Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor卡艾瑋zh_TW
dc.contributor.advisorHervé Caparten
dc.contributor.author陳慈愔zh_TW
dc.contributor.authorTzu-Yin Chenen
dc.date.accessioned2024-02-26T16:27:30Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAhmed, S. A., Buckingham, R., Gremaud, P. A., Hauck, C. D., Kuster, C. M., Prodanovic, M., Royal, T. A., and Silantyev, V. (2004). Volume determination for bulk materials in bunkers. International Journal for Numerical Methods in Engineering, 61:2239–2249.
Al-Farraj, A. and Harvey, A. M. (2005). Morphometry and depositional style of Late Pleistocene alluvial fans: Wadi Al-Bih, northern UAE and Oman. Geological Society, London, Special Publications, 251(1):85–94.
Armanini, A., Capart, H., Fraccarollo, L., and Larcher, M. (2005). Rheological stratification in experimental free-surface flows of granular–liquid mixtures. Journal of Fluid Mechanics, 532:269–319.
Armanini, A., Fraccarollo, L., and Rosatti, G. (2009). Two-dimensional simulation of debris flows in erodible channels. Computers & Geosciences, 35(5):993–1006.
Asano, T. (1985). An efficient algorithm for finding the visibility polygon for a polygonal region with holes. IEICE TRANSACTIONS (1976-1990), 68(9):557– 559.
Asano, T., Asano, T., Guibas, L., Hershberger, J., and Imai, H. (1986). Visibility of disjoint polygons. Algorithmica, 1:49–63.
ASTM D7928-17 (2016). Standard Test Method For Particle-Size Distribution (Gradation) Of Fine-Grained Soils Using The Sedimentation (Hydrometer) Analysis. Standard, ASTM International.
Baliga, B. and Patankar, S. (1980). A new finite-element formulation for convection- diffusion problems. Numerical Heat Transfer, 3(4):393–409.
Baliga, B. and Patankar, S. (1983). A control volume finite-element method for two- dimensional fluid flow and heat transfer. Numerical Heat Transfer, 6(3):245–261.
Bartelt, P., Bieler, C., Bu¨hler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B., Salz, M., and Schneider, M. (2017). RAMMS – Rapid mass movement simulation, A numerical model for debris flows in research and practice, User Manual v1.7.0, Debris Flow. WSL Institute for Snow and Avalanche Research SLF.
Beaty, C. B. (1963). Origin of alluvial fans, White Mountains, California and Nevada. Annals of the Association of American Geographers, 53(4):516–535.
Berger, C., McArdell, B. W., and Schlunegger, F. (2011). Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities. Geomorphology, 125(3):421–432.
Blair, T. C. (1999). Cause of dominance by sheetflood vs. debris-flow processes on two adjoining alluvial fans, Death Valley, California. Sedimentology, 46(6):1015– 1028.
Blissenbach, E. (1952). Relation of surface angle distribution to particle size distribution on alluvial fans [Arizona]. Journal of Sedimentary Research, 22(1):25–28.
Brown, H. E. (2016). Spatial and temporal analysis of compensational stacking and gradual migration of an experimental debris-flow fan. MSc thesis, Colorado School of Mines.
Capart, H., Hsu, J. P.-C., Lai, S. Y.-J., and Hsieh, M.-L. (2010). Formation and decay of a tributary-dammed lake, Laonong River, Taiwan. Water Resources Research, 46(11):1–23.
Chang, J.-C., Shih, T.-T., Yang, S.-C., Lin, Y.-F., Chen, H.-L., and Tung, T.-H. (1995). A geomorphological study of alluvial fan in Kaopoing Valley and Chaochou Fault Scarp. Geographical Research, 24:39–86. (In Chinese).
Chau, K. T., Chan, L., Luk, S., and Wai, W. H. O. (2000). Shape of deposition fan and runout distance of debris flow: Effects of granular and water contents. In International Conference on Debris Flow Hazards Mitigation, 387–395.
Chen, T.-Y. K., Hung, C.-Y., Chiang, Y.-C., Hsieh, M.-L., and Capart, H. (2022). A stochastic model of geomorphic risk due to episodic river aggradation and degradation. Engineering Geology, 309:106845.
Chen, T.-Y. K., Wu, Y.-C., Hung, C.-Y., Capart, H., and Voller, V. R. (2021). Model codes and data for “A control volume finite element model for predicting the morphology of cohesive-frictional debris flow deposits”. Zenodo https:// doi.org/10.5281/zenodo.5933841.
Coussot, P., Proust, S., and Ancey, C. (1996). Rheological interpretation of deposits of yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 66(1):55–70.
Crowder, D. F. and Sheridan, M. F. (1972). Geologic map of the White Mountain Peak quadrangle, Mono County, California. Geol. Quad. Map GQ-1012, U.S. Geol. Survey.
