請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍崇文 | zh_TW |
| dc.contributor.advisor | Chung-Wen Lan | en |
| dc.contributor.author | 黃新哲 | zh_TW |
| dc.contributor.author | Hsin-Che Huang | en |
| dc.date.accessioned | 2024-02-26T16:26:56Z | - |
| dc.date.available | 2024-02-27 | - |
| dc.date.copyright | 2024-02-26 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Asenbauer, J., Eisenmann, T., Kuenzel, M., Kazzazi, A., Chen, Z., & Bresser, D. (2020). The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels, 4(11), 5387-5416. doi:10.1039/d0se00175a [2] Liu, H. K., Guo, Z. P., Wang, J. Z., & Konstantinov, K. (2010). Si-based anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 20(45), 10055-10057. doi:10.1039/C0JM01702G [3] Yang, H. W., & Kim, S. J. (2018). SiOx as a Potential Anode Material for Li-Ion Batteries: Role of Carbon Coating, Doping, and Structural Modifications. In Energy Storage Devices. IntechOpen doi:10.5772/intechopen.82379 [4] Krüner, B., Odenwald, C., Jäckel, N., Tolosa, A., Kickelbick, G., & Presser, V. (2018). Silicon oxycarbide beads from continuously produced polysilsesquioxane as stable anode material for lithium-ion batteries. ACS Applied Energy Materials, 1(6), 2961-2970. doi:10.1021/acsaem.8b00716 [5] Yang, H. W., Kang, N., Myung, S. T., Kim, J., & Kim, S. J. (2018). Exceptional effect of benzene in uniform carbon coating of SiOx nanocomposite for high-performance Li-ion batteries. Journal of The Electrochemical Society, 165(7), A1247. doi:10.1149/2.0291807jes [6] Han, M., & Yu, J. (2019). Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. Journal of Power Sources, 414, 435-443. doi:10.1016/j.jpowsour.2019.01.030 [7] Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5 [8] Ak, A., & Çiçek, B. (2021). Synthesis and characterization of hydrophobic glass-ceramic thin film derived from colloidal silica, zirconium (IV) propoxide and methyltrimethoxysilane via sol–gel method. Journal of Sol-Gel Science and Technology, 98(1), 252-263. doi: 10.1007/s10971-021-05482-5 [9] Ahmed, N., Fan, H., Dubois, P., Zhang, X., Fahad, S., Aziz, T., & Wan, J. (2019). Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications. Journal of Materials Chemistry A, 7(38), 21577-21604. doi:10.1039/C9TA04575A [10] Boissiere, C., Larbot, A., van der Lee, A., Kooyman, P. J., & Prouzet, E. (2000). A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway. Chemistry of materials, 12(10), 2902-2913. doi:10.1021/cm991188s [11] Smith, K. A. (1986). A study of the hydrolysis of methoxysilanes in a two-phase system. The Journal of Organic Chemistry, 51(20), 3827-3830. doi:10.1021/jo00370a015 [12] Odenwald, C., & Kickelbick, G. (2019). Additive-free continuous synthesis of silica and ORMOSIL micro-and nanoparticles applying a microjet reactor. Journal of Sol-Gel Science and Technology, 89(1), 343-353. doi:10.1007/s10971-018-4626-x [13] Krüner, B., Odenwald, C., Jäckel, N., Tolosa, A., Kickelbick, G., & Presser, V. (2018). Silicon oxycarbide beads from continuously produced polysilsesquioxane as stable anode material for lithium-ion batteries. ACS Applied Energy Materials, 1(6), 2961-2970. doi:10.1021/acsaem.8b00716 [14] Khan, S. A., Günther, A., Schmidt, M. A., & Jensen, K. F. (2004). Microfluidic synthesis of colloidal silica. Langmuir, 20(20), 8604-8611. doi:10.1021/la0499012 [15] Weinberger, M., Pfeifer, C., Schindler, S., Diemant, T., Behm, R. J., & Wohlfahrt-Mehrens, M. (2015). Submicron-sized silicon oxycarbide spheres as anodes for alkali ion batteries. Journal of Materials Chemistry A, 3(47), 23707-23715. doi:10.1039/C5TA06277B [16] Meng, X., Huo, H., Cui, Z., Guo, X., & Dong, S. (2018). Influences of oxygen content on the electrochemical performance of a-SiOx thin-film anodes. Electrochimica Acta, 283, 183-189. doi:10.1016/j.electacta.2018.06.095 [17] Ding, J., Zhong, K., Liu, S., Wu, X., Shen, X., Cui, S., & Chen, X. (2020). Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique. Powder Technology, 373, 716-726. doi:10.1016/j.powtec.2020.07.024 [18] Chen, X., Zhou, S., You, B., & Wu, L. (2012). Mechanical properties and thermal stability of ambient-cured thick polysiloxane coatings prepared by a sol–gel process of organoalkoxysilanes. Progress in Organic Coatings, 74(3), 540-548. doi:10.1016/j.porgcoat.2012.01.021 [19] Shimoike, K., Matsuda, A., Muto, H., & Sakai, M. (2006). Synthesis of Monodispersed Inorganic-Organic Hybrid Particles from Phenyltriethoxysilane. In Key Engineering Materials (Vol. 317, pp. 677-682). Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/KEM.317-318.677 [20] Sorarù, G. D., D'andrea, G., Campostrini, R., Babonneau, F., & Mariotto, G. (1995). Structural characterization and high‐temperature behavior of silicon oxycarbide glasses prepared from sol‐gel precursors containing Si‐H bonds. Journal of the American Ceramic Society, 78(2), 379-387. doi:10.1111/j.1151-2916.1995.tb08811.x [21] Jeon, B. J., Hah, H. J., Koo, S. M., Byung, J. J., Hoe, J. H., & Sang, M. K. (2002). Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution. Journal of ceramic processing research, 3(3/2), 216-221. [22] Shi, H., Yuan, A., & Xu, J. (2017). Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries. Journal of Power Sources, 364, 288-298. doi:10.1016/j.jpowsour.2017.08.051 [23] Knozowski, D., Graczyk-Zając, M., Vrankovic, D., Trykowski, G., Sawczak, M., De Carolis, D. M., & Wilamowska-Zawłocka, M. (2021). New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties. Composites Part B: Engineering, 225, 109302. doi:10.1016/j.compositesb.2021.109302 [24] Wilamowska-Zawlocka, M., Puczkarski, P., Grabowska, Z., Kaspar, J., Graczyk-Zajac, M., Riedel, R., & Sorarù, G. D. (2016). Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity. Rsc Advances, 6(106), 104597-104607. doi:10.1039/C6RA24539K | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91918 | - |
| dc.description.abstract | 隨著電動車的發展,鋰電池市場也迎來極大的成長。矽具有4200mAh/g的高理論比電容,被認為是下一代鋰離子電池的重要材料。但矽陽極的大體積膨脹阻礙了矽在鋰離子電池中的商業利用。SiOC(silicon oxycarbide)作為Si的替代方案,更能承受鋰電池鋰化及脫鋰過程的膨脹跟收縮。因此,吾人欲研究以成本低的矽烷來合成SiOC。吾人先嘗試了各種不同的裝置,最後決定以批次反應作為實驗的方法。接著探討不同反應溫度的影響,成功在反應溫度30°C時,得到大於90%的高產率。再藉著調整甲基三甲氧基矽烷、氨水濃度的比例,成功在矽烷濃度提升至0.59M時,也可得到均勻分散的粒子。最後再透過摻3-氨丙基三甲氧基矽烷,成功用二甲基二甲氧基矽烷降低產物的O/Si比,並提升電池的循環性。此製程的優勢在於,作為原料的甲基三甲氧基矽烷相當便宜,且實驗可在常溫、常壓下簡單操作。而反應的高產率、SiOC的高容量、良好循環性有助於其未來在鋰電池市場的商業利用。 | zh_TW |
| dc.description.abstract | Silicon is important for lithium-ion batteries because of its high theoretical capacity. But the large volume expansion of silicon anodes hinders the commercial utilization. As an alternative, SiOC (silicon oxycarbide) can better withstand the expansion of Li-ion batteries during lithiation. In this study, we want to study the synthesis of SiOC by low-cost silane.First, we tried different setups and finally decided to use batch reaction. Then, we discussed the influence of reaction temperatures. The yield was more than 90% at 30°C. Next, by adjusting the ratio of methyltrimethoxysilane and NH4OH, we could get monodispersed particles when the silane concentration was increased. Finally, we successfully reduce O/Si ratio of the product and improve the cycle performance of the battery by adding 3-aminopropyltrimethoxysilane and dimethyldimethoxysilane. The advantage of this process is that methyltrimethoxysilane is quite cheap, and the experiment can be easily operated at normal temperature and pressure. The high yield of the reaction, the high capacity and good cyclability of SiOC will promote its commercial utilization in the lithium battery market in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:26:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-26T16:26:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄 致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 V 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 2 2-1 SiOC的合成方法 2 2-2 由矽烷合成SiOC 3 2-3 研究動機 6 第三章 實驗方法及實驗器材 7 3-1 實驗藥品 7 3-2 實驗設備與器材 10 3-3 實驗設計 14 第四章 研究結果及討論 19 4-1 MTMS溶液預水解時間探討 19 4-2 連續式反應探討 21 4-3 批次反應探討 24 4-4 不同DMDMS/MTMS比例探討 30 4-5 鍛燒/熱裂解探討 32 4-6 電性分析 37 第五章 結論 49 參考文獻 50 圖目錄 圖 2-1 Alcoholysis mechanism between SiCl4 and ethylene glycol[3]. 2 圖 2-2 SEM image of SiOC synthesized by SiCl4, ethylene glycol, and benzene[3]. 2 圖 2-3 SEM image of SiOC synthesized by PDMS and hexane at 800°C[6]. 3 圖 2-4 Hydrolysis and condensation reactions of MTMS[8]. 4 圖 2-5 Essential features of the silsesquioxane unit structure[9]. 4 圖 2-6 Schematic preparation procedure for the synthesis of ORMOSIL and silica particles using a microjet reactor [12]. 5 圖 3-1 Experiment setup of continuous reaction (without long tube). (a) Schematic diagram, and (b) photograph of experiment setup. 15 圖 3-2 Experiment setup of continuous reaction (with long tubes). (a) Schematic diagram, and (b) photograph of experiment setup. 16 圖 3-3 Experiment setup of batch reaction. (a) Schematic diagram, and (b) photograph of experiment setup. 17 圖 3-4 Image of SiOCs. (a) Before calcination, and (b) after calcination. 18 圖 4-1 (a) FT-IR spectra of 95% ethanol. (b) FT-IR spectra of MTMS in ethanol. (c) Calibration curve for MTMS in ethanol, using the height of the peak at 1190cm-1. (d) FT-IR spectra of 0.59M MTMS after 1day pre-hydrolysis at 40°C. 19 圖 4-2 SEM images of SiOC samples synthesized by different MTMS pre-hydrolysis time. (continuous reaction; without long tube; collect solution for ≈ 1 min; stand for 1h; 0.3M MTMS+2.2M NH4OH) (a) 12 h, and (b) 1 day. 20 圖 4-3 Mean diameter and standard deviation of SiOC samples synthesized by different MTMS pre-hydrolysis time. (continuous reaction; without long tube; collect solution for ≈ 1 min; stand for 1h; 0.3M MTMS+2.2M NH4OH) 20 圖 4-4 SEM images of SiOC samples synthesized by continuous reaction. (0.3M MTMS+2.2M NH4OH) (a) Without long tube; collect solution for ≈ 1 min; stand for 1h (b) Without long tube; collect solution for ≈ 1 h; stand for 1h. (c) With long tube; collect solution for ≈ 1 h; residence time 1h. 21 圖 4-5 SEM images of SiOC samples synthesized by continuous reaction. (with long tube; residence time 1h; 0.3M MTMS+2.2M NH4OH) (a) Product after inlet for 3h, (b) product after inlet for 4h, and (c) product after inlet for 5h. 22 圖 4-6 Mean diameter and standard deviation of SiOC samples with different inlet time. (continuous reaction; with long tube; residence time 1h; 0.3M MTMS+2.2M NH4OH) 23 圖 4-7 SEM images of SiOC samples with different reaction time. (batch reaction; 30°C water bath; 0.3M MTMS+2.2M NH4OH) (a) 10min, (b) 30min, (c) 1h, and (d) 2h. 24 圖 4-8 Mean diameter and standard deviation of SiOC samples with different reaction time. (batch reaction; 30°C water bath; 0.3M MTMS+2.2M NH4OH) 25 圖 4-9 SEM images of SiOC synthesized by different water bath temperature. (batch reaction; 0.3M MTMS+2.2M NH4OH) (a) 20°C, (b) 25°C, and (c) 30°C. 26 圖 4-10 Mean diameter and standard deviation of SiOC samples synthesized by different water bath temperature. (batch reaction; 0.3M MTMS+2.2M NH4OH) 26 圖 4-11 Yield versus time of SiOC samples synthesized by different water bath temperature. (batch reaction; 0.3M MTMS+2.2M NH4OH) 26 圖 4-12 SEM images of SiOC samples synthesized by different MTMS concentration. (batch reaction; 30°C water bath; 2.2M NH4OH) (a) 0.3M, (b) 0.59M, and (c) 0.85M. 27 圖 4-13 Mean diameter and standard deviation of SiOC samples synthesized by different MTMS concentration. (batch reaction; 30°C water bath; 2.2M NH4OH) 27 圖 4-14 SEM images of SiOC samples synthesized by different NH4OH concentration. (batch reaction; 30°C water bath) (a) 0.59M MTMS+2.2M NH4OH. (b) 0.59M MTMS+4.4M NH4OH, (c) 0.85M MTMS+2.2M NH4OH, (d) 0.85M MTMS+4.4M NH4OH, and (e) 0.85M MTMS+6.6M NH4OH 28 圖 4-15 Mean diameter and standard deviation of SiOC samples synthesized by different NH4OH concentration. (batch reaction; 30°C water bath) (a) 0.59M MTMS, and (b) 0.85M MTMS. 29 圖 4-16 SEM images of SiOC synthesized by different DMDMS/MTMS ratio. (batch reaction; 30°C water bath; 2.2M NH4OH; 0.3M MTMS/DMDMS). (a) DM0.25, (b) DM0.5, (c) DM1, and (d) DM1+5% APS. 31 圖 4-17 SEM images of SiOC DM0. (a) Before, and (b) after 1100°C 3h Ar calcination. 32 圖 4-18 XRD pattern of SiOC samples. (a)DM0, and (b)DM1. 34 圖 4-19 Thermogravimetric analysis of SiOC samples in a N2 atmosphere. 34 圖 4-20 Si2p, C1s and O1s XPS spectra of SiOC samples. 35 圖 4-21 Si2p XPS spectra of SiOC_Ph. (work done by Weinberger, M. et al) [15] 36 圖 4-22 (a) 1st discharge capacity and initial Coulombic efficiency of SiOC samples with different water bath temperature at a current density of 0.1A/g. (b) 1st charge/discharge curves of SiOC samples with different water bath temperature at a current density of 0.1A/g. 37 圖 4-23 (a) 1st discharge capacity and initial Coulombic efficiency of SiOC samples synthesized by different MTMS concentration (2.2M NH4OH) at a current density of 0.1A/g. (b) 1st charge/discharge curves of SiOC samples synthesized by different MTMS concentration (2.2M NH4OH) at a current density of 0.1A/g. 38 圖 4-24 (a) 1st discharge capacity and initial Coulombic efficiency of SiOC samples synthesized by different NH4OH concentration (0.59M MTMS) at a current density of 0.1A/g. (b) 1st charge/discharge curves of SiOC samples synthesized by different NH4OH concentration (0.59M MTMS) at a current density of 0.1A/g. (c) 1st discharge capacity and initial Coulombic efficiency of SiOC samples synthesized by different NH4OH concentration (0.85M MTMS) at a current density of 0.1A/g. (d) 1st charge/discharge curves of SiOC samples synthesized by different NH4OH concentration (0.85M MTMS) at a current density of 0.1A/g. 39 圖 4-25 (a) 1st discharge capacity and initial Coulombic efficiency of SiOC samples synthesized by different DMDMS/MTMS ratio at a current density of 0.1A/g. (b) 1st charge/discharge curves of SiOC samples synthesized by different DMDMS/MTMS ratio at a current density of 0.1A/g. 40 圖 4-26 (a) 1st discharge