Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91911
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor曾于恒zh_TW
dc.contributor.advisorYu-Heng Tsengen
dc.contributor.author馬丹妮zh_TW
dc.contributor.authorDanielle Manalaysayen
dc.date.accessioned2024-02-26T16:24:55Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAmoudry, L. O. and A. J. Souza (2011). Deterministic coastal morphological and sediment transport modeling: A review and discussion. Reviews of Geophysics 49(2), 1–21.
Blondeaux, P. (1990). Sand ripples under sea waves part 1. ripple formation. Journal of Fluid Mechanics 218, 1–17.
Blondeaux, P. and G. Vittori (1991). Vorticity dynamics in an oscillatory flow over a rippled bed. Journal of Fluid Mechanics 226, 257–289.
Brakenhoff, L., R. Schrijvershof, J. van der Werf, B. Grasmeijer, G. Ruessink, and
M. van der Vegt (2020, 11). From ripples to large scale sand transport: The effects of bedform-related roughness on hydrodynamics and sediment transport patterns in Delft3d. Journal of Marine Science and Engineering 8, 1–25.
Chen, X. and X. Yu (2015). A numerical study on oscillatory flow induced sediment motion over vortex ripples. Journal of Physical Oceanography 45, 228–246.
Cherlet, J., G. Besio, P. Blondeaux, V. V. Lancker, E. Verfaillie, and G. Vittori(2007). Modeling sand wave characteristics on the Belgian continental shelf and in the Calaishyphen;dover strait. Journal of Geophysical Research 112, 6002.
Chou, Y. J., S. H. Gu, and Y. C. Shao (2015). An EulerLagrange model for simulating fine particle suspension in liquid flows. Journal of Computational Physics 299(1), 955–973.
Chou, Y. J. and Y. C. Shao (2016). Numerical study of particle induced RayleighTaylor instability: Effects of particle settling and entrainment. Physics of Fluids 28(4).
Cui, A. (1999). On Parallel Computation of Turbulent Rotationg Stratified Flows. Ph. D. thesis.
Dimas, A. A. and G. A. Leftheriotis (2019). Mobility Parameter and Sand Grain Size Effect on Sediment Transport Over Vortex Ripples in the Orbital Regime. Journal of Geophysical Research: Earth Surface 124(1), 2–20.
Finn, J. R., M. Li, and S. V. Apte (2016). Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer. Journal of Fluid Mechanics 796, 340–385.
Grant, W. D. and O. S. Madsen (1982). Movable bed roughness in unsteady oscillatory flow. Journal of Geophysical Research 87, 469–481.
Harris, J. C. and S. T. Grilli (2014). Large eddy simulation of sediment transport over rippled beds. Nonlinear Processes in Geophysics 21, 1169–1184.
Li, M. Z. and C. L. Amos (2001). Sedtrans96: the upgraded and better calibrated sediment transport model for continental shelves .
Liao, H. R. and H. S. Yu (2005). Morphology, hydrodynamics and sediment characteristics of the Changyun sand ridge offshore western Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 16, 621–640
Liao, H. R., H. S. Yu, and C. C. Su (2008, 2). Morphology and sedimentation of sand bodies in the tidal shelf sea of eastern Taiwan strait. Marine Geology 248, 161–178.
Mellor, G. (2002). Oscillatory bottom boundary layers. Journal of Physical Oceanogra phy 32(11), 3075 – 3088.
Nielsen, P. (1986). Suspended sediment concentrations under waves. Coastal Engineer ing 10(1), 23–31.
O’Donoghue, T., J. S. Doucette, J. J. van der Werf, and J. S. Ribberink (2006, 12). The dimensions of sand ripples in full-scale oscillatory flows. Coastal Engineering 53, 997–1012.
Richards, K. J. (1980). The formation of ripples and dunes on an erodible bed. Journal of Fluid Mechanics 99, 697–618.
Salimi-Tarazouj, A., T. J. Hsu, P. Traykovski, Z. Cheng, and J. Chauchat (2021). A Numerical Study of Onshore Ripple Migration Using a Eulerian Twophase Model. Journal of Geophysical Research: Oceans 126(2), 1–27.
Schiller, L. and Z. Naumann (1935). A drag coefficient correlation. Z. Ver. Dtsch.Ing. 77(318), 318–320.
Sleath, J. (1982). The suspension of sand by waves. Journal of Hydraulic Research 20, 439–452.
Soulsby, R. L. and J. S. Damgaard (2005). Bedload sediment transport in coastal waters. Coastal Engineering 52(8), 673–689.
Styles, R. and S. M. Glenn (2000). Modeling stratified wave and current bottom boundary layers on the continental shelf. Journal of Geophysical Research: Oceans 105(C10), 24119–24139.