D’Arcy, M., Roda-Boluda, D. C., and Whittaker, A. C. (2017). Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California. Quaternary Science Reviews, 169:288–311.
de Haas, T. (2016). Life, death and revival of debris-flow fans on Earth and Mars: fan dynamics and climatic inferences. PhD thesis, Utrecht University.
de Haas, T., Braat, L., Leuven, J. R., Lokhorst, I. R., and Kleinhans, M. G. (2015a). Effects of debris flow composition on runout, depositional mechanisms, and de- posit morphology in laboratory experiments. Journal of Geophysical Research: Earth Surface, 120(9):1949–1972.
de Haas, T., Densmore, A. L., Stoffel, M., Suwa, H., Imaizumi, F., Ballesteros- Ca´novas, J., and Wasklewicz, T. (2018). Avulsions and the spatio-temporal evolution of debris-flow fans. Earth-Science Reviews, 177:53–75.
de Haas, T., Kleinhans, M. G., Carbonneau, P. E., Rubensdotter, L., and Hauber,E. (2015b). Surface morphology of fans in the high-Arctic periglacial environment of Svalbard: Controls and processes. Earth-Science Reviews, 146:163–182.
de Haas, T., van den Berg, W., Braat, L., and Kleinhans, M. G. (2016). Autogenic avulsion, channelization and backfilling dynamics of debris-flow fans. Sedimentology, 63(6):1596–1619.
DeGraff, J. V. and Ochiai, H. (2009). Rainfall, debris flows and wildfires. In Landslides–Disaster Risk Reduction, 451–471. Springer.
Delorme, P., Devauchelle, O., Barrier, L., and M´etivier, F. (2018). Growth and shape of a laboratory alluvial fan. Physical Review E, 98:012907.
Denny, C. S. (1965). Alluvial fans in the Death Valley region, California and Nevada. Geological Survey Professional Paper, 466:1–62.
Densmore, A. L., de Haas, T., McArdell, B. W., and Schuerch, P. (2019). Making sense of avulsions on debris-flow fans. In 7th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Monitoring, Modeling, and Assessment.
Deshpande, N. S., Furbish, D. J., Arratia, P. E., and Jerolmack, D. J. (2021). The perpetual fragility of creeping hillslopes. Nature Communications, 12(1):1–7.
Detrixhe, M., Gibou, F., and Min, C. (2013). A parallel fast sweeping method for the eikonal equation. Journal of Computational Physics, 237:46–55.
Drew, F. (1873). Alluvial and lacustrine deposits and glacial records of the Upper- Indus Basin. Quarterly Journal of the Geological Society, 29(1-2):441–471.
Du¨hnforth, M., Densmore, A. L., Ivy-Ochs, S., Allen, P. A., and Kubik, P. W. (2007). Timing and patterns of debris flow deposition on Shepherd and Symmes creek fans, Owens Valley, California, deduced from cosmogenic 10Be. Journal of Geophysical Research: Earth Surface, 112:F03S15.
Edwards, A. N., Russell, A. S., Johnson, C. G., and Gray, J. M. N. T. (2019). Frictional hysteresis and particle deposition in granular free-surface flows. Journal of Fluid Mechanics, 875:1058–1095.
Edwards, A. N., Viroulet, S., Kokelaar, B. P., and Gray, J. M. N. T. (2017). Formation of levees, troughs and elevated channels by avalanches on erodible slopes. Journal of Fluid Mechanics, 823:278–315.
Engwirda, D. (2014). Locally optimal Delaunay-refinement and optimisation-based mesh generation. PhD thesis, University of Sydney.
Engwirda, D. (2020). Inpoly: A fast points-in-polygon test. GitHub, https://github.com/dengwirda/inpoly.
Exner, F. M. (1920). Zur physik der dunen. Akad. Wiss. Wien Math. Naturwiss. Klasse, 129(2a):929–952.
Exner, F. M. (1925). Uber die wechselwirkung zwischen wasser und geschiebe in flussen. Akad. Wiss. Wien Math. Naturwiss. Klasse, 134(2a):165–204.
F´elix, G. and Thomas, N. (2004). Relation between dry granular flow regimes and morphology of deposits: formation of lev´ees in pyroclastic deposits. Earth and Planetary Science Letters, 221(1):197–213.
Ghosh, S. K. (2007). Visibility algorithms in the plane. Cambridge University Press.
Gilbert, G. K. (1882). Contributions to the history of Lake Bonneville. Department of the Interior, US Geological Survey.
Giles, P. T., Whitehouse, B. M., and Karymbalis, E. (2018). Interactions between alluvial fans and axial rivers in Yukon, Canada and Alaska, USA. Geological Society, London, Special Publications, 440(1):23–43.
