號 Thorlabs ACY254-050-A (b)型號 Thorlabs ACY254-075-A ..73 圖 4-29 Thorlabs ACY254-050-A 及 ACY254-075-A 之穿透率與波長關係圖..73 圖 4-30 ACY254-050-A之軸向色散曲線..73 圖 4-31 可調式機械光學狹縫,型號 standa 10AOS10-174 圖 4-32 照明模組聚焦段之 Zemax 模擬圖.75 圖 4-33 照明狹縫上正規化光強分布.75 圖 4-34 照明模組 Zemax 模擬圖..76 圖 4-35 (a)中間平面照明模擬圖 (b)中間平面照明沿線長方向之正規化光強分布 ..76 圖 4-36 Czerny-Turner 光譜儀架構示意圖 ..77 圖 4-37 玻璃鍍膜光學狹縫..78 圖 4-38 凹面鏡..78 圖 4-39 閃耀光柵..79 圖 4-40 閃耀光柵繞射效率與波長關係圖,圖片取自 Edmund 官方網站..79 圖 4-41 影像感測器,型號 Adimec Q-12A180 ..80 圖 4-42 相機之光電轉換效率與波長關係圖,圖片取自相機規格書..81 圖 4-43 感測模組模擬圖81 圖 4-44 感測模組光路配置圖..82 圖 4-45 XY2-100 Protocol 訊號示意圖..82 圖 4-46 系統觸發訊號架構圖..83 圖 4-47 圖形使用者介面..84 圖 4-48 摺疊立體光路設計圖.85 圖 4-49 光機探頭實體圖..85 圖 4-50 光譜影像圖..86 圖 4-51 系統深度校正流程圖..88 圖 5-1 照明線段於不同掃描位置之光強分布..89 圖 5-2 振鏡掃描速率..91 圖 5-3 振鏡之振動穩定度..91 圖 5-4 振鏡穩定度實驗架構示意圖..92 圖 5-5 振鏡定位穩定度驗證與分析流程圖..93 圖 5-6 相機拍攝之影像 (a) 0°(b) 0.14°(c) 0.22°(d) 0.32°(e) 0.45°..93 圖 5-7 最大值與高斯擬合之峰值位置比較..94 圖 5-8 (a)不同量測點之演算法穩定度結果示意圖 (b)峰值位置偏移度之直方圖 ..95 圖 5-9 應用中值濾波器前後之深度響應曲線比較圖..96 圖 5-10 應用中值濾波器前後之平均標準差比較圖..96 圖 5-11 應用不同演算法之平均標準差..97 圖 5-12 不同閾值之平均標準差比較圖..98 圖 5-13 不同閾值之標準差離散程度比較圖..98 圖 5-14 不同狹縫寬度之光譜圖 (a)10 μm (a)20 μm (a)30 μm ..100 圖 5-15 不同深度之相對光強響應..101 圖 5-16 不同掃描位置之深度校正曲線..102 圖 5-17 量測線段在不同深度之峰值位置..103 圖 5-18 深度校正曲線於各深度之間距..103 圖 5-19 不同深度之場曲現象 (a)Reference plane, 0 μm (b)320 μm..104 圖 5-20 不同深度之場曲現象 (a)50 μm (b)70 μm (c)90 μm (d)110 μm (e)130 μm (f)150 μm ..105 圖 5-21 沿線長方向之場曲..106 圖 5-22 掃描方向之場曲..106 圖 5-23 標準階高塊實體圖與公稱高度..108 圖 5-24 面積階高計算流程圖..109 圖 5-25 ISO 5436-1 標準高度分析法 ..109 圖 5-26 100.9 μm 與 50.6 μm 階高塊之重建三維影像..110 圖 5-27 100.9 μm 與 50.6 μm 量測剖面原始數據..110 圖 5-28 100.9 μm(左)與 50.6 μm(右)之高度分析擬合數據示意圖 ..110 圖 5-29 10.11 μm 與 5.09 μm 階高塊之重建三維影像..112 圖 5-30 10.11 μm 與 5.09 μm 量測剖面原始數據..112 圖 5-31 10 μm(左)與 5 μm(右)之高度分析擬合數據示意圖 ..112 圖 5-32 1.2 μm 階高塊之重建三維影像..114 圖 5-33 1.2 μm 量測剖面原始數據..114 圖 5-34 1.2 μm 高度分析之擬合數據示意圖..114 圖 5-35 10%深度位置之三維影像..116 圖 5-36 10%深度位置之量測誤差分布..116 圖 5-37 30%深度位置之三維影像..117 圖 5-38 30%深度位置之量測誤差分布..117 圖 5-39 50%深度位置之三維影像..118 圖 5-40 50%深度位置之量測誤差分布..118 圖 5-41 70%深度位置之三維影像..119 圖 5-42 70%深度位置之量測誤差分布..119 圖 5-43 90%深度位置之三維影像..120 圖 5-44 90%深度位置之量測誤差分布..120 圖 5-45 商用雷射共焦儀之規格書..122 圖 5-46 微球陣列實體影像圖..123 圖 5-47 微球柵陣列之重建三維影像..123 圖 5-48 微球陣列橫切圖..124 圖 5-49 Keyence 量測之微球柵陣列 .. 124 圖 5-50 晶圓錫膏槽實體與顯微影像..125 圖 5-51 晶圓錫膏槽之重建三維影像..125 圖 5-52 錫膏槽橫切圖..125 圖 5-53 Keyence 量測之晶圓錫膏槽 .. 126 圖 5-54 Type CG [44] 與金字塔結構校正塊[45] ..126 圖 5-55 晶圓錫膏槽重心 (a)Keyence影像 (b)系統影像...127 圖 5-56 校正點命名示意圖..127 圖 5-57 橫向干擾示意圖..130 圖 5-58 (a)Keyence 量測影像 (b)受橫向干擾影響之微凸塊三維形貌..130 圖 5-59 橫向干擾之光譜訊號..130 圖 5-60 縮小角度之光譜儀架構...131 圖 5-61 更改架構前(左)後(右)之重建形貌比較圖..131 圖 5-62 反摺機演算法示意圖[47]..132 圖 6-1 光學不變量示意圖..136 表目錄 表 1-1 常用三維量測技術比較..2 表 2-1 共焦量測系統種類之優缺..23 表 4-1 色散物鏡之光學規格..61 表 4-2 Thorlabs LSM03-VIS 之重要光學規格..69 表 5-1 振鏡定位穩定度..93 表 5-2 不同閾值與濾波器之判定係數..99 表 5-3 不同狹縫寬度之系統表現..100 表 5-4 不同深度之最大場曲..107 表 5-5 100.9 μm 階高塊重複性量測數據..111 表 5-6 50.6 μm 階高塊重複性量測數據..111 表 5-7 10.11 μm 階高塊重複性量測數據..113 表 5-8 5.09 μm 階高塊重複性量測數據..113 表 5-9 1.2 μm 階高塊重複性量測數據..115 表 5-10 不同深度之平面鏡量測結果..121 表 5-11 不同高度階高塊之量測結果..122 表 5-12 x 方向之誤差 .. 128 表 5-13 y方向之誤差..128 表 5-14 校正後x方向之誤差..128 表 5-15 校正後y方向之誤差..129 表 6-1 掃描裝置成本比較..133 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自動化光學檢測 | zh_TW |
| dc.subject | 彩色共焦顯微術 | zh_TW |
| dc.subject | 振鏡掃描式 | zh_TW |
| dc.subject | 表面形貌量測 | zh_TW |
| dc.subject | galvanometer-scan | en |
| dc.subject | automated optical inspection | en |
| dc.subject | chromatic confocal microscopy | en |
| dc.subject | surface profilometry | en |
| dc.title | 振鏡掃描式全域彩色共焦表面形貌量測系統之研發 | zh_TW |
| dc.title | Research on galvanometer-scan full-field surface profilometry using chromatic confocal principle | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 章明;葉勝利;蕭金廷;何昭慶 | zh_TW |
| dc.contributor.oralexamcommittee | Ming Chang;Sheng-Li Yeh;Chin-Ting Hsiao;Chao-Ching Ho | en |
| dc.subject.keyword | 自動化光學檢測,彩色共焦顯微術,振鏡掃描式,表面形貌量測, | zh_TW |
| dc.subject.keyword | automated optical inspection,chromatic confocal microscopy,galvanometer-scan,surface profilometry, | en |
| dc.relation.page | 141 | - |
| dc.identifier.doi | 10.6342/NTU202200244 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-02-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2026-08-17 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 9.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