capacity and initial Coulombic efficiency of SiOC samples with different calcination temperature for 3h in an Ar atmosphere at a current density of 0.1A/g. (b) 1st charge/discharge curves of SiOC samples with different calcination temperature for 3h in an Ar atmosphere at a current density of 0.1A/g. 41 圖 4-27 (a) 1st discharge capacity and initial Coulombic efficiency of SiOC samples with different calcination time at 1100°C in an Ar atmosphere at a current density of 0.1A/g. (b) 1st charge/discharge curves of SiOC samples with different calcination time at 1100°C in an Ar atmosphere at a current density of 0.1A/g. 42 圖 4-28 (a) 1st discharge capacity and initial Coulombic efficiency of SiOC samples with different calcination atmosphere at 1100°C 3h at a current density of 0.1A/g. (b) 1st charge/discharge curves of SiOC samples with different calcination atmosphere at 1100°C 3h at a current density of 0.1A/g. 42 圖 4-29 Cyclic voltammetry curves of SiOC samples at a scanning rate of 0.1 mV /s, and voltage range between 0.01 V and 3 V vs. Li+/Li for the first 3 cycles. (a) DM0, and (b) DM1. 43 圖 4-30 Cycle performance and Coulombic efficiency of SiOC samples. (Current density: 0.1A/g for first cycle; 1A/g for 2-10 cycles; 2A/g after 11 cycles) 44 圖 4-31 Rate capability of SiOC samples at 0.1−3A/g. 45 圖 4-32 Cycling performance and Coulombic efficiency of SiOC DM1. (Current density: 0.1A/g for first 3 cycles; 0.5A/g after 4 cycles) 45 圖 4-33 SEM images of electrodes before and after 180 cycles. (a) Before cycle, and (b) after 180 cycles. 46 圖 4-34 Cycling performance and Coulombic efficiency of SiOC. (work done by Krüner, B. et al) [4] 47 圖 4-35 (a) 1st charge/discharge curves of SiOC. (b) Cycling performance and Coulombic efficiency of SiOC synthesized by GIGA SOLAR MATERIALS CORP. (Current density: 0.1A/g for first cycle; 1A/g for 2-10 cycles; 2A/g after 11 cycles) 48 表目錄 表 3-1 Composition of precursor solution A. 14 表 3-2 Composition of precursor solution A (adding DMDMS). 17 表 4-1 Elemental composition of SiOC DM0 after calcination measured by oxygen-nitrogen analyzer and carbon-sulfur analyzer. 33 表 4-2 Elemental composition of SiOC synthesized by different DMDMS/MTMS ratio after 1100°C 3h Ar calcination measured by oxygen-nitrogen and carbon-sulfur analyzer. 33 表 4-3 Elemental composition of SiOC measured by XPS. 36 表 4-4 1st discharge capacity, ICE, and retention of SiOC compared with other literatures. 47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 甲基三甲氧基矽烷 | zh_TW |
| dc.subject | 矽烷 | zh_TW |
| dc.subject | 負極材料 | zh_TW |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | 球形SiOC | zh_TW |
| dc.subject | spherical SiOC | en |
| dc.subject | lithium-ion battery | en |
| dc.subject | anode material | en |
| dc.subject | methyltrimethoxysilane | en |
| dc.subject | silane | en |
| dc.title | 矽烷合成SiOC在鋰電池負極材料之研究 | zh_TW |
| dc.title | Synthesis of SiOC by Alkoxysilane for Lithium-Ion Battery Anode Materials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王丞浩;顏文群;黃建修 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Hao Wang;Wen-Chun Yen;Jian-Shiou Huang | en |
| dc.subject.keyword | 矽烷,甲基三甲氧基矽烷,球形SiOC,鋰離子電池,負極材料, | zh_TW |
| dc.subject.keyword | silane,methyltrimethoxysilane,spherical SiOC,lithium-ion battery,anode material, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202203094 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 3.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