Tang, Y., E. A. J. F. Peter, J. A. M. Kuipers, S. H. L. Kriebitzsch, and M. A. van der Hoef (2014). A new drag correlation from fully resolved simulations of flow past mono-disperse static arrays of spheres. American Institute of Chemical Engineers AIChE J 61, 688–698.
Tenneti, S., R. Garg, and S. Subramaniam (2011, 11). Drag law for mono-disperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. International Journal of Multiphase Flow 37, 1072–1092.
van der Werf, J. J., J. S. Doucette, T. O’Donoghue, and J. S. Ribberink (2007). Detailed measurements of velocities and suspended sand concentrations over full-scale ripples in regular oscillatory flow. Journal of Geophysical Research: Earth Surface 112(2), 1–18.
van der Werf, J. J., V. Magar, J. Malarkey, K. Guizien, and T. O’Donoghue (2008). 2dv Modelling of sediment transport processes over full-scale ripples in regular asymmetric oscillatory flow. Continental Shelf Research 28, 1040–1056.
Van Rijn, L. (2007). Unified view of sediment transport by currents and waves. i: Initiation of motion, bed roughness, and bedload transport. Journal of Hydraulic Engineering 133(6), 649–667.
Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango (2008). Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers and Geosciences 34, 1284–1306.
Yuan, J. and D. Wang (2019). An experimental investigation of acceleration skewed oscillatory flow over vortex ripples. Journal of Geophysical Research: Oceans 124, 9620–9643
Zang, Y. (1994). A non-staggered grid, fractional step method for time-dependent incompressible Navier Stokes equations in curvilinear coordinates. Journal of Computational Physics 114(1), 18–33.
Zedler, E. A., R. L. Street, and M. Asce (2006). Sediment transport over ripples in oscillatory flow. Journal of Hydraulic Engineering 132(2), 180–193.
Zhou, J., Z. Wu, X. Jin, D. Zhao, Z. Cao, and W. Guan (2018, 12). Observations and analysis of giant sand wave fields on the Taiwan banks, northern south china sea. Marine Geology 406, 132–141.53
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91911-
dc.description.abstractnonezh_TW
dc.description.abstractRipple indicators remain to be a major limitation of large-scale hydrodynamic modelling in coastal environments due to the lack of appropriate validation and direct measurement of near-bed dynamics. This limitation can be overcome with improved small-scale process models that can capture fluid-particle interactions and near-bed dynamics over the ripples. Here, we simulate the sediment transport over ripples induced by an oscillatory flow using a two-phase Euler-Lagrange model. The vortex ripple dimension, oscillatory flow condition, and sediment grain information are obtained from a wave-tunnel laboratory experiment. The two-phase model can well simulate the key patterns of observed oscillatory velocity flow field over a vortex ripple. Particularly, the weaker vortex can be found on the stoss side as compared to the stronger vortex on the lee side during reversals of the oscillatory flow that were ahead of the free-stream velocity. Sensitivity tests of three different sediment grain diameters (0.35mm, 0.44mm and 0.53 mm) are compared to examine the feedback of sediments particles with varying grain sizes. Our simulation results showed that finer sediment particles (0.35 mm and 0.44 mm) have higher particle motion and entrainment that enhanced the local vortex formation but neither high enough to alter the oscillatory flow nor enhance the turbulent kinetic energy. On the other hand, coarser sediment (0.53 mm) have lesser particle motion and entrainment but induced constant inter-phase drag that increasingly enhanced the turbulent kinetic energy of the oscillatory flow. Our results showed that different sediment grain size could have different drag contribution to the energy budget of an oscillatory flow.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:24:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:24:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ......................ii
Abstract ......................iv
Contents...................... vi
List of Figures ...................... viii
List of Tables ......................xi
Chapter 1 Introduction......................1
1.1 Coastal Sediment Transport......................1
1.2 Ripples and Small Scale Sediment Transport Studies ......................2
1.3 Objective of Our Study......................3
Chapter 2 Methodology ......................5
2.1 Two-phase Euler-Lagrange Model................... 5
2.2 Numerical Scheme ........................... 7
2.3 Simulation Setup............................ 7
2.3.1 Ripple Laboratory Experiment: Mr5b63 . . . . . . . . . . . . . . . 7
2.3.2 Flow Settings ............................. 8
2.3.3 Spatial and Temporal Settings .................... 9
2.3.4 Experiment Cases....................9
Chapter 3 Results......................15
3.1 Validation......................15
3.2 Time Dependent Results ........................ 16
3.2.1 Control Case: Flow Velocity ..................... 16
3.2.2 Case with Sediments: Instantaneous Sediments distribution . . . . . 17
3.2.3 Case with Sediments: Span wise Summation of Sediments Distribution................................. 18
3.2.4 Case with Sediments: Flow Field Difference . . . . . . . . . . . . . 18
3.3 Time Averaged Results......................... 19
Chapter 4 Discussion......................... 41
Chapter 5 Summary......................... 47
References......................... 49

List of Figures
2.1 Positive values u(t) correspond to onshore flow while negative values of u(t) correspond to offshore directed .................... 11
2.2 Ripple width λ=0.41 m and ripple height η=0.076 m . . . . . . . . . . 11
2.3 Lx x Ly x Lz =1.64 m x 0.6 m x 0.41 m ................. 12
2.4 Sediments particles were initialized between x= 0.5 and 0.9 . . . . . . . 12
3.1 Time series of spanwise average wall stress in the stream wise direction. After one period the simulation reached quasi steady solution. . . . . . . 22
3.2 Snapshot of the instantaneous span wise averaged vorticity on the first cycle. The formation of the vortex started at the lee slope at the end of the onshore flow t = 0.48 T and the ejection to the crest happened flow reversal t=0.52 T................................... 22
3.3 Flow field results of Mr5b63 laboratory experiment: Screenshot of Figure
1 on van der Werf et al. (2007). Top most panel is the calculated free stream velocity, the letters corresponds to the t/T where following oscillatory velocity flow feature occurs: (A) off onshore flow reversal; (B) free stream is accelerating onshore; (C) maximum onshore free stream velocity; (D) onshore free stream velocity deceleration; (E) on offshore flow reversal; (F) free stream acceleration offshore; (G) maximum offshore free stream velocity; and (H) offshore free stream velocity deceleration. . . . 23
3.4 Top most panel is the calculated free stream velocity with the letters (A) to (H) that corresponds to the approximate time of 8 flow features described in Figure3.3. Panels (A) to (H) are the flow field results of the control case(no sediment)simulations. ...................... 24
3.12 Top most panel is the control case followed by the simulation cases with sediments 0.35 mm case, 0.44 mm case and 0.53 mm case. . . . . . . . 37
3.12 Top most panel is the control case followed by the simulation cases with sediments 0.35 mm case, 0.44 mm case and 0.53 mm case. . . . . . . . 38
3.12 Top most panel is the control case followed by the simulation cases with sediments 0.35 mm case, 0.44 mm case and 0.53 mm case. . . . . . . . 39
4.1 Top panel is the time series of the total kinetic energy for control case. Middle panel is the time series of the total kinetic energy for the simulation case with sediments. Note that there are three lines plotted on this panel. Last panel is the difference of the second and first panel. Black filled marker is for 0.35 mm case, gray filled marker is for 0.44 mm case and white filled marker is for 0.53 mm case................... 44
4.2 Time series turbulent kinetic energy for all three cases. Black filled marker is for 0.35 mm case, grey filled marker is for 0.44 mm case and white filled marker is for 0.53 mm case. ..................... 45
4.3 Time series ∆PE due to the motion of sediment particles for all three cases. Black filled marker is for 0.35 mm case, grey filled marker is for 0.44 mm case and white filled marker is for 0.53 mm case. . . . . . . . . 45
4.4 Time series of energy dissipation due to inter phase drag for all three cases. Black filled marker is for 0.35 mm case, gray filled marker is for 0.44 mm case and white filled marker is for 0.53 mm case . . . . . . . . . . . . . 46

List of Tables
2.1 Overview of all 4 experiment cases: Sediment diameter size dsed, Relaxation time τsed, Number of particles per grid Ngrid, Total number of particle Nsed, Total simulation time CPU time .................... 13
-
dc.language.isoen-
dc.subject振盪流zh_TW
dc.subject沙紋zh_TW
dc.subject泥沙傳輸zh_TW
dc.subject近海床zh_TW
dc.subject泥沙顆粒zh_TW
dc.subjectparticlesen
dc.subjectsediment transporten
dc.subjectnumerical simulationen
dc.subjectoscillatory flowen
dc.subjectrippleen
dc.title使用二相歐拉-拉格朗日模式模擬泥沙在沙紋上的傳輸zh_TW
dc.titleSimulation of Sediment Transport over Ripples using Two-phase Euler Lagrange modelen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周逸儒;郭志禹zh_TW
dc.contributor.oralexamcommitteeYi-Ju Chou;Chih-Yu Kuoen
dc.subject.keyword沙紋,振盪流,泥沙顆粒,近海床,泥沙傳輸,zh_TW
dc.subject.keywordripple,oscillatory flow,particles,sediment transport,numerical simulation,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202204196-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-29-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
Appears in Collections:海洋研究所

Files in This Item:
File SizeFormat 
ntu-110-2.pdf13.26 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved