請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91898完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | zh_TW |
| dc.contributor.advisor | Cheng-Che Hsu | en |
| dc.contributor.author | 許哲瑋 | zh_TW |
| dc.contributor.author | Jhe-Wei Syu | en |
| dc.date.accessioned | 2024-02-26T16:21:07Z | - |
| dc.date.available | 2024-02-27 | - |
| dc.date.copyright | 2024-02-26 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B-Atomic Spectroscopy, 57 (4), 609-658 (2002). 2. P. J. Bruggeman, F. Iza, and R. Brandenburg, "Foundations of atmospheric pressure non-equilibrium plasmas," Plasma Sources Sci. Technol., 26 (12)(2017). 3. N. S. J. Braithwaite, "Introduction to gas discharges," Plasma Sources Sci. Technol., 9 (4), 517-527 (2000). 4. K. J. Kanarik, T. Lill, E. A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, and R. A. Gottscho, "Overview of atomic layer etching in the semiconductor industry," Journal of Vacuum Science & Technology A, 33 (2)(2015). 5. G. Y. Zhang, P. F. Qi, X. R. Wang, Y. R. Lu, X. L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, and H. J. Dai, "Selective etching of metallic carbon nanotubes by gas-phase reaction," Science, 314 (5801), 974-977 (2006). 6. L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, and H. J. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, 458 (7240), 877-880 (2009). 7. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk micromachining of silicon," Proc. IEEE, 86 (8), 1536-1551 (1998). 8. A. Bogaerts, "Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges," J. Anal. At. Spectrom., 22 (1), 13-40 (2007). 9. K. Ollegott, P. Wirth, C. Oberste-Beulmann, P. Awakowicz, and M. Muhler, "Fundamental Properties and Applications of Dielectric Barrier Discharges in Plasma-Catalytic Processes at Atmospheric Pressure," Chemie Ingenieur Technik, 92 (10), 1542-1558 (2020). 10. K. Tachibana, "Current status of microplasma research," IEEJ Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006). 11. P. K. Singh, J. Hopwood, and S. Sonkusale, "Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma," Sci Rep, 4(2014). 12. S. Liu, Y. L. Yu, and J. H. Wang, "Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry," J. Anal. At. Spectrom., 32 (11), 2118-2126 (2017). 13. X. Yuan, J. Tang, and Y. X. Duan, "Microplasma Technology and Its Applications in Analytical Chemistry," Appl. Spectrosc. Rev., 46 (7), 581-605 (2011). 14. R. Foest, M. Schmidt, and K. Becker, "Microplasmas, an emerging field of low-temperature plasma science and technology," Int. J. Mass Spectrom., 248 (3), 87-102 (2006). 15. C. Meyer, S. Muller, E. L. Gurevich, and J. Franzke, "Dielectric barrier discharges in analytical chemistry," Analyst, 136 (12), 2427-2440 (2011). 16. L. L. Lin, and Q. Wang, "Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis," Plasma Chemistry and Plasma Processing, 35 (6), 925-962 (2015). 17. W. H. Chiang, D. Mariotti, R. M. Sankaran, J. G. Eden, and K. Ostrikov, "Microplasmas for Advanced Materials and Devices," Advanced Materials, 32 (18)(2020). 18. G. Dilecce, "Optical spectroscopy diagnostics of discharges at atmospheric pressure," Plasma Sources Sci. Technol., 23 (1), 12 (2014). 19. R. Brandenburg, "Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments," Plasma Sources Sci. Technol., 26 (5)(2017). 20. J. Winter, R. Brandenburg, and K. D. Weltmann, "Atmospheric pressure plasma jets: an overview of devices and new directions," Plasma Sources Sci. Technol., 24 (6)(2015). 21. G. Y. Park, S. J. Park, M. Y. Choi, I. G. Koo, J. H. Byun, J. W. Hong, J. Y. Sim, G. J. Collins, and J. K. Lee, "Atmospheric-pressure plasma sources for biomedical applications," Plasma Sources Sci. Technol., 21 (4)(2012). 22. T. von Woedtke, S. Reuter, K. Masur, and K. D. Weltmann, "Plasmas for medicine," Physics Reports-Review Section of Physics Letters, 530 (4), 291-320 (2013). 23. X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, "Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects," Physics Reports-Review Section of Physics Letters, 630, 1-84 (2016). 24. J. Y. Kim, J. Ballato, and S. O. Kim, "Intense and Energetic Atmospheric Pressure Plasma Jet Arrays," Plasma Processes and Polymers, 9 (3), 253-260 (2012). 25. S. Q. Wu, X. H. Liu, F. Ouyang, Y. X. Luo, Y. Guo, and C. H. Zhang, "Effects of applied voltage waveform on the uniformity of a microplasma array confined inside polydimethylsiloxane microchannels," Plasma Processes and Polymers, 19 (3)(2022). 26. E. J. Szili, S. A. Al-Bataineh, P. Ruschitzka, G. Desmet, C. Priest, H. J. Griesser, N. H. Voelcker, F. J. Harding, D. A. Steele, and R. D. Short, "Microplasma arrays: a new approach for maskless and localized patterning of materials surfaces," Rsc Advances, 2 (31), 12007-12010 (2012). 27. P. K. Kao, and C. C. Hsu, "Battery-Operated, Portable, and Flexible Air Microplasma Generation Device for Fabrication of Microfluidic Paper-Based Analytical Devices on Demand," Anal. Chem., 86 (17), 8757-8762 (2014). 28. M. Miclea, K. Kunze, U. Heitmann, S. Florek, J. Franzke, and K. Niemax, "Diagnostics and application of the microhollow cathode discharge as an analytical plasma," Journal of Physics D-Applied Physics, 38 (11), 1709-1715 (2005). 29. F. Y. Meng, X. Yuan, X. M. Li, Y. Liu, and Y. X. Duan, "Microplasma-Based Detectors for Gas Chromatography: Current Status and Future Trends," Appl. Spectrosc. Rev., 49 (7), 533-549 (2014). 30. C. Meyer, D. Demecz, E. L. Gurevich, U. Marggraf, G. Jestel, and J. Franzke, "Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy," J. Anal. At. Spectrom., 27 (4), 677-681 (2012). 31. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. F. Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. M. Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schroter, M. Shiraiwa, B. Tarabova, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, and G. Zvereva, "Plasma-liquid interactions: a review and roadmap," Plasma Sources Sci. Technol., 25 (5)(2016). 32. X. Lu, M. Laroussi, and V. Puech, "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets," Plasma Sources Sci. Technol., 21 (3)(2012). 33. R. W. Zhou, T. Q. Zhang, R. S. Zhou, A. Mai-Prochnow, S. B. Ponraj, Z. Fang, H. Masood, J. Kananagh, D. McClure, D. Alam, K. Ostrikov, and P. J. Cullen, "Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants," Science of the Total Environment, 750(2021). 34. K. Swiderski, P. Pohl, and P. Jamroz, "A miniaturized atmospheric pressure glow microdischarge system generated in contact with a hanging drop electrode - a new approach to spectrochemical analysis of liquid microsamples," J. Anal. At. Spectrom., 34 (6), 1287-1293 (2019). 35. K. Greda, A. Szymczycha-Madeja, and P. Pohl, "Study and reduction of matrix effects in flowing liquid anode Atmospheric pressure glow discharge - Optical emission spectrometry," Analytica Chimica Acta, 1123, 81-90 (2020). 36. A. R. Hoskinson, and J. Hopwood, "Spatially resolved spectroscopy and electrical characterization of microplasmas and switchable microplasma arrays," Plasma Sources Sci. Technol., 23 (1)(2014). 37. V. Karanassios, "Microplasmas for chemical analysis: analytical tools or research toys?," Spectrochimica Acta Part B-Atomic Spectroscopy, 59 (7), 909-928 (2004). 38. R. Q. Liu, H. Song, B. Li, X. Li, and T. L. Zhu, "Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration," Chemosphere, 263(2021). 39. W. Timm, A. Scherbart, S. Bocker, O. Kohlbacher, and T. W. Nattkemper, "Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics," BMC Bioinformatics, 9(2008). 40. U. W. Liebal, A. N. T. Phan, M. Sudhakar, K. Raman, and L. M. Blank, "Machine Learning Applications for Mass Spectrometry-Based Metabolomics," Metabolites, 10 (6)(2020). 41. V. Scholtz, J. Pazlarova, H. Souskova, J. Khun, and J. Julak, "Nonthermal plasma - A tool for decontamination and disinfection," Biotechnology Advances, 33 (6), 1108-1119 (2015). 42. B. A. Niemira, in Annual Review of Food Science and Technology, Vol 3, edited by M. P. Doyle and T. R. Klaenhammer, 2012, Vol. 3, pp. 125-142. 43. R. Mandal, A. Singh, and A. P. Singh, "Recent developments in cold plasma decontamination technology in the food industry," Trends in Food Science & Technology, 80, 93-103 (2018). 44. R. W. Zhou, R. S. Zhou, P. Y. Wang, Y. B. Xian, A. Mai-Prochnow, X. P. Lu, P. J. Cullen, K. Ostrikov, and K. Bazaka, "Plasma-activated water: generation, origin of reactive species and biological applications," Journal of Physics D-Applied Physics, 53 (30)(2020). 45. D. H. Ka, R. A. Priatama, J. Y. Park, S. J. Park, S. B. Kim, I. A. Lee, and Y. K. Lee, "Plasma-Activated Water Modulates Root Hair Cell Density via Root Developmental Genes in Arabidopsis thaliana L," Applied Sciences-Basel, 11 (5)(2021). 46. H. A. Q. Than, T. H. Pham, D. K. V. Nguyen, T. H. Pham, and A. Khacef, "Non-thermal Plasma Activated Water for Increasing Germination and Plant Growth of Lactuca sativa L," Plasma Chemistry and Plasma Processing, 42 (1), 73-89 (2022). 47. G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and K. Harding, "Gas Plasma: Medical Uses and Developments in Wound Care," Plasma Processes and Polymers, 7 (3-4), 194-211 (2010). 48. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek, "Methods for carbon nanotubes synthesis-review," Journal of Materials Chemistry, 21 (40), 15872-15884 (2011). 49. Q. Chen, J. S. Li, and Y. F. Li, "A review of plasma-liquid interactions for nanomaterial synthesis," Journal of Physics D-Applied Physics, 48 (42)(2015). 50. Y. J. Yang, P. K. Kao, and C. C. Hsu, "A Low-Cost and Flexible Microplasma Generation Device to Create Hydrophobic/Hydrophilic Contrast on Nonflat Surfaces," J. Microelectromech. Syst., 24 (6), 1678-1680 (2015). 51. S. Zimmermann, P. Krippner, A. Vogel, and J. Muller, "Miniaturized flame ionization detector for gas chromatography," Sens. Actuator B-Chem., 83 (1-3), 285-289 (2002). 52. R. Wagner, D. Schonauer-Kamin, W. Bather, and R. Moos, "Concept study with experimental proof for a new type of detector for gas chromatography," Sens. Actuator B-Chem., 346(2021). 53. M. Rambla-Alegre, B. Tienpont, K. Mitsui, E. Masugi, Y. Yoshimura, H. Nagata, F. David, and P. Sandra, "Coupling gas chromatography and electronic nose detection for detailed cigarette smoke aroma characterization," Journal of Chromatography A, 1365, 191-203 (2014). 54. J. Sun, Z. Geng, N. Xue, C. Liu, and T. Ma, "A Mini-System Integrated with Metal-Oxide-Semiconductor Sensor and Micro-Packed Gas Chromatographic Column," Micromachines (Basel), 9 (8)(2018). 55. E. Vitz, and H. Chan, "LIMSport VII. Semiconductor Gas Sensors as GC Detectors and "Breathalyzers"," Journal of Chemical Education, 72 (10), 920 (1995). 56. N. Barsan, D. Koziej, and U. Weimar, "Metal oxide-based gas sensor research: How to?," Sens. Actuator B-Chem., 121 (1), 18-35 (2007). 57. H. Meixner, and U. Lampe, "Metal oxide sensors," Sens. Actuator B-Chem., 33 (1-3), 198-202 (1996). 58. S. Kim, "CNT sensors for detecting gases with low adsorption energy by ionization," Sensors, 6 (5), 503-513 (2006). 59. S. J. Kim, "Gas sensors based on Paschen's law using carbon nanotubes as electron emitters," Journal of Physics D-Applied Physics, 39 (14), 3026-3029 (2006). 60. A. Modi, N. Koratkar, E. Lass, B. Q. Wei, and P. M. Ajayan, "Miniaturized gas ionization sensors using carbon nanotubes," Nature, 424 (6945), 171-174 (2003). 61. W. Yun, and J. Yeow, "A Review of Carbon Nanotubes-Based Gas Sensors," J. Sens., 2009(2009). 62. K. G. Ong, K. F. Zeng, and C. A. Grimes, "A Wireless, Passive Carbon Nanotube-Based Gas Sensor," IEEE Sens. J., 2 (2), 82-88 (2002). 63. V. S. A. Piriya, P. Joseph, S. Daniel, S. Lakshmanan, T. Kinoshita, and S. Muthusamy, "Colorimetric sensors for rapid detection of various analytes," Materials Science & Engineering C-Materials for Biological Applications, 78, 1231-1245 (2017). 64. C. Pannek, T. Vetter, M. Oppmann, C. Weber, A. Eberhardt, M. Dold, M. L. Bauersfeld, M. Henfling, S. Trupp, B. Schug, J. Wollenstein, and K. Mandel, "Highly sensitive reflection based colorimetric gas sensor to detect CO in realistic fire scenarios," Sens. Actuator B-Chem., 306(2020). 65. N. A. Rakow, A. Sen, M. C. Janzen, J. B. Ponder, and K. S. Suslick, "Molecular recognition and discrimination of amines with a colorimetric array," Angewandte Chemie-International Edition, 44 (29), 4528-4532 (2005). 66. C. H. Li, X. Jiang, and X. D. Hou, "Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines," Microchemical Journal, 119, 108-113 (2015). 67. J. H. Fujiyama-Novak, C. K. Gaddam, D. Das, R. L. Vander Wal, and B. Ward, "Detection of explosives by plasma optical emission spectroscopy," Sens. Actuator B-Chem., 176, 985-993 (2013). 68. W. Li, C. B. Zheng, G. Y. Fan, L. Tang, K. L. Xu, Y. Lv, and X. D. Hou, "Dielectric Barrier Discharge Molecular Emission Spectrometer as Multichannel GC Detector for Halohydrocarbons," Anal. Chem., 83 (13), 5050-5055 (2011). 69. X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, and H. S. Ning, "A Survey on Gas Sensing Technology," Sensors, 12 (7), 9635-9665 (2012). 70. M. Serafini, F. Mariani, I. Gualandi, F. Decataldo, L. Possanzini, M. Tessarolo, B. Fraboni, D. Tonelli, and E. Scavetta, "A Wearable Electrochemical Gas Sensor for Ammonia Detection," Sensors, 21 (23)(2021). 71. D. E. Williams, "Electrochemical sensors for environmental gas analysis," Current Opinion in Electrochemistry, 22, 145-153 (2020). 72. P. Silambarasan, and I. S. Moon, "Real-time monitoring of chlorobenzene gas using an electrochemical gas sensor during mediated electrochemical degradation at room temperature," Journal of Electroanalytical Chemistry, 894(2021). 73. R. Sathiyamoorthi, R. Chandrasekaran, T. Mathanmohan, B. Muralidharan, and T. Vasudevan, "Study of electrochemical based gas sensors for fluorine and chlorine," Sens. Actuator B-Chem., 99 (2-3), 336-339 (2004). 74. X. Y. Mu, Z. Wang, X. Q. Zeng, and A. J. Mason, "A Robust Flexible Electrochemical Gas Sensor Using Room Temperature Ionic Liquid," IEEE Sens. J., 13 (10), 3976-3981 (2013). 75. M. Miclea, K. Kunze, J. Franzke, and K. Niemax, "Plasmas for lab-on-the-chip applications," Spectrochimica Acta Part B-Atomic Spectroscopy, 57 (10), 1585-1592 (2002). 76. R. S. Braman, "FLAME EMISSION AND DUAL FLAME EMISSION-FLAME IONIZATION DETECTORS FOR GAS CHROMATOGRAPHY," Anal. Chem., 38 (6), 734-& (1966). 77. E. Ukwatta, J. Samarabandu, and M. Hall, "Machine vision system for automated spectroscopy," Machine Vision and Applications, 23 (1), 111-121 (2012). 78. C.-Y. Wang, and C.-C. Hsu, "Development and testing of an efficient data acquisition platform for machine learning of optical emission spectroscopy of plasmas in aqueous solution," Plasma Sources Science and Technology, 28 (10)(2019). 79. P. Devangad, V. K. Unnikrishnan, M. Yogesha, S. D. Kulkarni, and S. Chidangil, "Plasma spectroscopy plus chemometrics: An ideal approach for the spectrochemical analysis of iron phosphate glass samples," J. Chemometr., 34 (11)(2020). 80. Y. Tian, Q. Chen, Y. Q. Lin, Y. Lu, Y. Li, and H. Lin, "Quantitative determination of phosphorus in seafood using laser-induced breakdown spectroscopy combined with machine learning," Spectrochimica Acta Part B-Atomic Spectroscopy, 175(2021). 81. C. Sun, Y. Tian, L. Gao, Y. S. Niu, T. L. Zhang, H. Li, Y. Q. Zhang, Z. Q. Yue, N. Delepine-Gilon, and J. Yu, "Machine Learning Allows Calibration Models to Predict Trace Element Concentration in Soils with Generalized LIBS Spectra," Sci Rep, 9(2019). 82. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, "Mastering the game of Go with deep neural networks and tree search," Nature, 529 (7587), 484-+ (2016). 83. P. Domingos, "The Master Algorithm How the Quest for the Ultimate Learning Machine Will Remake Our World ", (2015), pp. 84. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, 521 (7553), 436-444 (2015). 85. L. Miralles-Pechuan, D. Rosso, F. Jimenez, and J. M. Garcia, "A methodology based on Deep Learning for advert value calculation in CPM, CPC and CPA networks," Soft Computing, 21 (3), 651-665 (2017). 86. H. Ghedira, and M. Bernier, "The effect of some internal neural network parameters on SAR texture classification performance," presented at the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004 (unpublished). 87. J. X. Feng, X. H. He, Q. Z. Teng, C. Ren, H. G. Chen, and Y. Li, "Reconstruction of porous media from extremely limited information using conditional generative adversarial networks," Physical Review E, 100 (3)(2019). 88. I. T. Jolliffe, and J. Cadima, "Principal component analysis: a review and recent developments," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 374 (2065)(2016). 89. K. P. Sinaga, and M. S. Yang, "Unsupervised K-Means Clustering Algorithm," IEEE Access, 8, 80716-80727 (2020). 90. L. van der Maaten, and G. Hinton, "Visualizing Data using t-SNE," J. Mach. Learn. Res., 9, 2579-2605 (2008). 91. B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, "Uniform Manifold Approximation and Projection (UMAP) and its Variants: Tutorial and Survey," arXiv e-prints, arXiv:2109.02508 (2021). 92. R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani, "A SIGNIFICANCE TEST FOR THE LASSO," Ann. Stat., 42 (2), 413-468 (2014). 93. S. Zheng, C. Ding, F. P. Nie, and H. Huang, "Harmonic Mean Linear Discriminant Analysis," Ieee Transactions on Knowledge and Data Engineering, 31 (8), 1520-1531 (2019). 94. K. Taunk, S. De, S. Verma, and A. Swetapadma, "A Brief Review of Nearest Neighbor Algorithm for Learning and Classification," presented at the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), 2019 (unpublished). 95. J. M. Moguerza, and A. Munoz, "Support vector machines with applications," Statistical Science, 21 (3), 322-336 (2006). 96. Q. R. Wang, and C. Y. Suen, "ANALYSIS AND DESIGN OF A DECISION TREE BASED ON ENTROPY REDUCTION AND ITS APPLICATION TO LARGE CHARACTER SET RECOGNITION," IEEE Trans. Pattern Anal. Mach. Intell., 6 (4), 406-417 (1984). 97. L. Breiman, "Random forests," Mach. Learn., 45 (1), 5-32 (2001). 98. S. J. Press, and S. Wilson, "CHOOSING BETWEEN LOGISTIC REGRESSION AND DISCRIMINANT-ANALYSIS," Journal of the American Statistical Association, 73 (364), 699-705 (1978). 99. J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Networks, 61, 85-117 (2015). 100. C. Neubauer, "Evaluation of convolutional neural networks for visual recognition," Ieee Transactions on Neural Networks, 9 (4), 685-696 (1998). 101. X. X. Deng, G. Yang, H. Zhang, and G. Y. Chen, "Accurate quantification of alkalinity of sintered ore by random forest model based on PCA and variable importance (PCA-VI-RF)," Applied Optics, 59 (7), 2042-2049 (2020). 102. S. J. Song, Y. S. Gong, Y. L. Zhang, G. Huang, and G. B. Huang, "Dimension Reduction by Minimum Error Minimax Probability Machine," IEEE Trans. Syst. Man Cybern. -Syst., 47 (1), 58-69 (2017). 103. S. S. Liu, P. Reviriego, J. A. Hernandez, and F. Lombardi, "Voting Margin: A Scheme for Error-Tolerant k Nearest Neighbors Classifiers for Machine Learning," IEEE Trans. Emerg. Top. Comput., 9 (4), 2089-2098 (2021). 104. C. Cortes, and V. Vapnik, "Support-vector networks," Mach. Learn., 20 (3), 273-297 (1995). 105. D. Coppersmith, S. J. Hong, and J. R. M. Hosking, "Partitioning Nominal Attributes in Decision Trees," Data Mining and Knowledge Discovery, 3 (2), 197-217 (1999). 106. O. Sagi, and L. Rokach, "Ensemble learning: A survey," Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 8 (4)(2018). 107. T. Huang, "機器學習\統計方法: 模型評估-驗證指標(validation index)," Retrieved from https://chih-sheng-huang821.medium.com/-b03825ff0814 108. H. Chen, A. J. Wu, S. Mathieu, P. H. Gao, X. D. Li, B. Z. Xu, J. H. Yan, and X. Tu, "Highly efficient nitrogen fixation enabled by an atmospheric pressure rotating gliding arc," Plasma Processes and Polymers, 18 (7)(2021). 109. D. Prochazka, P. Porizka, J. Hruska, K. Novotny, A. Hrdlicka, and J. Kaiser, "Machine learning in laser-induced breakdown spectroscopy as a novel approach towards experimental parameter optimization," J. Anal. At. Spectrom., 37 (3), 603-612 (2022). 110. K. Bobzin, W. Wietheger, H. Heinemann, S. R. Dokhanchi, M. Rom, and G. Visconti, "Prediction of Particle Properties in Plasma Spraying Based on Machine Learning," Journal of Thermal Spray Technology, 30 (7), 1751-1764 (2021). 111. K. Han, E. S. Yoon, J. Lee, H. Chae, K. H. Han, and K. J. Park, "Real-Time End-Point Detection Using Modified Principal Component Analysis for Small Open Area SiO2 Plasma Etching," Industrial & Engineering Chemistry Research, 47 (11), 3907-3911 (2008). 112. G. S. Pang, C. H. Shen, L. B. Cao, and A. Van den Hengel, "Deep Learning for Anomaly Detection: A Review," ACM Comput. Surv., 54 (2)(2021). 113. B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, "Support Vector Method for Novelty Detection ", (1999), pp. 114. G. Dogan, S. O. Demir, R. Gutzler, H. Gruhn, C. B. Dayan, U. T. Sanli, C. Silber, U. Culha, M. Sitti, G. Schutz, C. Grevent, and K. Keskinbora, "Bayesian Machine Learning for Efficient Minimization of Defects in ALD Passivation Layers," Acs Applied Materials & Interfaces, 13 (45), 54503-54515 (2021). 115. D. H. Kim, and S. J. Hong, "Use of Plasma Information in Machine-Learning-Based Fault Detection and Classification for Advanced Equipment Control," Ieee Transactions on Semiconductor Manufacturing, 34 (3), 408-419 (2021). 116. J. E. Choi, H. Park, Y. Lee, and S. J. Hong, "Virtual Metrology for Etch Profile in Silicon Trench Etching With SF6/O-2/Ar Plasma," Ieee Transactions on Semiconductor Manufacturing, 35 (1), 128-136 (2022). 117. V. Shukla, M. Bandyopadhyay, V. Pandya, and A. Pandey, "Prediction of Axial Variation of Plasma Potential in Helicon Plasma Source Using Linear Regression Techniques," Int. J. Math. Eng. Manag. Sci., 5 (6), 1284-1299 (2020). 118. F. Krüger, T. Gergs, and J. Trieschmann, "Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations," Plasma Sources Science and Technology, 28 (3)(2019). 119. L. H. Zhang, C. J. Li, D. Peng, X. F. Yi, S. He, F. X. Liu, X. T. Zheng, W. E. Huang, L. Zhao, and X. Huang, "Raman spectroscopy and machine learning for the classification of breast cancers," Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 264, 7 (2022). 120. C. Berghian-Grosan, and D. A. Magdas, "Raman spectroscopy and machine-learning for edible oils evaluation," Talanta, 218, 8 (2020). 121. W. J. Thrift, and R. Ragan, "Quantification of Analyte Concentration in the Single Molecule Regime Using Convolutional Neural Networks," Anal Chem, 91 (21), 13337-13342 (2019). 122. M. Bizzani, D. W. M. Flores, L. A. Colnago, and M. D. Ferreira, "Monitoring of soluble pectin content in orange juice by means of MIR and TD-NMR spectroscopy combined with machine learning," Food Chem., 332, 7 (2020). 123. L. Zhou, L. H. Tan, C. Zhang, N. Zhao, Y. He, and Z. J. Qiu, "A portable NIR-system for mixture powdery food analysis using deep learning," LWT-Food Sci. Technol., 153(2022). 124. M. H. Yang, D. Y. Xu, S. C. Chen, H. Y. Li, and Z. Shi, "Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra," Sensors, 19 (2)(2019). 125. V. G. K. Cardoso, and R. J. Poppi, "Non-invasive identification of commercial green tea blends using NIR spectroscopy and support vector machine," Microchemical Journal, 164(2021). 126. G. X. Ren, J. M. Ning, and Z. Z. Zhang, "Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality," Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 245, 9 (2021). 127. M. Daniel, R. Guerra, A. Brazio, D. Rodrigues, A. M. Cavaco, M. D. Antunes, and J. V. de Oliveira, "Feature discovery in NIR spectroscopy based Rocha pear classification," Expert Syst. Appl., 177, 15 (2021). 128. R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, "Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques," Analytica Chimica Acta, 671 (1-2), 27-35 (2010). 129. Y. T. Chang, M. C. Hsueh, S. P. Hung, J. M. Lu, J. H. Peng, and S. F. Chen, "Prediction of specialty coffee flavors based on near-infrared spectra using machine- and deep-learning methods," J. Sci. Food Agric., 10 130. L. Wander, A. Vianello, J. Vollertsen, F. Westad, U. Braun, and A. Paul, "Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples," Anal. Methods, 12 (6), 781-791 (2020). 131. T. G. Rios, G. Larios, B. Marangoni, S. L. Oliveira, C. Cena, and C. A. D. Ramos, "FTIR spectroscopy with machine learning: A new approach to animal DNA polymorphism screening," Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 261, 7 (2021). 132. D. Stefas, N. Gyftokostas, and S. Couris, "Laser induced breakdown spectroscopy for elemental analysis and discrimination of honey samples," Spectrochimica Acta Part B-Atomic Spectroscopy, 172(2020). 133. W. R. Song, Z. Y. Hou, W. L. Gu, H. Wang, J. C. Cui, Z. H. Zhou, G. Y. Yan, Q. Ye, Z. G. Li, and Z. Wang, "Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning," Fuel, 306(2021). 134. D. Gidon, X. Pei, A. D. Bonzanini, D. B. Graves, and A. Mesbah, "Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources," IEEE Transactions on Radiation and Plasma Medical Sciences, 3 (5), 597-605 (2019). 135. J. Vincent, H. Wang, O. Nibouche, and P. Maguire, "Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning," Plasma Sources Sci. Technol., 29 (8), 10 (2020). 136. T. S. Mansouri, H. Wang, D. Mariotti, and P. Maguire, "Methane detection to 1 ppm using machine learning analysis of atmospheric pressure plasma optical emission spectra," Journal of Physics D-Applied Physics, 55 (22)(2022). 137. J. H. Park, J. H. Cho, J. S. Yoon, and J. H. Song, "Machine Learning Prediction of Electron Density and Temperature from Optical Emission Spectroscopy in Nitrogen Plasma," Coatings, 11 (10)(2021). 138. W. Wang, W. W. Kong, T. T. Shen, Z. Man, W. J. Zhu, Y. He, and F. Liu, "Quantitative analysis of cadmium in rice roots based on LIBS and chemometrics methods," Environ. Sci Eur., 33 (1)(2021). 139. R. Gaudiuso, N. Melikechi, Z. A. Abdel-Salam, M. A. Harith, V. Palleschi, V. Motto-Ros, and B. Busser, "Laser-induced breakdown spectroscopy for human and animal health: A review," Spectrochimica Acta Part B-Atomic Spectroscopy, 152, 123-148 (2019). 140. C. Y. Wang, T. S. Ko, and C. C. Hsu, "Machine Learning with Explainable Artificial Intelligence Vision for Characterization of Solution Conductivity Using Optical Emission Spectroscopy of Plasma in Aqueous Solution," Plasma Processes and Polymers, 18 (12)(2021). 141. K. Shojaei, and L. Mangolini, "Application of machine learning for the estimation of electron energy distribution from optical emission spectra," Journal of Physics D-Applied Physics, 54 (26)(2021). 142. Q. Shi, G. H. Niu, Q. Y. Lin, T. Xu, F. J. Li, and Y. X. Duan, "Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: comparison of support vector regression and partial least squares regression chemometric methods," J. Anal. At. Spectrom., 30 (12), 2384-2393 (2015). 143. A. P. Rao, P. R. Jenkins, J. D. Auxier, and M. B. Shattan, "Comparison of machine learning techniques to optimize the analysis of plutonium surrogate material via a portable LIBS device," J. Anal. At. Spectrom., 36 (2), 399-406 (2021). 144. H. Ghorbani, "MAHALANOBIS DISTANCE AND ITS APPLICATION FOR DETECTING MULTIVARIATE OUTLIERS," Facta Universitatis-Series Mathematics and Informatics, 34 (3), 583-595 (2019). 145. R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, "The Mahalanobis distance," Chemometrics and Intelligent Laboratory Systems, 50 (1), 1-18 (2000). 146. M. Hubert, P. J. Rousseeuw, and K. Vanden Branden, "ROBPCA: A new approach to robust principal component analysis," Technometrics, 47 (1), 64-79 (2005). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91898 | - |
| dc.description.abstract | 本研究利用自製微電漿產生裝置做為激發源,並使用此裝置來收取四種揮發性有機物氣體之電漿放射光譜共十萬張,以建立機器學習訓練之資料庫。本研究主要目的為分析多種機器學習演算法於光譜分析上的適用性以及可信度。在本論文中將會探討所使用到的不同演算法之概念以及和光譜分析特性之適用程度。此外,資料分佈和演算法所應用之特徵將被視覺化,並藉此來對機器學習於光譜分析上的應用有更近一步的瞭解。 首先是針對資料的前處理和資料分佈之分析。在收集到原始資料後,為了減緩每次收光時,收光位置和環境所造成的影響,故在進行分析前需先對原始資料進行縮放之前處理。然在經縮放之處理後,因光譜特徵的維度高達3648維,故需再利用機器學習中的降維技術來將原始的高維度資料在盡量不失真的前提下,投影至較低維之特徵空間,以進行資料分佈之視覺化分析。 接著在演算法於光譜分析之適用性中,首先探討了關於支持向量機、線性判別分析、隨機森林、k-近鄰演算法、決策樹等各演算法之概念及實現方法,再搭配人工辨識光譜之邏輯,並加以判斷演算法之適用性。各演算法之分類準確率分別為99.99 %(SVM)、98.79 %(LDA)、90.26 %(RF)、86.46 %(k-NN)和84.84 %(DT)。上述的結果顯示,在多變數之光譜分析上,多數演算法都有良好的表現,除了部分演算法因其概念的實現與人工辨識之邏輯不符,而導致較差的表現。此外,我們利用特徵提取來降低資料之複雜度,使得模型的運算成本得以下降並得到較高效率之表現。但我們發現,不恰當的特徵提取雖能降低資料複雜度和減少後續模型的計算成本,同時也會造成分類表現之下降。像是經過不適當的特徵提取方法降低資料維度後,SVM的運算時間雖能大幅下降近50倍,但分類之準確率卻會從99.99 %下降至71 %,其結果依然屬於較不理想;然而恰當的特徵提取則能保有模型原本的高準確率並使運算時間減少10倍。 最後,在演算法於電漿光譜分析之可信度部分中,我們利用特徵選取之方法將演算法在運算過程中所認定為較重要的特徵挑選出來,並將此些特徵視覺化再與光譜上的特徵放光區域比較,以確保演算法之可信度。從可視化之比較結果中,演算法判定為重要之波長大多集中於306-310、425-435、500-530、650-660以及700-800 nm等區域,而此些放光皆與本研究所使用之有機物的特徵放光區域十分接近,如:OH (308.54 nm)、C2 (516.11 nm)、CH (430.91 nm)、Hα (656.2 nm)和Ar (700-800 nm)等特徵放光帶。此外,演算法對特徵的重要性排序也與認知相符,因此可知此些演算法並非像黑盒子般隨意挑選特徵來進行運算或是做些不知道的事。根據上述的重要特徵辨認結果再加上線性代數明確的計算過程,都使得機器學習所得出的結果更加有解釋性和可信度。 | zh_TW |
| dc.description.abstract | In this study, the homemade microplasma generation devices were used as the excitation source, and the devices were used to collect a total of 100k plasma emission spectra of four volatile organic compounds to establish a database for machine learning training. The main purpose of this study is to analyze the applicability and reliability of various machine learning algorithms for plasma spectra analysis. In this article, the concept of the different algorithms used in this study and the applicability of these algorithms in plasma spectra analysis will be discussed. Additionally, the data distribution and the features used by the algorithm will be visualized. The visualized result will provide a further understanding of the application of machine learning in plasma spectra analysis. The first part is data preprocessing and data distribution analysis. In order to mitigate the impact caused by the alignment, the raw spectra need to be preprocessed with scaling before analysis. However, since the dimension of the plasma spectra features is as high as 3648 dimensions, it is necessary to use the dimensionality reduction technology in machine learning to project the original high-dimensional data to a lower-dimensional feature space without distorting the information as much as possible, so as to perform a visual analysis of the data distribution. In the section on the applicability of algorithms in plasma spectral analysis, the concepts and implementation methods of each algorithm, such as support vector machine, linear discriminate analysis, random forest, k-nearest neighbors, and decision tree, are first discussed. And then the logic of manually identifying the spectrum is used to judge the applicability of the algorithms. The accuracy of algorithms is 99.99 % (SVM), 98.79 % (LDA), 90.26 % (RF), 86.46 % (k-NN) and 84.84 % (DT), respectively. The above results show that most of the algorithms have good performance in plasma spectral analysis of multiple variates, except partial algorithms that have poor performance caused by the inconsistency between the concept of algorithms and the logic of manually identifying the spectra. In addition, we use feature extraction to reduce the complexity of the data, so that the computational efficiency and performance of the model can be improved. However, we found that inappropriate feature extraction method can reduce the complexity of the data and the computational cost but also cause a decline in classification performance For example, after inappropriate feature extraction to reduce the data dimension, although the operation time of SVM can be greatly reduced by nearly 50 times, its classification accuracy will drop from 99.99 % to 71 %, and the result is still relatively unsatisfactory. However, proper feature extraction can maintain the original high accuracy of the model and reduce the computing time by 10 times. Finally, in the section on the reliability of the algorithms in the plasma spectra analysis, we use the feature selection method to acquire the more important features utilized by the algorithm in the operation process. Then, those features are visualized and compared with the characteristic emitting area to ensure the reliability of the algorithm. From the visual comparison results, the important wavelengths identified by the algorithm focus on some areas, such as 306-310, 425-435, 500-530, 650-660, and 700-800 nm, which are very close to the characteristic emission of VOCs used in this study, such as OH (308.54 nm), C2 (516.11 nm), CH (430.91 nm), Hα (656.2 nm), and Ar (700-800 nm). Moreover, the rank of feature importance is also consistent with cognition. So it can be seen that these algorithms are not like black boxes to randomly pick features and do something unknown. According to the above results of important feature identification and the explicit calculation process of linear algebra, the results obtained by machine learning are more interpretable and reliable. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:21:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-26T16:21:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 III ABSTRACT V 目錄 IX 圖目錄 XIII 表目錄 XVII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第 2 章 文獻回顧 3 2.1 電漿之簡介 3 2.1.1 電漿產生之機制及衍生反應 3 2.1.2 帕邢定律 (Paschen’s law) 6 2.1.3 電漿之壓力影響 7 2.2 常壓微電漿簡介 8 2.2.1 微電漿系統之概述 8 2.2.2 微電漿之分類 9 2.2.3 常壓微電漿之應用領域 14 2.3 氣體檢測與電漿光譜 16 2.3.1 常見之氣體分析法及感測器 16 2.3.2 電漿光譜於氣體檢測之應用 19 2.4 機器學習 (Machine Learning, ML) 20 2.4.1 機器學習之簡介 20 2.4.2 線性迴歸 (Linear regression, LR) 26 2.4.3 主成分分析 (Principal component analysis, PCA) 28 2.4.4 線性判別分析 (Linear discriminant analysis, LDA) 31 2.4.5 k-近鄰演算法 (k-nearest neighbors, k-NN) 35 2.4.6 支持向量機 (Support vector machine, SVM) 37 2.4.7 決策樹 (Decision tree, DT) 41 2.4.8 隨機森林 (Random forest, RF) 44 2.4.9 模型評估方法 47 2.4.10 降維 (Dimensionality reduction) 51 2.5 機器學習之應用 53 2.5.1 機器學習於電漿系統檢測之應用 53 2.5.2 機器學習於光譜分析之應用 59 2.5.3 機器學習於電漿光譜分析之應用 64 第 3 章 實驗設備與架構 69 3.1 微電漿光譜平台 69 3.1.1 微電漿產生裝置 (Microplasma generation device, MGD) 69 3.1.2 微電漿氣體檢測平台 70 3.2 揮發性有機物類別與藥品成分 72 3.3 微電漿光譜資料庫 74 3.4 機器學習分析電漿光譜 76 3.4.1 主成分分析 78 3.4.2 線性判別分析 79 3.4.3 支持向量機 80 3.4.4 k-近鄰演算法 82 3.4.5 決策樹 83 3.4.6 隨機森林 84 3.4.7 馬哈拉諾比斯距離 (Mahalanobis distance) 85 第 4 章 實驗結果與討論 87 4.1 微電漿結合光學檢測系統之分析 87 4.1.1 揮發性有機物之電漿光譜 87 4.2 資料降維 89 4.2.1 使用PCA進行特徵提取及可視化資料分佈 89 4.2.2 使用LDA進行特徵提取及可視化資料分佈 92 4.3 異常值偵測 95 4.4 機器學習之分類結果與比較 98 4.4.1 MGD訓練數量與模型之泛化能力 98 4.4.2 演算法辨識有機物之比較 100 4.4.3 特徵提取後之分類結果 104 4.5 重要特徵之選取及可視化 107 4.5.1 利用DT和RF進行特徵選取 107 4.5.2 利用RFE-SVM進行特徵選取 110 4.5.3 特徵選取後之分類比較 112 第 5 章 結論與未來展望 115 第 6 章 參考文獻 117 第 7 章 附錄 131 7.1 支持向量機之路寬推導 131 7.2 核函數 (Kernel function) 133 7.3 多分類支持向量機之投票機制 137 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微電漿 | zh_TW |
| dc.subject | 電漿放射光譜 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 主成分分析 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | 線性判別分析 | zh_TW |
| dc.subject | machine learning | en |
| dc.subject | microplasma | en |
| dc.subject | linear discriminant analysis | en |
| dc.subject | support vector machine | en |
| dc.subject | principal component analysis | en |
| dc.subject | plasma emission spectroscopy | en |
| dc.title | 機器學習演算法於電漿光譜分析之可信度和適用性研究 | zh_TW |
| dc.title | Applicability and Reliability of Machine Learning Algorithms in Plasma Spectroscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林祥泰;林立強;李奕霈 | zh_TW |
| dc.contributor.oralexamcommittee | Shiang-Tai Lin;Li-Chiang Lin;Yi-Pei Li | en |
| dc.subject.keyword | 微電漿,電漿放射光譜,機器學習,主成分分析,支持向量機,線性判別分析, | zh_TW |
| dc.subject.keyword | microplasma,plasma emission spectroscopy,machine learning,principal component analysis,support vector machine,linear discriminant analysis, | en |
| dc.relation.page | 139 | - |
| dc.identifier.doi | 10.6342/NTU202201760 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-07-27 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 9.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