Giudice, H. A., Giammanco, G., Fransos, D., and Preziosi, L. (2019). Modeling sand slides by a mechanics-based degenerate parabolic equation. Mathematics and Mechanics of Solids, 24(8):2558–2575.
Gray, J. M. N. T. (2018). Particle segregation in dense granular flows. Annual review of fluid mechanics, 50:407–433.
Gregoretti, C., Degetto, M., and Boreggio, M. (2016). Gis-based cell model for simulating debris flow runout on a fan. Journal of Hydrology, 534:326–340.
Go´mez-Villar, A., A´lvarez Mart´ınez, J., and Garc´ıa-Ruiz, J. M. (2006). Factors influencing the presence or absence of tributary-junction fans in the Iberian Range, Spain. Geomorphology, 81(3-4):252–264.
Hanselman, D. (2021a). Contour plot for scattered data (https://www.mathworks.com/matlabcentral/fileexchange/38858-contour-plot-for-scattered-data). Retrieved November 30, 2021.
Hanselman, D. (2021b). Linearly interpolate triangulation (https://www.mathworks.com/matlabcentral/fileexchange/38925-linearly- interpolate-triangulation). Retrieved November 30, 2021.
Harvey, A. (2002). The role of base-level change in the dissection of alluvial fans: case studies from southeast Spain and Nevada. Geomorphology, 45(1-2):67–87.
Hasbargen, L. E. and Paola, C. (2000). Landscape instability in an experimental drainage basin. Geology, 28(12):1067–1070.
Heffernan, P. J. and Mitchell, J. S. (1995). An optimal algorithm for computing visibility in the plane. SIAM Journal on Computing, 24(1):184–201.
Herbert, L. (2021). Controls on Debris Flow Avulsions: White Mountains of California and Nevada. PhD thesis, Colorado School of Mines.
Hill, K., Khakhar, D., Gilchrist, J., McCarthy, J., and Ottino, J. (1999). Segregation-driven organization in chaotic granular flows. Proceedings of the National Academy of Sciences, 96(21):11701–11706.
Hill, K. M., Gioia, G., and Amaravadi, D. (2004). Radial segregation patterns in rotating granular mixtures: waviness selection. Physical review letters, 93(22):224301.
Hooke, R. L. (1967). Processes on arid-region alluvial fans. The Journal of Geology, 75(4):438–460.
Hooke, R. L. (1968). Steady-state relationships on arid-region alluvial fans in closed basins. American Journal of Science, 266(8):609–629.
Hooke, R. L. and Rohrer, W. L. (1977). Relative erodibility of source-area rock types, as determined from second-order variations in alluvial-fan size. Geological Society of America Bulletin, 88(8):1177–1182.
Hsieh, M.-L. and Capart, H. (2013). Late Holocene episodic river aggradation along the Lao-nong River (southwestern Taiwan): An application to the Tseng-wen Reservoir Transbasin Diversion Project. Engineering Geology, 159:83–97.
Hsieh, M.-L. and Chyi, S.-J. (2010). Late Quaternary mass-wasting records and formation of fan terraces in the Chen-yeo-lan and Lao-nung catchments, central-southern Taiwan. Quaternary Science Reviews, 29(11-12):1399–1418.
Hsu, J. P. C. and Capart, H. (2008). Onset and growth of tributary-dammed lakes. Water Resources Research, 44:W11201.
Hubert, J. F. and Filipov, A. J. (1989). Debris-flow deposits in alluvial fans on the west flank of the White Mountains, Owens Valley, California, USA. Sedimentary Geology, 61(3-4):177–205.
Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3):245– 296.
Iverson, R. M. (2015). Scaling and design of landslide and debris-flow experiments. Geomorphology, 244:9–20.
Iverson, R. M., Logan, M., LaHusen, R. G., and Berti, M. (2010). The perfect debris flow? aggregated results from 28 large-scale experiments. Journal of Geophysical Research: Earth Surface, 115:F03005.
Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., and Gris- wold, J. P. (2011). Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4(2):116–121.
Iverson, R. M. and Vallance, J. W. (2001). New views of granular mass flows. Geology, 29(2):115–118.
Jackson, L., Kostaschuk, R., and MacDonald, G. M. (1987). Identification of de- bris flow hazard on alluvial fans in the Canadian Rocky Mountains. Reviews in Engineering Geology, 7:115–124.
Jiang, C., Mundilova, K., Rist, F., Wallner, J., and Pottmann, H. (2019). Curve- pleated structures. ACM Transactions on Graphics, 38(6):169.
Joe, B. and Simpson, R. B. (1987). Corrections to Lee’s visibility polygon algorithm. BIT Numerical Mathematics, 27(4):458–473.
Johnson, A. M. (1970). Physical processes in geology: A method for interpretation of natural phenomena; intrusions in igneous rocks, fractures, and folds, flow of debris and ice. Freeman, Cooper.
Johnson, C., Kokelaar, B., Iverson, R. M., Logan, M., LaHusen, R., and Gray, J. (2012). Grain-size segregation and levee formation in geophysical mass flows. Journal of Geophysical Research: Earth Surface, 117:F01032.
Kaitna, R., Dietrich, W., and Hsu, L. (2014). Surface slopes, velocity profiles and fluid pressure in coarse-grained debris flows saturated with water and mud. Journal of Fluid Mechanics, 741:377–403.
Kaitna, R., Palucis, M. C., Yohannes, B., Hill, K. M., and Dietrich, W. E. (2016). Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows. Journal of Geophysical Research: Earth Surface, 121(2):415–441.
Kaitna, R., Rickenmann, D., and Schatzmann, M. (2007). Experimental study on rheologic behaviour of debris flow material. Acta Geotechnica, 2(2):71–85.
Ke, W.-T. and Capart, H. (2015). Theory for the curvature dependence of delta front progradation. Geophysical Research Letters, 42(24):10–680.
Keiler, M., Knight, J., and Harrison, S. (2010). Climate change and geomorphological hazards in the eastern European Alps. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1919):2461– 2479.
Kepner, J., Kipf, A., Engwirda, D., Vembar, N., Jones, M., Milechin, L., Gadepally, V., Hill, C., Kraska, T., Arcand, W., et al. (2020). Fast mapping onto census blocks. In 2020 IEEE High Performance Extreme Computing Conference (HPEC), 1–8. IEEE.
Kevorkian, J. (1990). Partial Differential Equations: Analytical Solution Techniques. Brooks/Cole, London.
Kochel, R. C. and Johnson, R. A. (1984). Geomorphology and sedimentology of humid-temperate alluvial fans, central Virginia. Sedimentology of Gravels and Conglomerates, 109–122.
Kowalski, J. and McElwaine, J. N. (2013). Shallow two-component gravity-driven flows with vertical variation. Journal of Fluid Mechanics, 714:434–462.
Kraal, E. R., Asphaug, E., Moore, J. M., Howard, A., and Bredt, A. (2008). Catalogue of large alluvial fans in martian impact craters. Icarus, 194(1):101–110.
Krivoshapko, S. N. and Ivanov, V. N. (2015). Encyclopedia of Analytical Surfaces. Springer, Berlin.
Kuster, C. M. and Gremaud, P. A. (2006). Accurately computing the shape of sand- piles. In Multiscale Optimization Methods and Applications, 305–312. Springer.
Lai, S. Y. J. and Capart, H. (2007). Two-diffusion description of hyperpycnal deltas. Journal of Geophysical Research: Earth Surface, 112:F03005.
Lai, S. Y. J. and Capart, H. (2009). Reservoir infill by hyperpycnal deltas over bedrock. Geophysical Research Letters, 36(8):L08402.
Lai, S. Y. J., Gerber, T. P., and Amblas, D. (2016). An experimental approach to submarine canyon evolution. Geophysical Research Letters, 43:2741–2747.
Le Hooke, R. B. and Rohrer, W. L. (1979). Geometry of alluvial fans: Effect of discharge and sediment size. Earth Surface Processes and Landforms, 4(2):147– 166.
Lee, D.-T. (1983). Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing, 22(2):207–221.
Lee, D.-T. and Preparata, F. (1984). Euclidean shortest paths in the presence of rectilinear barriers. Networks, 14:393–410.
Leenman, A. and Eaton, B. (2021). Mechanisms for avulsion on alluvial fans: Insights from high-frequency topographic data. Earth Surface Processes and Landforms, 46(6):1111–1127.
Leenman, A. and Tunnicliffe, J. (2020). Tributary-junction fans as buffers in the sediment cascade: a multi-decadal study. Earth Surface Processes and Landforms, 45(2):265–279.
Li, A. L. (2015). Tailings subaerial and subaqueous deposition and beach slope modeling. Journal of Geotechnical and Geoenvironmental Engineering, 141(1):04014089.
Lifton, Z. (2013). Owens Valley, CA: Late Pleistocene Slip Rates on the White Mountain Fault. Distributed by OpenTopography. https://doi.org/10.5069/G9FF3Q99.
Lin, Z., Oguchi, T., Chen, Y.-G., and Saito, K. (2009). Constant-slope alluvial fans and source basins in Taiwan. Geology, 37(9):787–790.
Liu, K.-F. and Huang, M. C. (2006). Numerical simulation of debris flow with application on hazard area mapping. Computational Geosciences, 10(2):221–240.
Liu, K. F. and Mei, C. C. (1989). Slow spreading of a sheet of Bingham fluid on an inclined plane. Journal of Fluid Mechanics, 207:505–529.
Lo, C.-M. (2017). Evolution of deep-seated landslide at Putanpunas stream, Taiwan. Geomatics, Natural Hazards and Risk, 8(2):1204–1224.
Lo, C.-M., Weng, M.-C., Lin, M.-L., Lee, S.-M., and Lee, K.-C. (2018). Landscape evolution characteristics of large-scale erosion and landslides at the Putanpunas stream, Taiwan. Geomatics, Natural Hazards and Risk, 9(1):175–195.
Lobkovsky, A. E., Smith, B. E., Kudrolli, A., Mohrig, D. C., and Rothman, D. H. (2007). Erosive dynamics of channels incised by subsurface water flow. Journal of Geophysical Research: Earth Surface, 112:F03S12.
Lorenzo-Trueba, J. and Voller, V. R. (2010). Analytical and numerical solution of a generalized Stefan problem exhibiting two moving boundaries with application to ocean delta formation. Journal of Mathematical Analysis and Applications, 366(2):538–549.
Lorenzo-Trueba, J., Voller, V. R., and Paola, C. (2013). A geometric model for the dynamics of a fluvially dominated deltaic system under base-level change. Computers & Geosciences, 53:39–47.
Man, T. and Hill, K. (2021). Granular-slurry rheology and asphalt compaction. In EPJ Web of Conferences, 249:09010. EDP Sciences.
Man, T., Le, J.-L., Marasteanu, M., and Hill, K. M. (2022). Two-scale discrete element modeling of gyratory compaction of hot asphalt. Journal of Engineering Mechanics, 148(2):04021140.
Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J.-P., and Bristeau, M.-O. (2007). Numerical modeling of self-channeling granular flows and of their levee-channel deposits. Journal of Geophysical Research: Earth Surface, 112:F02017.
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., and Lucas, A. (2010). Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res., 115:F03040.
Marchi, B., PAsuTo, A., and Tecca, P. R. (1993). Flow processes on alluvial fans in the Eastern Italian Alps. Zeitschrift fur Geomorphologie, 37:447–458.
Marchi, L. and Tecca, P. (1995). Alluvial fans of the Eastern Italian Alps: morphometry and depositional processes. Geodinamica Acta, 8(1):20–27.
McKee, E. H. and Gangloff, R. A. (1969). Stratigraphic distribution of archaeocyathids in the Silver Peak Range and the White and Inyo Mountains, western Nevada and eastern California. Journal of Paleontology, 716–726.
Melton, M. A. (1965). Debris-covered hillslopes of the southern Arizona desert: consideration of their stability and sediment contribution. The Journal of Geology, 73(5):715–729.
Meng, X. and Wang, Y. (2016). Modelling and numerical simulation of two-phase debris flows. Acta Geotechnica, 11(5):1027–1045.
Mitchell, N. C. (2006). Morphologies of knickpoints in submarine canyons. Geological Society of America Bulletin, 118(5-6):589–605.
Moore, J. M. and Howard, A. D. (2005). Large alluvial fans on Mars. Journal of Geophysical Research, 110(E4):E04005.
Morgan, A. M., Wilson, S. A., and Howard, A. D. (2022). The global distribution and morphologic characteristics of fan-shaped sedimentary landforms on Mars. Icarus, 385:115137.
Mullenbach, J. (2018). Experimental Studies of the Influence of the Properties of the Matrix of a Debris Flow on Its Erosional Behavior. PhD thesis, University of Minnesota.
Murata, J. (1984). Flow and deformation of fresh concrete. Mat´eriaux et Constructions, 17(98):117–129.
Murillo, J. and Garc´ıa-Navarro, P. (2012). Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. Journal of Computational Physics, 231(4):1963–2001.
Ni, W. J. and Capart, H. (2006). Groundwater drainage and recharge by networks of irregular channels. Journal of Geophysical Research: Earth Surface, 111(F2):F02014.
O’Brien, J. S. (2006). 2-Dimensional Flood Routine Model Manual, Version 2006.01. FLO-2D Inc., Nutrioso, AZ, USA.
O’Brien, J. S., Julien, P. Y., and Fullerton, W. (1993). Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2):244–261.
Parker, G., Paola, C., Whipple, K. X., and Mohrig, D. (1998). Alluvial fans formed by channelized fluvial and sheet flow. I: Theory. Journal of Hydraulic Engineering, 124(10):985–995.
Pauli, N. S. and Gioia, G. (2007). The topography of steady sandpiles on arbitrary domains. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2081):1247–1258.
Pederson, C. A., Santi, P. M., and Pyles, D. R. (2015). Relating the compensational stacking of debris-flow fans to characteristics of their underlying stratigraphy: Implications for geologic hazard assessment and mitigation. Geomorphology, 248:47–56.
Pottmann, H. and Wallner, J. (2001). Computational Line Geometry. Springer.
Pudasaini, S. P. (2012). A general two-phase debris flow model. Journal of Geophysical Research: Earth Surface, 117:002186.
Pudasaini, S. P. and Fischer, J.-T. (2020). A mechanical model for phase separation in debris flow. International Journal of Multiphase Flow, 129:103292.
Pudasaini, S. P. and Hutter, K. (2007). Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer.
Rocha, F., Johnson, C., and Gray, J. (2019). Self-channelisation and levee formation in monodisperse granular flows. Journal of Fluid Mechanics, 876:591–641.
Roussel, N. (2006). A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cement and Concrete Research, 36:1797–1806.
Saito, K. and Oguchi, T. (2005). Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines. Geomorphology, 70(1-2):147–162.
Savage, S. and Iverson, R. (2003). Surge dynamics coupled to pore-pressure evolution in debris flows. In Proc. 3rd Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, edited by Rickenmann, D. and Chen, C., 503–514, Millpress, Rotterdam, Netherlands. Citeseer.
Savi, S., Tofelde, S., Wickert, A. D., Bufe, A., Schildgen, T. F., and Strecker, M. R. (2020). Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation. Earth Surface Dynamics, 8:303––322.
Scheidl, C. and Rickenmann, D. (2010). Empirical prediction of debris-flow mobility and deposition on fans. Earth Surface Processes and Landforms, 35(2):157–173.
Scheidl, C., Rickenmann, D., and Chiari, M. (2008). The use of airborne LiDAR data for the analysis of debris flow events in Switzerland. Natural Hazards and Earth System Sciences, 8(5):1113–1127.
Staley, D. M., Wasklewicz, T. A., and Blaszczynski, J. S. (2006). Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology, 74:152–163.
Stock, J. D., Schmidt, K. M., and Miller, D. M. (2008). Controls on alluvial fan long-profiles. GSA Bulletin, 120(5-6):619–640.
Stokes, M. and Mather, A. E. (2015). Controls on modern tributary-junction alluvial fan occurrence and morphology: High Atlas Mountains, Morocco. Geomorphology, 248:344–362.
Suri, S. and O’Rourke, J. (1986). Worst-case optimal algorithms for constructing visibility polygons with holes. In Proceedings of the second annual symposium on Computational geometry, 14–23, ACM Press, New York, USA.
Tai, Y., Heß, J., and Wang, Y. (2019). Modeling two-phase debris flows with grain- fluid separation over rugged topography: Application to the 2009 Hsiaolin event, Taiwan. Journal of Geophysical Research: Earth Surface, 124(2):305–333.
Takahashi, T. (1991). Debris Flow. IAHR Monograph, Balkema.
Tombarevic, E., Voller, V., and Vuˇsanovic, I. (2013). Detailed CVFEM algorithm for three dimensional advection-diffusion problems. CMES-Computer Modeling in Engineering & Sciences, 96(1):1–29.
Tomczyk, A. M. (2021). Morphometry and morphology of fan-shaped landforms in the high-Arctic settings of central Spitsbergen, Svalbard. Geomorphology, 392:107899.
Tripathi, A. and Khakhar, D. (2011). Rheology of binary granular mixtures in the dense flow regime. Physics of Fluids, 23(11):113302.
Trulsson, M., Andreotti, B., and Claudin, P. (2012). Transition from the viscous to inertial regime in dense suspensions. Physical review letters, 109(11):118305.
Tsai, Y.-F. (2006). Three-dimensional topography of debris-flow fan. Journal of Hydraulic Engineering, 132(3):307–318.
Tsunetaka, H., Hotta, N., Sakai, Y., and Wasklewicz, T. (2021). The effect of debris- flow sediment grain size distribution on fan forming processes. Earth Surface Dynamics Discussions, 1–20.
Tu, Y.-C. (2019). Trunk river incision of a tributary fan margin: theory, experiment and field observation. MSc thesis, National Taiwan University.
Valero-Gomez, A., Gomez, J. V., Garrido, S., and Moreno, L. (2013). The path to ef- ficiency: Fast marching method for safer, more efficient mobile robot trajectories. IEEE Robotics & Automation Magazine, 20(4):111–120.
van Gerner, H. J., van der Weele, K., van der Meer, D., and van der Hoef, M. A. (2015). Scaling behavior of coarsening Faraday heaps. Physical Review E, 92:042203.
Voller, V. (2009). Basic control volume finite element methods for fluids and solids, volume 1. World Scientific.
Voller, V. and Paola, C. (2010). Can anomalous diffusion describe depositional fluvial profiles? Journal of Geophysical Research: Earth Surface, 115:F00A13.
Whipple, K., Parker, G., Paola, C., and Mohrig, D. (1998). Channel dynamics, sediment transport, and the slope of alluvial fans: Experimental study. Journal of Geology, 106:677–693.
Whipple, K. X. and Dunne, T. (1992). The influence of debris-flow rheology on fan morphology, Owens Valley, California. Geological Society of America Bulletin, 104(7):887–900.
Williams, R. M., Zimbelman, J. R., and Johnston, A. K. (2006). Aspects of alluvial fan shape indicative of formation process: A case study in southwestern California with application to Mojave Crater fans on Mars. Geophysical Research Letters, 33(10):L10201.
Winslow, A. M. (1966). Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh. Journal of Computational Physics, 1(2):149–172.
Wu, Y.-C. (2020). Route optimization subject to debris fan risk: field, experiment and modeling study. MSc thesis, National Taiwan University.
Yang, C.-M., Chao, W.-A., Weng, M.-C., Fu, Y.-Y., Chang, J.-M., and Huang, W.-K. (2022). Outburst debris flow of Yusui stream caused by a large-scale Silabaku landslide, Southern Taiwan. Landslides, 19:1807–1811.
Yohannes, B. and Hill, K. M. (2010). Rheology of dense granular mixtures: Particle-size distributions, boundary conditions, and collisional time scales. Physical Review E, 82(6):061301.
Yohannes, B., Hsu, L., Dietrich, W., and Hill, K. (2012). Boundary stresses due to impacts from dry granular flows. Journal of Geophysical Research: Earth Surface, 117:F02027.
Yuhi, M. and Mei, C. C. (2004). Slow spreading of fluid mud over a conical surface. Journal of Fluid Mechanics, 519:337–358.
Zanuttigh, B. and Lamberti, A. (2007). Instability and surge development in debris flows. Reviews of Geophysics, 45(3).
Zhao, H. (2007). Parallel implementations of the fast sweeping method. Journal of Computational Mathematics, 421–429.
Zhao, M., Salter, G., Voller, V. R., and Li, S. (2019). Can the growth of deltaic shorelines be unstable? Earth Surface Dynamics, 7:505–513.
Zubrycky, S., Mitchell, A., McDougall, S., Strouth, A., Clague, J. J., and Menounos,B. (2021). Exploring new methods to analyse spatial impact distributions on debris-flow fans using data from south-western British Columbia. Earth Surface Processes and Landforms, 46(12):2395–2413.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91920-
dc.description.abstract沖積扇是地質學家和工程師感興趣的高地和低地過渡地帶常見的地貌。沖積扇可容納來自陡坡集水區的材料,並提供適宜居住的緩坡空間。然而,由於洪水或土石流引起的沖積扇演變也對沖積扇上或周圍的居民和基礎設施構成嚴重風險。
為了研究沖積扇的堆積行為和相關風險,本論文結合計算模擬和實驗及現地觀察。本論文提出了兩種計算模型,並根據實驗室實驗和現場數據評估它們的性能。第一個計算模型模擬受地形控制的靜態沖積扇形貌。該模型將三維形貌問題轉化為一系列二維可視多邊形問題,由此藉由計算幾何學之工具進行計算模擬。而第二個計算模型模擬了沖積扇的動態堆積過程。該模型假設沖積扇局部之坡度受材料性質(摩擦角與凝聚性)限制,以此模擬出在實驗室與現地共同可觀察到的沖積扇特徵,如陡峭的鼻狀扇趾。這兩種模型都有其廣泛的應用,儘管它們被簡化並且無法描述沖積扇表面的一些詳細動態特徵。為了研究這兩個模型中未包含的形貌動力特徵及其影響因素,本論文在實驗室進行了一系列持續土石流沖積扇實驗。我們將實驗結果與現地觀察的沖積扇資料一同分析討論,發現細顆粒含量和流動事件時間尺度會影響渠道化、撕脫動力學以及隨之而來的扇面複雜性。本論文的結果表明,沖積扇形態可以在不同的尺度上考慮:在較廣的尺度上,沖積扇可以通過旋轉表面進行模擬;在較近的尺度上,沖積扇表現出局部結構特徵,如鼻狀扇趾和土石流渠道。前者的形成可以通過材料之凝聚性進行模擬,後者的形成、大小和撕脫動力學與土石流之材料組成和流動時間尺度有關。論文提出的結果和方法適用於沖積扇演化預測、地形資料判釋、災害評估以及其他地景地貌的探討和研究。
zh_TW
dc.description.abstractAlluvial fans are common and often dense-populated landforms in the transitions of high and low lands. The evolution of alluvial fans due to floods or debris flows poses severe risks to residents and infrastructure on or around the fans. To assess and mitigate the hazards, it's important to have a better understanding of fan morphology and morphodynamics. The present thesis combines computations and observations to investigate how material properties affect the morphology of aggrading fans. On one hand, I propose hypothetical influencing material properties and develop two computational models to realize and examine them. On the other hand, I conduct a series of alluvial fan experiments and compare the results with field observations to generalize some process characteristics of fan morphodynamics. The results of this thesis implicate that alluvial fan morphologies can be considered on various scales: on a broader scale, alluvial fans can be simply modeled by surfaces of revolution; on a closer scale, alluvial fans exhibit local structure features, like snout-like toes, whose formation may be modeled by the cohesion effects in the flows, and channels, whose formation, size, and avulsion dynamics relate to flow composition and time scales. The results and methods proposed in the thesis are applicable to the alluvial fan evolution prediction, topography data interpretation, hazard assessments, and also the exploration and investigation of other geometric landscapes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:27:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:27:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
Contents iii
List of Figures vi
List of Tables xvi
List of Algorithms xvi
1 Introduction 1
1.1 Alluvial fans and related hazards 1
1.2 Alluvial fan morphologies 2
1.3 Landform monitoring and data interpretation 3
1.4 Alluvial fan modeling 4
1.5 General objectives and specific aims 4
2 Computational morphology of debris and alluvial fans on irregular terrain using the visibility polygon 8
2.1 Introduction 9
2.2 Methodology 12
2.2.1 Two-dimensional fan morphology algorithm 12
2.2.2 Visibility polygon algorithm 16
2.2.3 Three-dimensional fan morphology algorithm 22
2.3 Validation with idealized cases 28
2.3.1 Faceted topographies 29
2.3.2 Curved topographies 36
2.3.3 Interacting fans with weld lines 41
2.4 Validation with field cases 43
2.5 Algorithm implementation and performance 56
2.6 Conclusion 59
3 A control volume finite element model for predicting the morphology of cohesive-frictional debris flow deposits 61
3.1 Introduction 62
3.2 Governing equations 65
3.3 Numerical method 67
3.4 Critical slope 71
3.5 Flux limiter 73
3.6 Analytical solutions 74
3.7 Numerical model evaluation 77
3.7.1 Comparison with analytical solutions 77
3.7.2 Influence of mesh geometry and size 79
3.8 Comparisons with field and laboratory data 81
3.8.1 Comparison with field profiles 81
3.8.2 Experimental design and conditions 84
3.8.3 Comparison with canyon-plain experiments 87
3.8.4 Comparison with canyon-valley experiments 89
3.9 Conclusions 92
3.10 Code and data availability 94
4 Influence of fine particle content in debris flows on alluvial fan morphology 95
4.1 Introduction 96
4.2 Methods 99
4.2.1 Field case analysis 99
4.2.2 Laboratory Experiments 102
4.2.3 Analysis techniques 108
4.3 Field-scale Studies: Particle Properties and Channel Avulsion Signatures 113
4.4 Laboratory Experiments 114
4.5 Quantitative analyses 117
4.6 Conclusion 118
5 Conclusion 121
5.1 Summary 121
5.2 Main conclusions 121
5.3 Alluvial fan morphology and morphodynamics features and influenc-
ing factors 122
5.4 Contribution, application, and limitations of the methods 124
5.5 Future works 127
Bibliography 128
Resume 147
-
dc.language.isoen-
dc.subject旋轉面zh_TW
dc.subject沖積扇形貌zh_TW
dc.subject土石流zh_TW
dc.subject計算形態動力學zh_TW
dc.subject組成律zh_TW
dc.subjectconstitutive lawsen
dc.subjectAlluvial fansen
dc.subjectgranular-fluid flowsen
dc.subjectdebris flowsen
dc.subjectcomputational morphodynamicsen
dc.subjectsurface of revolutionen
dc.subjectmorphologyen
dc.title沖積扇之計算與實驗形貌動力學研究zh_TW
dc.titleComputational and Experimental Morphodynamics of Aggrading Fansen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree博士-
dc.contributor.coadvisor洪啟耀zh_TW
dc.contributor.coadvisorChi-Yao Hungen
dc.contributor.oralexamcommittee吳富春;Vaughan Voller;Kimberly Hill;Chris Paola;謝孟龍;賴悅仁zh_TW
dc.contributor.oralexamcommitteeFu-Chun Wu;Vaughan Voller;Kimberly Hill;Chris Paola;Meng-Long Hsieh;Steven Yueh-Jen Laien
dc.subject.keyword沖積扇形貌,旋轉面,計算形態動力學,土石流,組成律,zh_TW
dc.subject.keywordAlluvial fans,morphology,surface of revolution,computational morphodynamics,debris flows,granular-fluid flows,constitutive laws,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202204140-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf7.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved