Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91924
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐昱辰zh_TW
dc.contributor.advisorYu-Chen Ouen
dc.contributor.author吳振維zh_TW
dc.contributor.authorJhen-Wei Wuen
dc.date.accessioned2024-02-26T16:28:37Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] 經濟部中央地質調查所,2019年。https://faultnew.moeacgs.gov.tw
[2] 國家地震中心。http://bit.ly/2Lxv2wv
[3] 劉光晏、張國鎮、郭俊翔、趙書賢、王士庭、林昌佑,「斷層近域效應對工程設計參數之探討-以921集集地震為例」,土木水利,第四十四卷,第一期,2017年。
[4] Kawashima, K., MacRae, G. A., Hoshikuma, J., and Nagaya, K. (1998). “Residual displacement response spectrum.” Journal of Structural Engineering, 124(5), 523–530.
[5] 交通部,公路橋樑耐震設計規範,2018年。
[6] Caltrans Seismic Design Criteria. Sacramento, CA, USA: California Department of Transportation; 2019.
[7] Somerville, P. G., Smith, N. F., Graves, R. W., & Abrahamson, N. A. (1997). "Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity." Seismological Research Letters, 68(1),199-222.
[8] Abrahamson, N. A. (1998). "Seismological aspects of near-fault ground motions." The 5th Caltrans Seismic Research Workshop, Sacramento, CA. June 18, Session I.
[9] Kalkan, E., & Kunnath, S. K. (2006). "Effects of fling step and forward directivity on seismic response of buildings." Earthquake spectra, 22(2), 367-390.
[10] Abrahamson, N., (2001). "Incorporating effects of near-fault tectonic deformation into design ground motions." A presentation sponsored by the Earthquake Engineering Research Institute Visiting Professional Program. Hosted by the State University of New York at Buffalo.
[11] Chopra, A. K., and Chintanapakdee, C. (2001). "Comparing response of SDOF systems to near-fault and far-fault earthquake motions in the context of spectral regions." Earthquake Engineering and Structural Dynamics, V-30. pp, 1769-1789.
[12] Bray, J. D., & Rodriguez-Marek, A. (2004). "Characterization of forward-directivity ground motions in the near-fault region." Soil dynamics and earthquake engineering, 24(11), 815-828.
[13] Sakai, J., & Mahin, S. A. (2004). Analytical Investigations of New Methods for Reducing Residual Displacements of Reinforced Concrete Bridge Columns. Pacific Earthquake Engineering Research Center. University of California at Berkeley, California, USA, PEER-2004/02.
[14] Fujino Y., Hashimoto S., Abe M. (2005). “Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. I: residual inclination of reinforced concrete piers.” J. Bridge Eng. ASCE 10(1):45–53.
[15] Phan, V., Saiidi, M., Anderson, J., & Ghasemi, H. (2004). “An exploratory experimental study of near-fault ground motion effects on reinforced concrete bridge columns.” Research Report.
[16] Brown, A., & Saiidi, M. S. (2011). "Investigation of effect of near-fault motions on substandard bridge structures." Earthquake Engineering and Engineering Vibration, 10(1), 1-11.
[17] Brown, A. (2009). "Investigation of near-fault ground motion effects on substandard bridge columns and bents." (Doctoral dissertation, University of Nevada, Reno).
[18] Brown, A., & Saiidi, M. S. (2008). "Investigation of near-fault vs. far field ground motion effects on a substandard bridge bent." In 24th US-Japan Bridge Engineering Workshop, Minneapolis.
[19] Brown, A. (2007). "Response of A Substandard Two-Column Bridge Bent Subjected to Near-Fault Ground Motion." University of Nevada, Reno.
[20] Jia, J. F., & Ou, J. P. (2008). "Seismic analyses of long-span cable-stayed bridges subjected to near-fault pulse-type ground motions." In Proceedings of the 14 World Conference on Earthquake Engineering.
[21] P. Tan, A. K. Agrawal, Y. Pan. (2005). "Near-field effects on seismically excited highway bridge equipped with nonlinear viscous dampers." Bridge Structures. Vol. 1, Issue 3.
[22] Rodriguez-Marek, A., & Cofer, W. F. (2008). "Dynamic response of bridges to near fault, forward directivity ground motions." (No. WA-RD 689.1). Washington State Department of Transportation.
[23] Alavi, B., & Krawinkler, H. (2001). "Effects of near-fault ground motions on frame structures." John A. Blume Earthquake Engineering Center.
[24] Alavi, B. and Krawinkler, H. (2004). "Behavior of moment-resisting frame structures subjected to near-fault ground motions." Earthquake Engineering and Structural Dynamics; 33:687-706 (DOI: 10.1002/eqe.369).
[25] Dolati, A., Taghikhany, T. & Rahai, A. (2012). "Seismic demands of the case study highway bridge under near fault pulse-like ground motion." 15 WCEE. Lisboa.
[26] Kuleli, M. and Elnashai, A. S. (2013). "Cable-stayed bridges subjected to near-fault vertical motion." 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Kos Island, Greece.
[27] Choi, H., Saiidi, M. S., Somerville, P., & El-Azazy, S. (2010). "Experimental study of reinforced concrete bridge columns subjected to near-fault ground motions." ACI Structural Journal, 107(1).
[28] Choi, H. (2007). "Effects of near-fault ground motion and fault-rupture on the seismic response of reinforced concrete bridges." ProQuest.
[29] Cruz-Noguez, C. A., & Saiidi, M. (2010). "Simulated response of bridges with advanced materials under near-fault earthquakes." In Proceedings of the 3rd WSEAS international conference on Engineering mechanics, structures, engineering geology (pp. 429-434). World Scientific and Engineering Academy and Society (WSEAS).
[30] Ardakani, S. M. S. and Saiidi, S. M. (2013). "Design of reinforced concrete bridge columns for near-fault earthquakes." A report to the Federal Highway Administration. University of Nevada, Reno.
[31] Pratiwi, A. Y. (2018). “Flag-Shape and Post-Yield Hardening Systems for Residual Displacement Reduction of Bridge Columns.” Ph.D. Dissertation. National Taiwan University of Science and Technology.
[32] Mander, J.B., Cheng. (1997). "Seismic resistance of bridges based on damage avoidance design." NCEER Technical Report 97-0014.
[33] Hewes, J. T., and Priestley, M. J. N. (2002). "Seismic design and performance of precast concrete segmental bridge columns." Rep. No. SSRP-2001/25, Univ. of California, San Diego.
[34] Chou, C. C., and Chen, Y. C. (2006). "Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands." Earthquake Eng. Struct. Dyn., 352, 159-175.
[35] Ou, Y. C. (2007). "Precast segmental post-tensioned concrete bridge columns for seismic regions." A Dissertation Submitted in partial fulfillment for of the requirements of the degree of Doctor Philosophy in Faculty of the Graduate School of State University of New York at Buffalo.
[36] Ou, Y. C., Tsai, M. S., Chang, K. C., and Lee, G.C. (2010). "Cyclic behavior of precast segmental concrete bridge columns with high performance or conventional steel reinforcing bars as energy dissipation bars." Journal of Earthquake Engineering and Structural Dynamics, 39(11), 1181-1198.
[37] Sung YC, Hung HH, Lin KC, Jiang CR, Chang KC. Experimental Testing and Numerical Simulation of Precast Segmental Bridge Piers Constructed with a Modular Methodology. J Bridge Eng 2017; 22(11): 04017087.
[38] Hung HH, Sung YC, Lin KC, Jiang CR, Chang KC. Experimental study and numerical simulation of precast segmental bridge columns with semi-rigid connections. Eng Struct 2017; 136: 12-25.
[39] Iemura, H., Takahashi, Y., and Sogabe, N. (2001). “Hybrid earthquake loading tests of UBRC bridge piers.” The 14th KKNN Seminar on Civil Engineering. 5-7 November, Kyoto, Japan.
[40] Iemura, H., Takahashi, Y., and Sogabe, N. (2004). "Development of Unbonded Bar Reinforced Concrete Structure." The 13th World Conference on Earthquake Engineering, 1-6 August, Vancouver, B. C., Canada.
[41] Iemura, H., Takahashi, Y., and Sogabe, N. (2006). "Two-level seismic design method using post-yield stiffness and its application to unbonded bar reinforced concrete piers." Struct. Eng./Earthquake Eng., 23(1), 109s-116s.
[42] Pettinga, D., Christopoulos, C., Pampanin, S. and Priestley, N. (2007), Effectiveness of simple approaches in mitigating residual deformations in buildings. Earthquake Engng. Struct. Dyn., 36: 1763–1783. doi:10.1002/eqe.717.
[43] Fahmy, M. F. M.,Wu, Z. S.,Wu, G., and Sun, Z. (2010). "Post-yield stiffnesses and residual deformations of RC bridge columns reinforced with ordinary rebars and steel fiber composite bars." J. Eng. Struct., 32(9), 2969-2983.
[44] Ibrahim AI, Wu G, Sun Z, Cui H. Cyclic behavior of concrete columns reinforced with partially unbonded hybrid. Eng Struct 2017; 131: 311-323.
[45] Ghazizadeh S, Cruz-Noguez CA, Talaei F. Analytical model for hybrid FRP-steel reinforced shear walls. Eng Struct 2018; 156: 556-566.
[46] Zhao Q, Zhao J, Dang JT, Chen JW, Shen FQ. Experimental investigation of shear walls using carbon fiber reinforced polymer bars under cyclic lateral loading. Eng Struct 2019; 191: 82-91.
[47] Liu J, Zhang J, Li X, Cao W. Cyclic behavior of damage-controllable steel fiber reinforced high-strength concrete reduced-scale frame structures. Eng Struct 2021; 232: 111810.
[48] ACI 318-19. Building code requirements for structural concrete (ACI-318-19) and commentary (ACI 318R-19). Farmington Hills, Michigan, USA: American Concrete Institute; 2019.
[49] AASHTO LRFD Bridge Design Specifications. Washington, DC: American Association of State Highway and Transportation Officials; 2017.
[50] Caltrans BDS. Bridge design specification. Sacramento, CA, USA: California Department of Transportation; 2003.
[51] Aschheim, A.M. and Moehle, J.P. (1992). “Shear strength and deformability of RC bridge columns subjected to inelastic displacements.” Technical Report No. UCB/EERC 92/04. University of California at Berkeley,Berkeley, CA.
[52] Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of structural engineering, 120(8), 2310-2329.
[53] Sezen, H. (2002). “Seismic Behavior and Modeling of Reinforced Concrete Building Columns.” Ph.D. Dissertation. University of California, Berkeley.
[54] Fisher J. M. and Kloiber, L. A. (2006). “Base plate and anchor rod design”. 2nd Ed. American Institute of Steel Construction (AISC) Inc.
[55] 內政部營建署,混凝土結構設計規範,2021年。
[56] Karthik MM, Mander JB. Stress-block parameters for unconfined and confined concrete based on a unified stress-strain model. J Struct Eng 2011; 137(2): 270-273.
[57] Sezen H, Setzler EJ. Reinforcement slip in reinforced concrete columns. ACI Struct J 2008; 105(3): 280-289.
[58] Dhakal RP, Su J. Design of transverse reinforcement to avoid premature buckling of main bars. Earthq Eng Struct Dyn 2018; 47: 147-168.
[59] Caltrans Seismic Design Criteria. Sacramento, CA, USA: California Department of Transportation; 2019.
[60] ASTM C39/C39M-03. "Standard Test Method for Compressive Strength of Cylindrical Concrete Speciments.", 2014.
[61] 中國國家標準,鋼筋混凝土用鋼筋,CNS總號560,經濟部中央標準局,(2018)。
[62] 中國國家標準,預力混凝土用鋼線及鋼絞線,CNS總號3332,經濟部中央標準局,(2016)。
[63] Ou YC, Ngo SH, Roh H, Yin SY, Wang JC, Wang PH. Seismic performance of concrete columns with innovative with innovative seven- and eleven-spiral reinforcement. ACI Struct J 2015; 112(5): 579-592.
[64] FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC, USA: Federal Emergency Management Agency; 2000.
[65] Moehle J. Seismic design of reinforced concrete buildings. New York, USA: McGraw-Hill Education; 2014.
[66] Paulay T, Priestley M.J.N., (1992). Seismic design of reinforced concrete and masonry buildings. John Wiley and Sons, New York.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91924-
dc.description.abstract近斷層地震所產生的脈衝型震動,容易造成傳統鋼筋混凝土橋柱於震後產生較大的殘餘變位,嚴重危害橋梁安全性與震後服務性。本研究開發新型自復位橋柱,利用無預力鋼絞線作為橋柱之彈性元件,使其於傳統縱向竹節鋼筋降伏後仍保持彈性,可降低橋梁在近斷層地震後常見之大殘餘變位。本研究完成了7座單曲率柱反覆載重試驗,包含一座對照組試體與6座無預力鋼絞線橋柱試體,試驗參數為鋼絞線的使用、混凝土保護層厚度、鋼絞線無握裹長度與橫向鋼筋用量。並且利用Matlab平台自行開發無預力鋼絞線橋柱側推模型(PM-USSC),可模擬傳統橋柱與無預力鋼絞線橋柱,在進行側推載重試驗下之材料行為與耐震性能,藉由PM-USSC的開發,可用於了解不同鋼絞線設計參數(用量比、擺放位置與無握裹長度),對於後降伏勁度比與韌性比的影響。
試驗結果顯示,傳統、無預力鋼絞線橋柱試體出現側向強度下降的時機,分別為縱向鋼筋發生斷裂、受壓側鋼絞線出現鳥籠現象時,並將此現象發生的上一個位移比,定義為後降伏階段終點。使用無預力鋼絞線的橋柱試體,可以有效地提升橋柱強度與後降伏勁度比,並達到震後自復位之能力,其中以CSC20試體的表現最為優異,其後降伏勁度比為6.4 %,達到有效控制橋柱殘餘位移的標準,韌性比(4.9)也符合單柱橋墩之結構系統韌性容量,而較好的施工品質,使得東西兩側的真實混凝土保護層厚度差距僅為1 mm。
側推分析的建立過程與結果顯示,PM-USSC求取鋼絞線應變的流程,需透過曲率平衡關係式及縱向筋變形總量守恆的方次來求得。根據應變計數據得到應變分布曲線,整理出適用於本研究的握裹應力公式。PM-USSC初步分析結果與應變計數據的比較中,發現了當錨定端鋼絞線開始出現應變累積時,鋼絞線會與錨定系統上的夾片產生滑動,以一元二次回歸法推導出錨定端鋼絞線應變修正公式,可得到修正後的力與位移比曲線,並能準確地預測出無預力鋼絞線橋柱於靜態試驗下的力與位移反應。
zh_TW
dc.description.abstractA new self-centering concrete bridge column has been developed by the authors. The proposed bridge column uses unstressed seven-wire steel strands as elastic elements to reduce the residual displacement of the column after a strong earthquake. This research aimed to study the effect of concrete cover thickness ratio on the cyclic behavior of the proposed column. Seven large-scale column specimens were tested using lateral cyclic loading. One column was the conventional concrete bridge column. The other six columns were the unstressed steel strands bridge columns with the use of steel strands, concrete cover thickness ratios, unbonded length of the steel strands and the amount of transverse reinforcement. And use Matlab software to develop the Pushover model of unstressed steel strands bridge column (PM-USSC), which can simulate the seismic behavior of the traditional bridge column and the unstressed steel strands bridge column under the lateral load test. Through the development of PM-USSC, it can be used to understand the influence of different parameters of strand (amount ratio, position and unbonded length) on the post-yield stiffness ratio ductility.
The test results show that the step for the lateral strength drop of the conventional and unstressed steel strands bridge column specimens is when the longitudinal steel bar breaks and the steel strands in compression started to bulge in compression, and the last drift ratio of these behaviors is defines as the end of the post-yield stage. The use of bridge column specimens with unstressed steel strands can effectively improve the strength and post-yield stiffness ratio, and achieve the ability to self-centering after earthquakes. Among them, CSC20 specimen has the best performance, the post-yield stiffness ratio is 6.4%, which meets the standard of effectively controlling the residual displacement of the bridge column. The ductility ratio (4.9) also conforms to the ductility capacity of the structural system of the single-column pier, and the better construction quality makes the difference between the thickness of the real concrete cover on the east and west side is only 1mm.
The establishment process and results of the pushover analysis show that the process of PM-USSC to obtain the strain of the steel strand needs to be obtained through the curvature equilbrium and the total amount of longitudinal reinforcement deformation equilbrium. According to the strain gage data, the strain distribution curve was obtained, and the bonded stress formula suitable for this study was sorted out. In the comparison between the preliminary analysis results of PM-USSC and the strain gage data, it was found that when the strand at the anchorage system began to accumulate strain, the strand would slip with the wedges on the anchorage system. The strain correction formula at the anchorage system is proposed, and the force-drift response of the unstressed steel strand bridge column under static test can be accurately predicted.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:28:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:28:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1. 研究背景與目的 1
1.2. 研究方法與內容 1
1.3. 研究架構 3
第二章 文獻回顧 4
2.1. 近斷層地震特性 4
2.2. 近斷層地震對橋樑結構的影響 5
2.3. 自復位鋼筋混凝土橋柱系統 7
2.3.1. 軸力系統(重力或預拉力) 7
2.3.2. 後降伏勁度系統 12
2.4. 試體設計 16
2.4.1. ACI 318-19 16
2.4.2. AASHTO LRFD BDS 2017 19
2.4.3. Caltrans BDS 2003 20
2.4.4. Aschheim與Moehle (1992) 22
2.4.5. Priestley等人(1994) 22
2.4.6. Sezen (2002) 23
2.4.7. AISC 2006 23
2.4.8. 混凝土結構設計規範2021 24
2.5. 側推模型建立 24
2.5.1. Karthik與Mander (2011) 24
2.5.2. Sezen (2008) 27
2.5.3. Dhakal (2018) 28
第三章 試驗規劃 30
3.1. 試體設計 30
3.1.1. 鋼鉸線用量比 33
3.1.2. 鋼鉸線擺放位置 34
3.1.3. 鋼鉸線無握裹長度 35
3.1.4. 橫向鋼筋用量增加試體之設計細節(CSCS與CSCR) 36
3.2. 試體相關配置 41
3.3. 試驗配置與方法 42
3.3.1. 外部量測儀器 43
3.3.2. 內部量測儀器 43
第四章 試驗結果 45
4.1. 材料試驗結果 45
4.1.1. 混凝土抗壓試驗結果 45
4.1.2. 鋼材拉伸試驗結果 46
4.2. 試體破壞過程與遲滯迴圈曲線 47
4.2.1. CCC 48
4.2.2. CSC40 49
4.2.3. CSC30 50
4.2.4. CSC20 51
4.2.5. CSCB 52
4.2.6. CSCR 53
4.2.7. CSCS 54
4.3. 理想化反應之比較 55
4.4. 消散能量與等效阻尼比 60
4.5. 位移分布 61
4.6. 縱向筋之受拉應變分布行為 68
第五章 試驗分析 71
5.1. 混凝土保護層厚度比 71
5.2. PM-USSC之建立 74
5.2.1. 材料模型 75
5.2.2. 應變轉換 76
5.2.3. 側向反力 80
5.2.4. 側向位移 80
5.3. PM-USSC之錨定端鋼絞線應變修正公式 82
5.4. PM-USSC之極限位移比定義 89
5.5. PM-USSC之鋼絞線用量比分析結果 91
5.6. PM-USSC之鋼絞線擺放位置分析結果 93
5.7. PM-USSC之鋼絞線無握裹長度分析結果 94
第六章 結論與討論 103
6.1. 反覆載重試驗 103
6.2. PM-USSC 105
6.3. 未來計畫 107
參考文獻 108
附錄A:試體設計圖 115
附錄B:試驗照片 123
附錄C:應變計 180
-
dc.language.isozh_TW-
dc.subject橋柱zh_TW
dc.subject後降伏勁度zh_TW
dc.subject鋼絞線zh_TW
dc.subject側推分析zh_TW
dc.subject近斷層zh_TW
dc.subject鋼筋混凝土zh_TW
dc.subject殘餘位移zh_TW
dc.subjectbridge columnen
dc.subjectstranden
dc.subjectpost-yield stiffnessen
dc.subjectresidual displacementen
dc.subjectnear-faulten
dc.subjectreinforced concreteen
dc.subjectpushover analysisen
dc.title無預力鋼絞線取代部分縱向鋼筋混凝土橋柱之耐震行為zh_TW
dc.titleSeismic behavior of concrete bridge columns with longitudinal reinforcement partially replaced by unstressed steel strandsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee周中哲;宋裕祺;劉光宴;宋欣泰zh_TW
dc.contributor.oralexamcommitteeChung-Che Chou;Yu-Chi Sung;Kuang-Yen Liu;Shin-Tai Songen
dc.subject.keyword鋼筋混凝土,橋柱,近斷層,殘餘位移,後降伏勁度,鋼絞線,側推分析,zh_TW
dc.subject.keywordreinforced concrete,bridge column,near-fault,residual displacement,post-yield stiffness,strand,pushover analysis,en
dc.relation.page254-
dc.identifier.doi10.6342/NTU202203806-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf45.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved