Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91904
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳恩賜zh_TW
dc.contributor.advisorJoshua Oon Soo Gohen
dc.contributor.author陳之邑zh_TW
dc.contributor.authorChih-Yi Chenen
dc.date.accessioned2024-02-26T16:22:51Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2024-
dc.date.submitted2024-01-23-
dc.identifier.citationBehrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What is a cognitive map? organizing knowledge for flexible behavior. Neuron, 100(2), 490–509. https://doi.org/10.1016/j.neuron. 2018.10.002
Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking [PMID: 18889466]. The Journal of General Psychology, 39(1), 15–22. https:// doi.org/10.1080/00221309.1948.9918159
Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241–254. https: //doi.org/10.1016/j.tics.2013.03.003
Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80(3), 807–815. https://doi.org/10.1016/j. neuron.2013.10.044
Chen, C.-C., Su, Y.-S., Tu, Y.-Z., & Goh, J. O. S. (2019). Default-mode network activation underlies accurate contextual processing of exclusive disjunctions in older but not younger adults. NeuroImage, 201, 116012. https://doi.org/10.1016/j.neuroimage. 2019.116012
Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. J. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science, 352(6292), 1464–1468. https: //doi.org/10.1126/science.aaf0941
Dayan, P. (1993). Improving generalization for temporal difference learning: The successor representation. Neural Computation, 5(4), 613–624. https://doi.org/10.1162/ neco.1993.5.4.613
De Zeeuw, C. I., Lisberger, S. G., & Raymond, J. L. (2021). Diversity and dynamism in the cerebellum. Nature Neuroscience, 24(2), 160–167. https://doi.org/10.1038/ s41593-020-00754-9
Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7), 961–974. https://doi.org/10.1016/ S0893-6080(99)00046-5
Eichenbaum, H. (2017). Prefrontal–hippocampal interactions in episodic memory. Nature Reviews Neuroscience, 18(9), 547–558. https://doi.org/10.1038/nrn.2017.74
Eppinger, B., Walter, M., Heekeren, H., & Li, S.-C. (2013). Of goals and habits: Age-related and individual differences in goal-directed decision-making. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00253
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787
Galvin, J. E., Roe, C. M., Powlishta, K. K., Coats, M. A., Muich, S. J., Grant, E., Miller, J. P., Storandt, M., & Morris, J. C. (2005). The ad8. Neurology, 65(4), 559–564. https://doi.org/10.1212/01.wnl.0000172958.95282.2a
Gershman, S., Cohen, J., & Niv, Y. (2010). Learning to selectively attend. Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32).
Glitz, L., Juechems, K., Summerfield, C., & Garrett, N. (2022). Model sharing in the human medial temporal lobe. Journal of Neuroscience, 42(27), 5410–5426. https: //doi.org/10.1523/JNEUROSCI.1978-21.2022
Goh, J. O. S. (2011). Functional dedifferentiation and altered connectivity in older adults: Neural accounts of cognitive aging. Aging Dis, 2(1), 30–48.
Hallock, H. L., Wang, A., & Griffin, A. L. (2016). Ventral midline thalamus is critical for hippocampal-prefrontal synchrony and spatial working memory. Journal of Neuroscience, 36(32), 8372–8389. https://doi.org/10.1523/JNEUROSCI.0991-16.2016
Hämmerer, D., Schwartenbeck, P., Gallagher, M., FitzGerald, T. H. B., Düzel, E., & Dolan, R. J. (2019). Older adults fail to form stable task representations during model-based reversal inference. Neurobiology of Aging, 74, 90–100. https: //doi.org/10.1016/j.neurobiolaging.2018.10.009
Koen, J. D., & Rugg, M. D. (2019). Neural dedifferentiation in the aging brain. Trends in Cognitive Sciences, 23(7), 547–559. https://doi.org/10.1016/j.tics.2019.04.012
Kostadinov, D., & Häusser, M. (2022). Reward signals in the cerebellum: Origins, targets, and functional implications. Neuron, 110(8), 1290–1303. https://doi.org/10.1016/ j.neuron.2022.02.015
Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479–486. https: //doi.org/10.1016/S1364-6613(00)01769-1
Lin, Y.-C. (2020). Navigational ageny enhanced neural representations of spatial environments [Master’s thesis, National Taiwan University]. https://doi.org/10.6342/ NTU202003498
Mack, M. L., Preston, A. R., & Love, B. C. (2020). Ventromedial prefrontal cortex compression during concept learning. Nature Communications, 11(1), 46. https://doi. org/10.1038/s41467-019-13930-8
Manns, J. R., & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16(9), 795–808. https://doi.org/10.1002/hipo.20205
Milner, B. (1963). Effects of Different Brain Lesions on Card Sorting: The Role of the Frontal Lobes. Archives of Neurology, 9(1), 90–100. https://doi.org/10.1001/ archneur.1963.00460070100010
Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M., Daw, N. D., & Gershman, S. J. (2017). The successor representation in human reinforcement learning. Nature Human Behaviour, 1(9), 680–692. https://doi.org/10.1038/s41562-017-0180-8
Momennejad, I. (2020). Learning structures: Predictive representations, replay, and generalization [Understanding memory: Which level of analysis?]. Current Opinion in Behavioral Sciences, 32, 155–166. https://doi.org/10.1016/j.cobeha.2020.02.017
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
Nassar, M. R., Bruckner, R., Gold, J. I., Li, S.-C., Heekeren, H. R., & Eppinger, B. (2016). Age differences in learning emerge from an insufficient representation of uncertainty in older adults. Nature Communications, 7(1), 11609. https://doi.org/10. 1038/ncomms11609
Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J., & Robbins, T. W. (1991). Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 29(10), 993–1006. https://doi.org/10.1016/0028-3932(91)90063-E
Park, D. C., & Goh, J. (2009). Successful aging. In Handbook of neuroscience for the behavioral sciences. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470478509. neubb002061
Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences, 101(35), 13091–13095. https://doi.org/10.1073/pnas. 0405148101
Place, R., Farovik, A., Brockmann, M., & Eichenbaum, H. (2016). Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nature Neuroscience, 19(8), 992–994. https://doi.org/10.1038/nn.4327
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity mri networks arise from subject motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j. neuroimage.2011.10.018
Robbins, T., James, M., Owen, A., Sahakian, B., McInnes, L., & Rabbitt, P. (2010). Cambridge neuropsychological test automated battery (cantab): A factor analytic study of a large sample of normal elderly volunteers. Dementia, 5(5), 266–281. https: //doi.org/10.1159/000106735
Robitsek, R. J., Fortin, N. J., Koh, M. T., Gallagher, M., & Eichenbaum, H. (2008). Cognitive aging: A common decline of episodic recollection and spatial memory in rats. J Neurosci, 28(36), 8945–8954. https://doi.org/10.1523/JNEUROSCI.1893-08.2008
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332. https: //doi.org/10.1016/j.tics.2017.02.005
Spisák, T., Spisák, Z., Zunhammer, M., Bingel, U., Smith, S., Nichols, T., & Kincses, T. (2019). Probabilistic tfce: A generalized combination of cluster size and voxel intensity to increase statistical power. NeuroImage, 185, 12–26. https://doi.org/ 10.1016/j.neuroimage.2018.09.078
Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20(11), 1643–1653. https://doi.org/10. 1038/nn.4650
Su, Y.-S. (2022). Evaluation of predictive processing in younger and older neural circuits [Doctoral dissertation, National Taiwan University]. https://doi.org/10.6342/ NTU202210190
Takahashi, Y. K., Roesch, M. R., Wilson, R. C., Toreson, K., O’Donnell, P., Niv, Y., & Schoenbaum, G. (2011). Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nature Neuroscience, 14(12), 1590–1597. https://doi.org/10.1038/nn.2957
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189– 208. https://doi.org/10.1037/h0061626
Wechsler, D. (1981). Wais-r : Wechsler adult intelligence scale-revised.
Wechsler, D. (1997). Wms-iii : Wechsler memory scale - third edition.
Wilson, R., & Niv, Y. (2012). Inferring relevance in a changing world. Frontiers in Human Neuroscience, 5, 189. https://doi.org/10.3389/fnhum.2011.00189
Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a cognitive map of task space. Neuron, 81(2), 267–279. https://doi.org/10.1016/ j.neuron.2013.11.005
Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 37–49. https://doi.org/ 10.1016/0022-3956(82)90033-4
Zentall, T. R., & Riley, D. A. (2000). Selective attention in animal discrimination learning. The Journal of General Psychology, 127(1), 45–66. https://doi.org/10.1080/ 00221300009598570
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91904-
dc.description.abstract身處於不斷變化的環境中,生物經常需要有效的處理訊息和執行動作以面對日常生存挑戰。為此,區分對生存極為重要的相關訊息或特徵非常關鍵。同時,準確地掌握環境中各種元素或概念之間的真實結構或關係也同等重要。在這些多面向的過程中,雜訊的存在可能會干擾智能體準確導航到其期望目標的能力。至關重要的是,有證據表明,老年人不僅在涉及不確定性的任務中感到困難,而且在維持任務表徵和保留任務結構方面也面臨著挑戰。然而,目前尚不清楚不同來源的不確定性如何解釋老年人在日常生活中的認知表現。在這項研究中,我們探討了神經策略應對這兩個訊息處理的不確定性時與年齡相關的潛在差異。我們首先設計了五種基於強化學習演算法的計算模型,這些模型為評估年輕人和老年人在動態不確定情境下訊息處理的差異提供了理論基礎。接下來,我們執行了一個兩階段基於謎題的功能性磁振造影(fMRI)實驗,以觀察真實人類在應對不同程度的特徵和結構不確定性時的行為和神經機制。在這項任務中,參與者需要從包含不同的顏色和形狀組合的鑰匙中選擇正確的鑰匙,以解鎖各個房間的門,從而最大化獎勵。27名年輕人(年齡 = 22.28 ± 1.69,17名女性,最小 = 20.21歲,最大 = 25.86歲)和22名老年人(年齡 = 68.63 ± 2.40,14名女性,最小 = 65.49歲,最大 = 74.03歲)的行為結果顯示,與年輕對照組相比,隨著特徵雜訊的增加,老年人的表現顯著下降,顯示其在應對特徵雜訊方面表現出次優的能力。使用計算模型對潛在認知機制的進一步分析表明,年輕人更傾向於採用無模型的演算法,而老年人則傾向於更基於模型的策略,儘管這兩個年齡組都擁有識別打開房門的相關維度的模組。最後,27名年輕人(年齡 = 22.28 ± 1.69,17名女性,最小 = 20.21歲,最大 = 25.86歲)和20名老年人(年齡 = 68.46 ± 2.27,13名女性,最小 = 65.49歲,最大 = 74.03歲)的腦影像結果顯示,結構雜訊增加會引起預設模式區域更高的反應,表示在老年人的內側額葉活化增加,以及年輕人的楔前葉活化增加。相反,特徵雜訊升高會促使非預設模式區域產生更高的反應,在老年人中,小腦和額葉的反應增加,而在年輕人中,海馬旁和顳葉中迴的反應增加。研究結果反映了年齡相關導致應對環境不確定性時不同行為的神經計算策略差異。zh_TW
dc.description.abstractIn ever-changing environments, organisms face daily survival challenges that demand effective information processing and action execution. To this end, it is essential to discern pertinent information or features crucial for survival. Simultaneously, accurately grasping the true structure or relationships between various elements or concepts within the environment is equally important. Amidst these multifaceted processes, the presence of noise can disrupt an agent’s ability to navigate accurately toward its desired objectives. Critically, evidence shows that older adults not only struggle with tasks involving uncertainty but also face challenges in maintaining task representation and preserving task structure. However, it remains unclear how various sources of uncertainty contribute in explaining older adult cognitive performances in daily life. In this study, we explore potential age-related differences in neural strategic coping with uncertainty in both of these two information processing facets. We first devised five computational models based on reinforcement learning algorithms. The models provided theoretical bases for assessing younger and older adult information processing differences in dynamic uncertain scenarios. Next, we conducted a two-stage puzzle-based functional magnetic resonance imaging (fMRI) experiment to observe real human behavior and neural mechanisms in response to varying levels of representational and structural uncertainty. In this task, participants selected the correct keys, each comprising different combinations of colors and shapes, to unlock doors to various rooms and thereby maximize rewards. The behavioral results from 27 younger adults (age = 22.28 ± 1.69, 17 female, minimum = 20.21 years old, maximum = 25.86 years old) and 22 older adults (age = 68.63 ± 2.40, 14 female, minimum = 65.49 years old, maximum = 74.03 years old) revealed that older adults exhibit a suboptimal coping with noise in features compared to their younger counterparts, as evidenced by a significant performance decline as noise in features increased. A further analysis of the underlying cognitive mechanisms, using the computational models, suggested that younger adults favored a more model-free algorithm, while older adults tended toward a more model-based strategy, despite both age groups possessing the module to identify the relevant dimensions of keys to open room doors. Finally, brain imaging results from 27 younger adults (age = 22.28 ± 1.69, 17 female, minimum = 20.21 years old, maximum = 25.86 years old) and 20 older adults (age = 68.46 ± 2.27, 13 female, minimum = 65.49 years old, maximum = 74.03 years old) revealed that increased noise in structure induced higher responses in default mode areas, with heightened medial frontal activation in older adults but increased precuneus activation in younger adults. Conversely, elevated noise in feature prompted higher responses in non-default mode areas, with increased cerebellar and frontal responses in older adults and heightened parahippocampal and middle temporal responses in younger adults. The findings reflect age-related differences in neurocomputational strategies that yield distinct behaviors in response to environmental uncertainty.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:22:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:22:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix
Introduction 1
Uncertainty, Predictive Coding, and Reinforcement Learning 1
Representation Learning and Successor Representation 5
Cognitive Aging, Features, and Structure 8
Method 11
Participants 11
Experimental Design 13
Training Session 15
Functional Imaging Acquisition 16
Functional Imaging Preprocessing 17
Functional Imaging Whole-Brain Analysis 18
Computational Models 19
Model Fitting and Model Comparison 22
Neuropsychological Assessments 23
Result 23
Behavioral Results 23
Older Adults Are More Susceptible to Noise in Features Compared to Younger Adults 23
Computational Results 24
Model Selection Favored Different Models for Younger and Older Adults 24
Brain Imaging Results 25
Heightened Neural Responses in Older Brains with Increased Noise Levels Compared to Younger Brains 25
Analyzing the First and Last Half of Each Condition Reveals Distinct Neural Response Patterns Between Younger and Older Adults 26
Discussion 27
References 32
-
dc.language.isoen-
dc.subject老化zh_TW
dc.subject功能性磁振造影zh_TW
dc.subject強化學習zh_TW
dc.subject預測編碼zh_TW
dc.subject後繼表徵zh_TW
dc.subject表徵學習zh_TW
dc.subject不確定性zh_TW
dc.subjectsuccessor representationen
dc.subjectrepresentation learningen
dc.subjectuncertaintyen
dc.subjectreinforcement learningen
dc.subjectfMRIen
dc.subjectagingen
dc.subjectpredictive codingen
dc.title年齡差異在處理環境選擇結果映射中特徵與結構擾動的決策策略zh_TW
dc.titleAge Differences in Decision-making Strategies to Process Featural vs. Structural Perturbations in Environmental Choice-Outcome Mappingsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張玉玲;黃從仁zh_TW
dc.contributor.oralexamcommitteeYu-Ling Chang;Tsung-Ren Huangen
dc.subject.keyword老化,不確定性,表徵學習,後繼表徵,預測編碼,強化學習,功能性磁振造影,zh_TW
dc.subject.keywordaging,uncertainty,representation learning,successor representation,predictive coding,reinforcement learning,fMRI,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202400160-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-24-
dc.contributor.author-college醫學院-
dc.contributor.author-dept腦與心智科學研究所-
dc.date.embargo-lift2029-01-01-
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2029-01-01
15.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved