請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91984完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊嘉揚 | zh_TW |
| dc.contributor.advisor | Jia-Yiang Juang | en |
| dc.contributor.author | 吳承洋 | zh_TW |
| dc.contributor.author | Cheng-Yang Wu | en |
| dc.date.accessioned | 2024-02-27T16:22:49Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2022-09-07 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] K. Ellmer, "Past achievements and future challenges in the development of optically transparent electrodes," Nature Photonics, Review Article vol. 6, p. 809, 11/30/online 2012.
[2] K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide : Basics and Applications in Thin Film Solar Cells (Springer series in materials science,, no. 104). Berlin: Springer, 2008, pp. xiii, 443 p. [3] E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, "Transparent conducting oxides for photovoltaics," MRS Bulletin, vol. 32, no. 3, pp. 242-247, 2007/03/01 2007. [4] S. I. Kim, S. H. Cho, S. R. Choi, M. C. Oh, J. H. Jang, and P. K. Song, "Crystallization and electrical properties of ITO:Ce thin films for flat panel display applications," Thin Solid Films, vol. 517, no. 14, pp. 4061-4064, 2009/05/29/ 2009. [5] H. Kim et al., "Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices," Applied Physics Letters, vol. 76, no. 3, pp. 259-261, 2000. [6] C.-S. Tian et al., "Transparent conductive Mg and Ga co-doped ZnO thin films for solar cells grown by magnetron sputtering: H2 induced changes," Solar Energy Materials and Solar Cells, vol. 125, pp. 59-65, 2014/06/01/ 2014. [7] M. Berginski et al., "The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells," Journal of Applied Physics, vol. 101, no. 7, p. 074903, 2007. [8] Y. Wang, X. Zhang, L. Bai, Q. Huang, C. Wei, and Y. Zhao, "Effective light trapping in thin film silicon solar cells from textured Al doped ZnO substrates with broad surface feature distributions," Applied Physics Letters, vol. 100, no. 26, p. 263508, 2012. [9] J. Y. Juang, T. S. Chou, H. T. Lin, Y. F. Chou, and C. C. Weng, "Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet," (in English), Applied Surface Science, vol. 314, pp. 1074-1081, Sep 30 2014. [10] W. K. Chen, J. C. Huang, Y. C. Chen, M. T. Lee, and J. Y. Juang, "Deposition of highly transparent and conductive Ga-doped zinc oxide films on tilted substrates by atmospheric pressure plasma jet," (in English), Journal of Alloys and Compounds, vol. 802, pp. 458-466, Sep 25 2019. [11] Y. C. Chen, P. C. Hsu, L. Xu, and J. Y. Juang, "Simultaneous enhancement of electrical conductivity, uniformity, and near-infrared transmittance via laser annealing on ZnO:Ga films deposited by atmospheric pressure plasma jet," (in English), Journal of Alloys and Compounds, vol. 857, p. 157697, Mar 15 2021. [12] Y. Y. Chen and J. Y. Juang, "Enhancement of Ga-doped zinc oxide film properties and deposition rate by multiple deposition using atmosphere pressure plasma jet," (in English), Journal of Alloys and Compounds, vol. 694, pp. 452-458, Feb 15 2017. [13] J. Y. Juang et al., "Effect of ambient air flow on resistivity uniformity of transparent Ga-doped ZnO film deposited by atmospheric pressure plasma jet," (in English), Journal of Alloys and Compounds, vol. 766, pp. 868-875, Oct 25 2018. [14] O. Kluth et al., "Comparative material study on RF and DC magnetron sputtered ZnO:Al films," Thin Solid Films, vol. 502, no. 1, pp. 311-316, 2006/04/28/ 2006. [15] B.-Y. Oh et al., "Transparent conductive Al-doped ZnO films for liquid crystal displays," Journal of Applied Physics, vol. 99, no. 12, pp. 124505-124505, 2006. [16] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology, vol. 20, no. 4, pp. S35-S44, 2005/03/16 2005. [17] A. Mallick and D. Basak, "Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs," Progress in Materials Science, vol. 96, pp. 86-110, 2018/07/01/ 2018. [18] J.-H. Bae and H.-K. Kim, "Characteristics of Al doped ZnO co-sputtered InZnO anode films prepared by direct current magnetron sputtering for organic light-emitting diodes," Thin Solid Films, vol. 516, no. 21, pp. 7866-7870, 2008/09/01/ 2008. [19] T. Tohsophon, N. Wattanasupinyo, B. Silskulsuk, and N. Sirikulrat, "Effect of aluminum and indium co-doping on zinc oxide films prepared by dc magnetron sputtering," Thin Solid Films, vol. 520, no. 2, pp. 726-729, 2011/11/01/ 2011. [20] V. K. Jayaraman, A. Maldonado-Álvarez, A. E. Jimenez-Gonzalez, and M. d. l. L. Olvera-Amador, "Influence of precursor ball milling in enhancing the structural, morphological, optical and electrical properties of AIZO thin films," Materials Letters, vol. 181, pp. 52-55, 2016/10/15/ 2016. [21] V. K. Jayaraman, A. M. Álvarez, Y. M. Kuwabara, Y. Koudriavstev, and M. d. l. l. Olvera Amador, "Effect of co-doping concentration on structural, morphological, optical and electrical properties of aluminium and indium co-doped ZnO thin films deposited by ultrasonic spray pyrolysis," Materials Science in Semiconductor Processing, vol. 47, pp. 32-36, 2016/06/01/ 2016. [22] C. A. Gupta, S. Mangal, and U. P. Singh, "Impact of rapid thermal annealing on structural, optical and electrical properties of DC sputtered doped and co-doped ZnO thin film," Applied Surface Science, vol. 288, pp. 411-415, 2014/01/01/ 2014. [23] D.-W. Kang, S.-J. Kim, T.-H. Moon, H.-M. Lee, and M.-K. Han, "Effect of Ga doping on transparent and conductive Al-doped ZnO films prepared using magnetron cosputtering," Japanese Journal of Applied Physics, vol. 49, no. 12, p. 125801, 2010/12/20 2010. [24] S. K. Sahoo, C. A. Gupta, and U. P. Singh, "Impact of Al and Ga co-doping with different proportion in ZnO thin film by DC magnetron sputtering," Journal of Materials Science: Materials in Electronics, vol. 27, no. 7, pp. 7161-7166, 2016/07/01 2016. [25] K. Zhu, Y. Yang, and W. Song, "Effects of substrate temperature on the structural, morphological, electrical and optical properties of Al and Ga co-doped ZnO thin films grown by DC magnetron sputtering," Materials Letters, vol. 145, pp. 279-282, 2015/04/15/ 2015. [26] O. Makuku, F. Mbaiwa, and T. S. Sathiaraj, "Structural, optical and electrical properties of low temperature grown undoped and (Al, Ga) co-doped ZnO thin films by spray pyrolysis," Ceramics International, vol. 42, no. 13, pp. 14581-14586, 2016/10/01/ 2016. [27] X. Ji et al., "Fabrication of high-performance F and Al co-doped ZnO transparent conductive films for use in perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 190, pp. 6-11, 2019/02/01/ 2019. [28] S. D. Ponja, S. Sathasivam, I. P. Parkin, and C. J. Carmalt, "Transparent conductive aluminium and fluorine co-doped zinc oxide films via aerosol assisted chemical vapour deposition," RSC Advances, 10.1039/C4RA09997D vol. 4, no. 91, pp. 49723-49728, 2014. [29] J. Müller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Solar Energy, vol. 77, no. 6, pp. 917-930, 2004/12/01/ 2004. [30] M. Zeman, R. A. C. M. M. v. Swaaij, J. W. Metselaar, and R. E. I. Schropp, "Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness," Journal of Applied Physics, vol. 88, no. 11, pp. 6436-6443, 2000. [31] A. Hongsingthong, T. Krajangsang, A. Limmanee, K. Sriprapha, J. Sritharathikhun, and M. Konagai, "Development of textured ZnO-coated low-cost glass substrate with very high haze ratio for silicon-based thin film solar cells," Thin Solid Films, vol. 537, pp. 291-295, 2013/06/30/ 2013. [32] J. Cai et al., "A novel hierarchical ZnO-nanosheet-nanorod-structured film for quantum-dot-sensitized solar cells," Electrochimica Acta, vol. 274, pp. 326-333, 2018/06/01/ 2018. [33] H. Zhu, J. Hüpkes, E. Bunte, J. Owen, and S. M. Huang, "Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells," Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 964-968, 2011/03/01/ 2011. [34] D. Y. Kim et al., "Effect of substrate morphology slope distributions on light scattering, nc-Si:H Film Growth, and solar cell performance," ACS Applied Materials & Interfaces, vol. 6, no. 24, pp. 22061-22068, 2014/12/24 2014. [35] J.-M. Liu, X.-L. Chen, J. Fang, Y. Zhao, and X.-D. Zhang, "High-haze and wide-spectrum hydrogenated MGZO TCO films on micro-textured glass substrates for thin-film solar cells," Solar Energy Materials and Solar Cells, vol. 138, pp. 41-50, 2015. [36] Q. Rong et al., "Light manipulating electrode based on high optical haze aluminum-doped zinc oxide for highly efficient indium-tin-oxide free organic solar cells with over 13% efficiency," Journal of Materials Chemistry C, 10.1039/C9TC02189B vol. 7, no. 28, pp. 8515-8521, 2019. [37] Y. Wang et al., "Management of light trapping capability of AZO film for Si thin film solar cells-via tailoring surface texture," Solar Energy Materials and Solar Cells, vol. 179, pp. 401-408, 2018/06/01/ 2018. [38] Y. Wang et al., "Room temperature fabrication of highly textured hydrogen and tungsten co-doped ZnO film for solar cell applications," Solar Energy Materials and Solar Cells, vol. 121, pp. 49-52, 2014/02/01/ 2014. [39] X. Yan, W. Li, A. G. Aberle, and S. Venkataraj, "Investigation of the thickness effect on material and surface texturing properties of sputtered ZnO:Al films for thin-film Si solar cell applications," Vacuum, vol. 123, pp. 151-159, 2016. [40] G. Giusti, V. Consonni, E. Puyoo, and D. Bellet, "High performance ZnO-SnO2:F nanocomposite transparent electrodes for energy applications," ACS Applied Materials & Interfaces, vol. 6, no. 16, pp. 14096-107, Aug 27 2014. [41] J. Han et al., "Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze," Journal of Materials Chemistry A, vol. 3, no. 10, pp. 5375-5384, 2015. [42] S.-T. Zhang et al., "Tuning the properties of F:SnO2 (FTO) nanocomposites with S:TiO2 nanoparticles – promising hazy transparent electrodes for photovoltaics applications," Journal of Materials Chemistry C, vol. 5, no. 1, pp. 91-102, 2017. [43] K.-M. Chang et al., "Enhancement of the light-scattering ability of Ga-doped ZnO thin films using SiOx nano-films prepared by atmospheric pressure plasma deposition system," Thin Solid Films, vol. 548, pp. 460-464, 2013. [44] K. M. Chang et al., "Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells," Applied Surface Science, vol. 276, pp. 756-760, 2013. [45] Q. Gao et al., "Tailoring of textured transparent conductive SnO2:F thin films," Journal of Alloys and Compounds, vol. 574, pp. 427-431, 2013. [46] Y. Ren, G. Zhao, and Y. Chen, "Fabrication of textured SnO2:F thin films by spray pyrolysis," Applied Surface Science, vol. 258, no. 2, pp. 914-918, 2011/11/01/ 2011. [47] L. K. Wang, J. J. Chen, J. Y. Yu, H. L. Zhao, and J. K. Yang, "Highly textured spray-deposited SnO2:F films with high haze for solar cells," Vacuum, vol. 169, 2019. [48] V. Gokulakrishnan, S. Parthiban, K. Jeganathan, and K. Ramamurthi, "Investigation on the effect of Zr doping in ZnO thin films by spray pyrolysis," Applied Surface Science, vol. 257, no. 21, pp. 9068-9072, 2011/08/15/ 2011. [49] S. B. Qadri, H. Kim, J. S. Horwitz, and D. B. Chrisey, "Transparent conducting films of ZnO–ZrO2: Structure and properties," Journal of Applied Physics, vol. 88, no. 11, pp. 6564-6566, 2000. [50] Q. Shi et al., "Growth of high-quality Ga–F codoped ZnO thin films by mid-frequency sputtering," Ceramics International, vol. 40, no. 1, Part A, pp. 211-216, 2014/01/01/ 2014. [51] D. B. Potter, M. J. Powell, I. P. Parkin, and C. J. Carmalt, "Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited via aerosol assisted CVD," Journal of Materials Chemistry C, 10.1039/C7TC04003B vol. 6, no. 3, pp. 588-597, 2018. [52] Y.-T. Li, D.-T. Chen, C.-F. Han, and J.-F. Lin, "Effect of the addition of zirconium on the electrical, optical, and mechanical properties and microstructure of ITO thin films," Vacuum, vol. 183, p. 109844, 2021/01/01/ 2021. [53] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, no. 9, pp. 4086-4089, 1976. [54] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, no. 4, p. 041301, 2005. [55] V. Miloslavskii and P. Pogrebniak, "The Burstein‐Moss effect in polycrystalline ZnO films," Physica Status Solidi (B), vol. 51, no. 2, pp. K99-K102, 1972. [56] K. Häufle and J. Block, "Über die sauerstoffdruckabhängigkeit der elektrischen leitfähigkeit einiger mischoxyde," Zeitschrift für Physikalische Chemie, vol. 196, no. 1, pp. 438-446, 1950. [57] A. Babar, P. Deshamukh, R. Deokate, D. Haranath, C. Bhosale, and K. Rajpure, "Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis," Journal of Physics D: Applied Physics, vol. 41, no. 13, p. 135404, 2008. [58] A. Bikowski and K. Ellmer, "A comparative study of electronic and structural properties of polycrystalline and epitaxial magnetron-sputtered ZnO: Al and Zn1-xMgxO: Al Films—Origin of the grain barrier traps," Journal of Applied Physics, vol. 114, no. 6, p. 063709, 2013. [59] J. Y. Seto, "The electrical properties of polycrystalline silicon films," Journal of Applied Physics, vol. 46, no. 12, pp. 5247-5254, 1975. [60] K. Ellmer, "Resistivity of polycrystalline zinc oxide films: current status and physical limit," Journal of Physics D: Applied Physics, vol. 34, no. 21, p. 3097, 2001. [61] 莊達人, VLSI 製造技術 (五版). 台北: 高立出版社, 2004. [62] F. C. Matacotta and G. Ottaviani, Science and Technology of Thin Films. WORLD SCIENTIFIC, 1995. [63] N. Bouhssira et al., "Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation," Applied Surface Science, vol. 252, no. 15, pp. 5594-5597, 2006. [64] D. Agarwal et al., "Synthesis and characterization of ZnO thin film grown by electron beam evaporation," Journal of Applied Physics, vol. 99, no. 12, p. 123105, 2006. [65] 張勁燕, 半導體製程設備. 五南圖書出版, 2005. [66] AdNaNoTek Corporation. "UHV Magnetron Sputtering System (MDS)." https://www.adnano-tek.com/magnetron-sputtering-deposition-msd.html (accessed. [67] Y. Lu, H. Ni, Z. Mai, and Z. Ren, "The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition," Journal of Applied Physics, vol. 88, no. 1, pp. 498-502, 2000. [68] V. Craciun, J. Elders, a. J. Gardeniers, and I. W. Boyd, "Characteristics of high quality ZnO thin films deposited by pulsed laser deposition," Applied Physics Letters, vol. 65, no. 23, pp. 2963-2965, 1994. [69] A. De Bonis and R. Teghil, "Ultra-short pulsed laser deposition of oxides, borides and carbides of transition elements," Coatings, vol. 10, no. 5, p. 501, 2020. [70] AdNaNoTek Corporation. "Molecular Beam Epitaxy in action." https://www.adnano-tek.com/molecular-beam-epitaxy--laser-mbe.html (accessed. [71] T. P. Rao, M. S. Kumar, and N. S. Hussain, "Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis," Journal of Alloys and Compounds, vol. 541, pp. 495-504, 2012. [72] L. Filipovic, "Topography Simulation of Novel Processing Techniques." [73] N. Shakti and P. Gupta, "Structural and optical properties of sol-gel prepared ZnO thin film," Applied Physics Research, vol. 2, no. 1, p. 19, 2010. [74] S. Ilican, Y. Caglar, and M. Caglar, "Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method," Journal of Optoelectronics and Advanced Materials, vol. 10, no. 10, pp. 2578-2583, 2008. [75] S. Kwon et al., "Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures," Semiconductor Science and Technology, vol. 24, no. 3, p. 035015, 2009/02/16 2009. [76] S. Lim, S. Kwon, and H. Kim, "ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor," Thin Solid Films, vol. 516, no. 7, pp. 1523-1528, 2008. [77] CTECHNANO. "What is ALD (Atomic Layer Deposition)." https://ctechnano.com/coating-technologies/what-is-atomic-layer-deposition-ald/ (accessed. [78] J. H. Noh, H. K. Baik, I. Noh, J.-C. Park, and I.-S. Lee, "Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application," Surface and Coatings Technology, vol. 201, no. 9-11, pp. 5097-5101, 2007. [79] H.-H. Chien et al., "Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth," Electrochimica Acta, vol. 260, pp. 391-399, 2018. [80] H. Yoshiki, K. Taniguchi, and Y. Horiike, "Localized removal of a photoresist by atmospheric pressure micro-plasma jet using RF corona discharge," Japanese Journal of Applied Physics, vol. 41, no. 9R, p. 5797, 2002. [81] J. F. Kolb et al., "Cold atmospheric pressure air plasma jet for medical applications," Applied Physics Letters, vol. 92, no. 24, p. 241501, 2008. [82] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006. [83] J. Gonzalez-Aguilar, C. P. Sanjurjo, A. Rodríguez-Yunta, and M. G. Calderón, "A theoretical study of a cutting air plasma torch," IEEE Transactions on Plasma Science, vol. 27, no. 1, pp. 264-271, 1999. [84] M. Cao, F. Gitzhofer, D. Gravelle, R. Henne, and M. Boulos, "A torch nozzle design to improve plasma spraying techniques," Plasma Sources Science and Technology, vol. 6, no. 1, p. 39, 1997. [85] S. Rubio, M. Quintero, A. Rodero, and R. Alvarez, "Removal of volatile organic compounds by a high pressure microwave plasma torch," Acta Physica Slovaca, vol. 54, no. 2, pp. 125-133, 2004. [86] 周東陞, "噴射式大氣電漿鍍製鎵摻雜氧化鋅薄膜之性質研究及均勻度改善," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2014. [87] 陳文凱, "噴射式大氣電漿系統沉積鎵摻雜氧化鋅薄膜之傾斜角及軌跡效應研究與雷射導引加熱系統之架設測試," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2018. [88] 張家豪, 電漿源原理與應用之介紹. 物理雙月刊, 廿八卷二期, 頁446-448, 2006年4月 [89] J.-I. Ida, T. Matsuyama, and H. Yamamoto, "Surface corona discharge-induced plasma chemical process-chemical vapor deposition (SPCP-CVD) as a novel method for surface modification of ceramic membranes," Advanced Powder Technology, vol. 11, no. 3, pp. 343-351, 2000. [90] O. Blejan, P. V. Notingher, L. M. Dumitran, M. Younes, A. Samuila, and L. Dascalescu, "Experimental study of the corona discharge in a modified coaxial wire-cylinder electrostatic precipitator," IEEE Transactions on Industry Applications, vol. 46, no. 1, pp. 3-8, 2009. [91] J. H. Davidson and P. J. McKinney, "Chemical vapor deposition in the corona discharge of electrostatic air cleaners," Aerosol Science and Technology, vol. 29, no. 2, pp. 102-110, 1998. [92] E. Marotta, A. Callea, M. Rea, and C. Paradisi, "DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing," Environmental Science & Technology, vol. 41, no. 16, pp. 5862-5868, 2007. [93] A. Schutze, J. Jeong, S. Babayan, J. Park, G. Selwyn, and R. Hicks, "The Atmospheric-Pressure Plasma Jet: A review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1999. [94] D. Liu, S. Yu, T. Ma, Z. Song, and X. Yang, "Diamond-like carbon films deposited in the plasma of dielectric barrier discharge at atmospheric pressure," Japanese Journal of Applied Physics, vol. 39, no. 6R, p. 3359, 2000. [95] T. Kugimiya, M. Kannaka, M. Yokomizo, A. Nakaue, and H. Takamatsu, "Ultraviolet irradiation on hydrogenated amorphous carbon films deposited by atmospheric dielectric barrier discharge," Journal of The Electrochemical Society, vol. 153, no. 5, p. C282, 2006. [96] T.-L. Sung et al., "Effect of pulse power characteristics and gas flow rate on ozone production in a cylindrical dielectric barrier discharge ozonizer," Vacuum, vol. 90, pp. 65-69, 2013. [97] V. Grinevich, E. Y. Kvitkova, N. Plastinina, and V. Rybkin, "Application of dielectric barrier discharge for waste water purification," Plasma Chemistry and Plasma Processing, vol. 31, no. 4, pp. 573-583, 2011. [98] U. Reitz, J. Salge, and R. Schwarz, "Pulsed barrier discharges for thin film production at atmospheric pressure," Surface and Coatings Technology, vol. 59, no. 1-3, pp. 144-147, 1993. [99] H. Xiao, Introduction to Semiconductor Manufacturing Technology. Prentice Hall, 2015. [100] 陳冠曄, "噴射式大氣電漿系統之設計架設與大面積氧化鋅鎵薄膜均勻度之改善," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2016. [101] 陳于壹, "噴射式大氣電漿系統之設計架設與多次沉積氧化鋅鎵薄膜性質之量測與模擬," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2016. [102] 徐品嘉, "噴射式大氣電漿系統之廢熱回收與高霧度鎵摻雜氧化鋅透明導電薄膜製備," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2021. [103] 小俠. "場發射掃描式電子顯微鏡 FE-SEM JSM-7800F." https://weiter.pixnet.net/blog/post/43096732-%E5%A0%B4%E7%99%BC%E5%B0%84%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1-fe-sem-jsm-7800f-prime-%E5%8E%9F (accessed. [104] 國立台灣科技大學貴儀儀器中心. "多功能高功率 X 光繞射儀." https://www.sppic.ntust.edu.tw/files/15-1105-51522,c5703-1.php?Lang=zh-tw (accessed. [105] 國立清華大學貴重儀器中心. "二次離子質譜儀." http://nscric.site.nthu.edu.tw/p/404-1186-122130.php?Lang=zh-tw (accessed. [106] 國立臺灣大學貴重儀器中心. "光電子能譜儀 ESCA003500." https://www.hic.ch.ntu.edu.tw/PES/pes.html (accessed. [107] Y.-M. Su, Y.-L. Kuo, C.-M. Lin, and S.-F. Lee, "One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet," Powder Technology, vol. 267, pp. 74-79, 2014/11/01/ 2014. [108] R. J. Lang, "Ultrasonic atomization of liquids," The Journal of the Acoustical Society of America, vol. 34, no. 1, pp. 6-8, 1962. [109] C.-Y. Wu, L.-C. Chiu, and J.-Y. Juang, "High haze Ga and Zr co-doped zinc oxide transparent electrodes for photovoltaic applications," Journal of Alloys and Compounds, vol. 901, p. 163678, 2022/04/25/ 2022. [110] Y. Wang, W. Tang, and L. Zhang, "Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films," Journal of Materials Science & Technology, vol. 31, no. 2, pp. 175-181, 2015. [111] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, "Control of preferred orientation for ZnOx films: control of self-texture," Journal of Crystal Growth, vol. 130, no. 1-2, pp. 269-279, 1993. [112] W.-K. Chen, J.-C. Huang, Y.-C. Chen, M.-T. Lee, and J.-Y. Juang, "Deposition of highly transparent and conductive Ga-doped zinc oxide films on tilted substrates by atmospheric pressure plasma jet," Journal of Alloys and Compounds, vol. 802, pp. 458-466, 2019. [113] L. Kurpaska, "Structural properties of zirconia – in-situ high temperature XRD characterization," Journal of Molecular Structure, vol. 1163, pp. 287-293, 2018/07/05/ 2018. [114] B. D. Cullity, Elements of X-ray Diffraction. Addison-Wesley Publishing, 1956. [115] E. T. Seid and F. B. Dejene, "Gallium and indium co-doping effects on structural, optical and luminescence properties of ZnO nanostructures," Materials Today Communications, vol. 27, p. 102330, 2021/06/01/ 2021. [116] Y.-T. Li, C. F. Han, and J.-F. Lin, "Effects of nitrogen/oxygen on the electrical and optical properties and microstructure of triple layer AZO/Ag/AZO thin films," Optical Materials Express, vol. 10, no. 2, pp. 249-267, 2020/02/01 2020. [117] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, "First-principles study of native point defects in ZnO," Physical Review B, vol. 61, no. 22, pp. 15019-15027, 06/01/ 2000. [118] M. Lv et al., "Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering," Thin Solid Films, vol. 516, no. 8, pp. 2017-2021, 2008/02/29/ 2008. [119] P. Lackner, Z. Zou, S. Mayr, U. Diebold, and M. Schmid, "Using photoelectron spectroscopy to observe oxygen spillover to zirconia," Physical Chemistry Chemical Physics, 10.1039/C9CP03322J vol. 21, no. 32, pp. 17613-17620, 2019. [120] S. Castro-Hermosa et al., "Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer," Nano Research, vol. 14, no. 4, pp. 1034-1042, 2021/04/01 2021. [121] 邱立擎, "噴射式大氣電漿系統鍍製霧度導電薄膜應用於鈣鈦礦太陽能電池前電極," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91984 | - |
| dc.description.abstract | 具有紋理表面的透明導電氧化物(Transparent conductive oxide, TCO)薄膜通常具有高霧度的特性,能使光產生散射與漫射,增加光的路徑長,有望提高太陽能電池的光電轉換效率。而沉積具有紋理表面的TCO通常需要額外的製程步驟,例如蝕刻和塗佈奈米顆粒,這些步驟會使製程複雜化,成本也隨之增加。本研究使用噴射式大氣電漿系統(Atmospheric pressure plasma jet, APPJ)搭配共摻雜法(Co-doping)一步驟鍍製出高霧度鎵和鋯共摻雜氧化鋅(GZO:Zr)透明電極於5 × 5 cm^2之玻璃基板上,相較於文獻中使用的複雜製程,APPJ系統不需在真空環境下操作,過程中也不需要更換機台以及製程參數,基板溫度也較低(180℃),既省時又省成本。最佳參數之GZO:Zr (2 at%)薄膜具有高霧度(34.8%)、低電阻率(7.88 × 10^-4 Ω-cm) 和出色的品質參數(Figure fo merit, F.O.M, 8.22 × 10^3 Ω^-1)。本研究發現當2 at% Zr摻雜到 GZO 薄膜中時,霧度從7.19%提升到34.8% (+ 384%),此霧度的提升可歸因於薄膜表面粗糙度的增加。本研究進行了電子顯微鏡(Scanning electron microscopy, SEM)和原子力顯微鏡(Atomic force microscopy, AFM)來探討薄膜的表面形態。SEM圖像顯示,將Zr摻雜到GZO薄膜中會使薄膜表面產生球狀顆粒。AFM結果表明,這些顆粒會使薄膜之均方根粗糙度顯著增加,從而增加了霧度。此外,鮮少研究針對共摻雜薄膜之化學組成進行探討,因此本研究也透過能量散佈X光光譜儀(Energy-dispersive X-ray spectroscopy, EDS)及X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS)分析共摻雜對薄膜化學組成的影響,EDS結果顯示,粒徑大小較小的球狀顆粒之鋯含量較基材的含量高;而XPS及XRD皆有量測到ZrO2的訊號,再搭配霍爾量測的結果可推測,2 at% Zr之摻雜濃度可能就已超過氧化鋅薄膜之摻雜極限,多數的鋯都是以氧化鋯團簇之形式出現在薄膜中,只有少數的鋯有參與摻雜。綜合上述量測分析,我們推論共摻雜薄膜表面出現球狀顆粒的原因為:反應物過多時會因為解離不完全而預先在空中成核,並被薄膜表面所吸附。
為了驗證高霧度薄膜是否適用於提高鈣鈦礦太陽能電池之光電轉換效率,本研究進一步將GZO及GZO:Zr (2 at%)薄膜組成鈣鈦礦太陽能電池,結果顯示雖然GZO:Zr (2 at%)有良好的光電性質及接近35%的高霧度,但組成之太陽能電池光電轉換效率卻較低,這可能是因為旋轉塗佈法(Spin coating)容易受到底層材料的表面形貌影響,GZO:Zr (2 at%)之表面粗糙度太大將影響旋轉塗佈之均勻性,導致鈣鈦礦層長晶時內部產生缺陷造成元件開路電壓下降,也會使各層間的接觸電阻提升而提高串聯電阻,此外,因為鈣鈦礦太陽能電池之總厚度(不包含透明電極)不超過200 nm,過高的表面粗糙度會使電極刺穿電池造成短路,導致並聯電阻過低使光電轉換效率變低。因此GZO:Zr (2 at%)並不適用於厚度較薄,且製程以旋轉塗佈法為主的鈣鈦礦太陽能電池,更適合應用於製程不受表面粗糙度影響,或總厚度較厚之電池元件,例如矽基太陽能電池。 | zh_TW |
| dc.description.abstract | Transparent conductive oxides (TCOs) with textured surfaces often have high haze factors. High haze factors enable light to be scattered, leading to longer optical path lengths, promising to enhance solar cells' power conversion efficiency. Deposition of TCOs with textured surfaces often requires additional process steps, such as etching and coating nanoparticles. However, those steps take substantial effort and time, making the process inefficient and complicated to handle. Here, we demonstrate a one-step fabrication process to deposit high haze gallium and zirconium co-doped zinc oxides (GZO:Zr) prepared by atmospheric pressure plasma jet (APPJ) on 5 × 5 cm^2 glasses. GZO:Zr (2 at%) films achieve a high haze (34.8%), a low resistivity (7.88 × 10^-4 Ω cm), and a great Figure of merit (F.O.M, 8.22 × 10^−3 Ω^−1). When 2 at% Zr is doped into GZO films, the haze factor increases from 7.19% to 34.8% (+ 384%). Such an increase in haze may be attributed to the increased surface roughness. We conducted SEM and AFM to investigate the surface morphology of films. SEM images show that doping Zr into GZO thin films creates spherical particles on the film surface. AFM results show that these particles significantly increase the root-mean-square roughness from 18.4 to 122 nm after 2% Zr is doped, thus increasing the haze factor. This study proposes a novel and convenient way to enhance the haze factor of the TCO layer and discover some new phenomena of co-doping TCO thin films. Our vacuum-free method does not need a change of materials or machines/tooling during the process and is suitable for industrial-scale mass production.
In addition, to know the chemical composition of the spherical particles on the surface of GZO:Zr thin film, we conducted EDS and XPS to analyze it. EDS results show that Zr mainly gathers on the smaller spherical particles. XPS and XRD results show the existence of ZrO2 in co-doped films. Combined with the results of Hall measurement, we conclude that 2 at% Zr doping concentration is already too high in our experiment. The excessive reactant would nucleate in the gas phase and then be absorbed on the film surface, hence the spherical particles. In order to verify whether high haze GZO:Zr thin film would enhance the power conversion efficiency of solar cells, we use GZO and GZO:Zr (2 at%) as the electrodes to fabricate perovskite solar cells. The results show that using GZO:Zr (2 at%) as a front electrode would have lower PCE. This is because the large surface roughness affects the spin coating process significantly. The spherical particles might affect the contact of layers and hinder the crystallization of the perovskite layer. Besides, the spherical particles might contact the perovskite layer to cause shunting. Therefore, GZO:Zr (2 at%) might be more suitable for thicker solar cells or processes that would not be affected by the roughness of electrodes, such as silicon solar cells. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-27T16:22:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-27T16:22:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
誌謝 I 中文摘要 III ABSTRACT V 目錄 VIII 圖目錄 XI 表目錄 XV 符號表 XVI Chapter 1 緒論 1 1.1 透明導電薄膜概論 1 1.2 研究動機與目的 2 Chapter 2 文獻回顧與理論基礎 5 2.1 文獻回顧 5 2.1.1 共摻雜 5 2.1.2 高霧度透明電極 7 2.2 GZO薄膜結構與光電特性 11 2.2.1 GZO薄膜材料之結構特性 11 2.2.2 GZO薄膜材料之光電特性 12 2.3 薄膜沉積理論 13 2.4 常見薄膜沉積方法 15 2.4.1 蒸鍍法(Evaporation) 15 2.4.2 濺鍍法(Sputtering) 16 2.4.3 脈衝雷射沉積(Pulsed laser deposition, PLD) 17 2.4.4 分子束磊晶(Molecular beam epitaxy, MBE) 18 2.4.5 化學氣相沉積(Chemical vapor deposition, CVD) 19 2.4.6 噴霧熱裂解法(Spray pyrolysis) 20 2.4.7 溶膠-凝膠法(Sol gel) 20 2.4.8 原子層沉積(Atomic layer deposition, ALD) 20 2.4.9 大氣電漿(Atmosphere pressure plasma) 21 2.5 電漿原理 26 2.5.1 離子化碰撞 26 2.5.2 激發–鬆弛碰撞 27 2.5.3 分解碰撞 27 Chapter 3 實驗方法與儀器設備 29 3.1 實驗流程 29 3.2 系統架設 29 3.3 噴射式大氣電漿系統細部架設及參數設定 33 3.3.1 基板與前驅物 33 3.3.2 氣體供應系統 34 3.3.3 電力供應系統 35 3.3.4 加熱系統 36 3.3.5 移動平台系統 37 3.3.6 電漿噴嘴 38 3.4 薄膜性質檢測儀器 40 3.4.1 膜厚測定儀 40 3.4.2 片電阻量測 40 3.4.3 霍爾量測 42 3.4.4 薄膜光學性質分析 44 3.4.5 表面形貌分析 45 3.4.6 表面粗糙度分析 46 3.4.7 晶體結構分析 47 3.4.8 能量散佈X光光譜儀分析 48 3.4.9 縱深元素分析 49 3.4.10 X光光電子能譜儀分析 50 3.5 鈣鈦礦太陽能電池之製備方法 51 Chapter 4 結果與討論 52 4.1 高霧度透明導電薄膜製備 52 4.1.1 膜厚分析 52 4.1.2 表面形貌分析 53 4.1.3 表面粗糙度分析 56 4.1.4 晶體結構分析 57 4.1.5 光學性質分析 64 4.1.6 電學性質分析 66 4.1.7 最佳鋯摻雜濃度選擇 67 4.1.8 能量散佈X光光譜分析 69 4.1.9 縱深元素分析 75 4.1.10 X光光電子能譜分析 79 4.1.11 樣本比較與展示 85 4.2 高霧度透明導電薄膜應用於鈣鈦礦太陽能電池 87 Chapter 5 結論與未來展望 90 5.1 結論 90 5.2 未來展望 92 參考文獻 93 著作目錄 108 附錄 109 圖目錄 圖 1.1 高霧度電極對入射光造成之影響示意圖[29] 4 圖 2.1 三種氧化鋅之結構。由左至右分別為:立方岩鹽礦、立方閃鋅礦及六方纖鋅礦[54] 11 圖 2.2 多晶薄膜沉積機制[62] 14 圖 2.3 電子束蒸鍍法示意圖[65] 16 圖 2.4 磁控濺鍍架構示意圖[66] 17 圖 2.5 脈衝雷射沉積系統架構圖[69] 18 圖 2.6 分子束磊晶系統架構圖[70] 19 圖 2.7 噴霧熱解法之系統架構示意圖[72] 20 圖 2.8 原子層沉積法原理示意圖[77] 21 圖 2.9 利用噴射式大氣電漿於SiOx基板上鍍製GZO薄膜示意圖[43] 22 圖 2.10 電漿火炬示意圖[82] 23 圖 2.11 電暈放電示意圖[93] 25 圖 2.12 介電質屏蔽放電示意圖[98] 25 圖 2.13 離子化碰撞之示意圖[99] 28 圖 2.14 激發碰撞示意圖 (a) 碰撞前 (b) 碰撞後[99] 28 圖 2.15 鬆弛碰撞示意圖 (a) 碰撞前 (b) 碰撞後[99] 28 圖 2.16 分解碰撞示意圖[99] 28 圖 3.1 高霧度透明電極實驗流程圖 29 圖 3.2 (上圖)大氣電漿薄膜鍍製系統之架構,(下圖)電將噴嘴柵狀掃描之掃描路徑示意圖 30 圖 3.3 噴射式大氣電漿系統腔體外部件 31 圖 3.4 噴射式大氣電漿系統腔體內之部件 32 圖 3.5 前驅瓶及振盪片系統示意圖 34 圖 3.6 供氣系統流程圖 35 圖 3.7 電力供應系統流程圖 36 圖 3.8 加熱系統示意圖 (a)加熱吸盤 (b)電漿噴嘴加熱棒[87] 37 圖 3.9 移動平台操作系統 37 圖 3.10 電漿噴嘴內部構造圖[87] 39 圖 3.11 表面輪廓儀(DektakXT) 40 圖 3.12 四點探針量測系統(Sadhu Design Model:EM4P)及多功能電錶(Agilent 3440A) 41 圖 3.13 四點探針原理示意圖[101] 42 圖 3.14 霍爾量測儀(Ecopia HMS-3000) 43 圖 3.15 霍爾效應原理示意圖(以n型半導體為例) 43 圖 3.16 載台晶片(HMS-3000) 44 圖 3.17 UV-Vis-NIR 光譜分析儀[102] 45 圖 3.18 高解析場發射掃描式電子顯微鏡 (JeoL JSM-7800F Prime) [103] 46 圖 3.19 原子力顯微鏡 (Bruker MultiMode 8) [87] 47 圖 3.20 D8 DISCOVER SSS多功能高功率X光繞射儀[104] 48 圖 3.21 高解析場發射掃描式電子顯微鏡 (JeoL JSM-7800F Prime) [103] 49 圖 3.22 二次離子質譜儀 (TOF-SIMS IV) [105] 50 圖 3.23 化學電子能譜儀(PHI 5000 Versa Probe) [106] 51 圖 4.1 鋯摻雜濃度與膜厚之關係[109] 53 圖 4.2 不同鋯摻雜濃度之薄膜之SEM上視圖 (a) GZO (b) GZO:Zr (2 at%) (c) GZO:Zr (4 at%) (d) GZO:Zr (6 at%) (比例尺:2 μm) 55 圖 4.3不同鋯摻雜濃度之薄膜之表面顆粒平均粒徑大小 55 圖 4.4不同鋯摻雜濃度之薄膜之表面顆粒數量 56 圖 4.5 不同鋯摻雜濃度之薄膜之表面顆粒覆蓋率 56 圖 4.6 不同鋯摻雜濃度之薄膜的AFM圖像以及平方平均值表面粗糙度 (a) GZO (b) GZO:Zr (2 at%) (c) GZO:Zr (4 at%) (d) GZO:Zr (6 at%) [109] 57 圖 4.7 不同鋯摻雜濃度之薄膜XRD峰譜圖 61 圖 4.8 (1 0 0)、(0 0 2)、(1 0 1)、(1 0 3)峰之面積比[109] 62 圖 4.9 t-ZrO2 (1 0 1)繞射峰之面積比例 63 圖 4.10 不同鋯摻雜濃度之薄膜之(0 0 2)繞射峰半高寬及晶粒大小 63 圖 4.11 不同鋯摻雜濃度之薄膜之殘餘應力 64 圖 4.12 不同鋯摻雜量之薄膜之總穿透度 65 圖 4.13不同鋯摻雜量之薄膜之鏡面穿透度 65 圖 4.14 不同鋯摻雜量之薄膜之霧度 66 圖 4.15 不同鋯摻雜濃度之薄膜的載子濃度、霍爾遷移率及電阻率[109] 67 圖 4.16 不同鋯摻雜濃度之薄膜之F.O.M及霧度[109] 68 圖 4.17 GZO之SEM圖(上)與X-射線能譜儀素像(下) (比例尺:1 μm) 70 圖 4.18 GZO:Zr (2 at%)之SEM圖(上)與X-射線能譜儀素像(下) (比例尺:1 μm) 71 圖 4.19 GZO:Zr (4 at%)之SEM圖(上)與X-射線能譜儀素像(下) (比例尺:1 μm) 72 圖 4.20 GZO:Zr (6 at%)之SEM圖(上)與X-射線能譜儀素像(下) (比例尺:1 μm) 73 圖 4.21 GZO:Zr (2 at%)之SEM圖與框選的9個區域 (比例尺:1 μm) 74 圖 4.22 不同鋯摻雜濃度之薄膜的矽元素縱深分布圖 76 圖 4.23 不同鋯摻雜濃度之薄膜的碳元素縱深分布圖 76 圖 4.24 不同鋯摻雜濃度之薄膜的鋅元素縱深分布圖 77 圖 4.25 不同鋯摻雜濃度之薄膜的鎵元素縱深分布圖 77 圖 4.26 不同鋯摻雜濃度之薄膜的鋯元素縱深分布圖 78 圖 4.27 GZO XPS全頻掃描圖譜 81 圖 4.28 不同鋯摻雜濃度之薄膜的Ga2p元素鍵結比例比較 (a) GZO (b) GZO:Zr (2 at%) (c) GZO:Zr (4 at%) (d) GZO:Zr (6 at%) 82 圖 4.29 不同鋯摻雜濃度之薄膜的O1s元素鍵結比例比較 (a) GZO (b) GZO:Zr (2 at%) (c) GZO:Zr (4 at%) (d) GZO:Zr (6 at%) 83 圖 4.30 不同鋯摻雜濃度之薄膜的Zr3d元素化學電子能譜圖 (a) GZO (b) GZO:Zr (2 at%) (c) GZO:Zr (4 at%) (d) GZO:Zr (6 at%) 84 圖 4.31 本研究與高霧度透明電極之性能比較圖 85 圖 4.32 可見光源下樣本之比較圖[109] 86 圖 4.33 GZO與GZO:Zr (2 at%)組成之鈣鈦礦太陽能電池之光電轉換效率盒狀圖 88 圖 4.34 GZO與GZO:Zr (2 at%)之表面輪廓儀量測結果 89 表目錄 表 2.1 共摻雜薄膜之歷年文獻統整 7 表 2.2 高霧度透明導電薄膜之歷年文獻統整 10 表 3.1 碳酸鈉鹼性光學玻璃組成成分表 33 表 3.2 碳酸鈉鹼性光學玻璃機械性質表 34 表 4.1 不同鋯摻雜濃度之前驅物的密度(ρp)、霧滴直徑(ddroplet)以及平均膜厚(tavg) [109] 53 表 4.2 不同鋯摻雜濃度之薄膜之t-ZrO2 (1 0 1)繞射峰位置 62 表 4.3 不同鋯摻雜濃度之薄膜之穿透度、片電阻、F.O.M及霧度[109] 68 表 4.4 GZO:Zr (2 at%)之SEM圖中框選的9個區域之元素含量 74 表 4.5 不同鋯摻雜濃度之薄膜的Ga2p元素鍵結比例比較 82 表 4.6 不同鋯摻雜濃度之薄膜的O1s元素鍵結比例比較 83 表 4.7 不同鋯摻雜濃度之薄膜的Zr3d5/2及Zr3d3/2束縛能位置及曲面下總面積 84 表 4.8 以GZO、GZO:Zr (2 at%)為電極之太陽能電池之開路電壓(VOC)、短路電流(JSC)、填充因子(FF)、串聯電阻(Rs)、並聯電阻(Rsh)及光電轉換效率(PCE) 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 共摻雜 | zh_TW |
| dc.subject | 鎵與鋯共摻雜氧化鋅 | zh_TW |
| dc.subject | 高霧度透明電極 | zh_TW |
| dc.subject | 光散射 | zh_TW |
| dc.subject | 鈣鈦礦 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 大氣電漿 | zh_TW |
| dc.subject | 鎵摻雜氧化鋅 | zh_TW |
| dc.subject | Light scattering | en |
| dc.subject | High haze electrode | en |
| dc.subject | Gallium and Zirconium co-doped Zinc Oxide (GZO) | en |
| dc.subject | Gallium doped Zinc Oxide (GZO) | en |
| dc.subject | co-doping | en |
| dc.subject | Perovskite solar cell | en |
| dc.subject | Atmosphere pressure plasma jet (APPJ) | en |
| dc.title | 利用噴射式大氣電漿系統製備高霧度鎵與鋯共摻雜氧化鋅透明導電薄膜 | zh_TW |
| dc.title | High Haze Ga and Zr Co-doped Zinc Oxide Transparent Electrodes Prepared by Atmospheric Pressure Plasma Jet | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林明澤;許麗;李志偉 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Tzer Lin;Li Xu;Jyh-Wei Lee | en |
| dc.subject.keyword | 大氣電漿,共摻雜,鎵摻雜氧化鋅,鎵與鋯共摻雜氧化鋅,高霧度透明電極,光散射,鈣鈦礦,太陽能電池, | zh_TW |
| dc.subject.keyword | Atmosphere pressure plasma jet (APPJ),co-doping,Gallium doped Zinc Oxide (GZO),Gallium and Zirconium co-doped Zinc Oxide (GZO),High haze electrode,Light scattering,Perovskite solar cell, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202203026 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-09-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 未授權公開取用 | 7.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
