Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91893
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠zh_TW
dc.contributor.advisorYi-Chung Shuen
dc.contributor.author張智雲zh_TW
dc.contributor.authorChih-Yun Changen
dc.date.accessioned2024-02-26T16:19:41Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationM. A. Halim, R. Rantz, Q. Zhang, L. Gu, K. Yang and S. Roundy. An Electromagnetic Rotational Energy Harvester Using Sprung Eccentric Rotor, Driven by Pseudo-Walking Motion. Applied Energy, 217: 66-74, 2018.
C. K. Thein, F. M. Foong and Y. C. Shu. Spring Amplification and Dynamic Friction Modelling of a 2DOF/2SDOF System in an Electromagnetic Vibration Energy Harvester-Experiment, Simulation, and Analytical Analysis. Mechanical Systems and Signal Processing, 132: 232-252, 2019.
C. K. Thein, F. M. Foong and Y. C. Shu. Damping Ratio and Power Output Prediction of an Electromagnetic Energy Harvester Designed Through Finite Element Analysis. Sensors and Actuators A: Physical, 286: 220-231, 2019.
Y. Zhang, T. Wang, A. Luo, Y. Hu, X. Li and F. Wang. Micro Electrostatic Energy Harvester with Both Broad Bandwidth and High Normalized Power Density. Applied Energy, 212: 362-371, 2018.
A. Luo, Y. Xu, Y. Zhang, M. Zhang, X. Zhang, Y. Lu and F. Wang. Spray-Coated Electret Materials with Enhanced Stability in a Harsh Environment for an MEMS Energy Harvesting Device. Microsystems & Nanoengineering, 7: 15, 2021.
C. Covaci and A. Gontean. Piezoelectric Energy Harvesting Solutions: A Review. Sensors, 20: 3512, 2020.
N. Sezer and M. Koc. A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. Nano Energy, 80: 105567, 2021.
R. Ramezanpour, H. Nahvi, and S. Ziaei-Rad. A Vibration-Based Energy Harvester Suitable for Low-Frequency, High-Amplitude Environments: Theoretical and Experimental Investigations. Journal of Intelligent Material Systems and Structures, 27: 642–665, 2016.
T. Xue and S. Roundy. On Magnetic Plucking Configurations for Frequency Up-Converting mechanical Energy Harvesters. Sensors and Actuators A: Physical, 253: 101–111, 2017.
W. H. Wu, K. C. Kuo, Y. H. Lin, and Y. C. Tsai. Non-Contact Magnetic Cantilever-Type Piezoelectric Energy Harvester for Rotational Mechanism. Microelectronic Engineering, 191: 16–19, 2018.
L. Gu and C. Livermore. Passive Self-Tuning Energy Harvester for Extracting Energy from Rotational Motion. Applied Physics Letters, 97: 081904, 2010.
L. Gu and C. Livermore. Compact Passively Self-Tuning Energy Harvesting for Rotating Applications. Smart Materials and Structures, 21: 015002, 2012.
Y. C. Lo, T. Y. Yeh and Y. C. Shu. SECE-Based Piezoelectric Energy Sensor for the Diagnostics of Timing Belt. Proc. SPIE, 12043: 120430T, 2022.
Y. C. Shu, W. C. Wang and Y. P. Chang. Electrically Rectified Piezoelectric Energy Harvesting Induced by Rotary Magnetic Plucking. Smart Materials and Structures, 27: 125006, 2018.
張永邦,「開發旋轉磁激振外力於陣列式壓電能量擷取之研究」,臺灣大學應用力學所碩士論文,2018。
Y. C. Lo and Y. C. Shu. Self-Powered SECE Piezoelectric Energy Harvesting Induced by Shock Excitations for Sensor Supply. Mechanical Systems and Signal Processing, 177: 109123, 2022.
Y. C. Lo, C. C. Chen, Y. C. Shu and M. F. Lumentut. Broadband Piezoelectric Energy Harvesting Induced by Mixed Resonant Modes under Magnetic Plucking. Smart Materials and Structures, 30: 105026, 2021.
陳建璋,「以旋轉式磁激振激發壓電樑第一與第二共振模態之能量擷取研究」,臺灣大學應用力學所碩士論文,2021。
Y. C. Shu and I. C. Lien. Analysis of Power Output for Piezoelectric Energy Harvesting Systems. Smart Materials and Structures, 15: 1499-1512, 2006.
Y. C. Shu and I. C. Lien. Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System. Journal of Micromechanics and Microengineering, 16: 2429-2438, 2006.
A. Badel, D. Guyomar, E. Lefeuvre and C. Richard. Piezoelectric Energy Harvesting Using a Synchronized Switch Technique. Journal of Intelligent Material Systems and Structures, 17: 831-839, 2006.
J. Liang and W. H. Liao. Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting System. IEEE Transactions on Industrial Electronics, 59: 1950-1960, 2011.
L. Costanzo, A. Schiavo and M. Vitelli. Analytical Study of Piezoelectric Harvesters With SECE and SSHI Under Variable Excitation. IEEE Transactions on Industry Applications, 58: 2, 2022.
E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar. Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 16: 865–876, 2005.
Y. Xia, G. Shi, H. Xia and Y. Ye. Extensible Multi-Input Synchronous Electric Charge Extraction Circuit Based on Triple Stack Resonance for Piezoelectric and Thermoelectric Energy Harvesting. IEEE Transactions on Industrial Electronics, 68: 7156-7166, 2021.
L. Costanzo, A. Schiavo and M. Vitelli. Analytical Study of Piezoelectric Harvesters With SECE and SSHI Under Variable Excitation. IEEE Transactions on Industry Applications, 58: 2, 2022.
Y. C. Shu, I. C. Lien, and W. J. Wu. An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting. Smart Materials and Structures, 16: 2253–2264, 2007.
H. Xue, Y. Hu and Q. M. Wang. Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55: 2104-2108, 2008
M. F. Lumentut, L. A. Francis and I. M. Howard. Analytical Techniques for Broadband Multielectromechanical Piezoelectric Bimorph Beams with Multifrequency Power Harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59: 255-2568, 2012.
S. Fang, G. Miao, K. Chen, J. Xing, S. Zhou, Z. Yang and W. H. Liao. Broadband Energy Harvester for Low-Frequency Rotations Utilizing Centrifugal Softening Piezoelectric Beam Array. Energy, 241: 122833, 2022.
H. Xia, J. Xiong, Y. Xia, Z. Chen, X. Wang, Y. Ye and G. Shi. Self-Powered Dual-Inductor MI-PSSHI-VDR Interface Circuit for Multi-PZTs Energy Harvesting. IEEE Transactions on Power Electronics, 37: 4, 2022.
P. H. Wu, J. T. Lin, Y. C. Lo and Y. C. Shu. An SECE Array of Piezoelectric Energy Harvesting. Smart Materials and Structures, 30: 045008, 2021.
I. C. Lien and Y. C. Shu. Array of Piezoelectric Energy Harvesting by Equivalent Impedance Approach. Smart Materials and Structures, 21: 082001, 2012.
H. C. Lin, P. H. Wu, I. C. Lien, and Y. C. Shu. Analysis of an Array of Piezoelectric Energy Harvesters Connected in Series. Smart Materials and Structures, 22: 094026, 2013.
P. H. Wu and Y. C. Shu. Finite Element Modeling of Electrically Rectified Piezoelectric Energy Harvesters. Smart Materials and Structures, 24: 094008, 2015.
P. H. Wu, Y. J. Chen, B. Y. Li, and Y. C. Shu. Wideband Energy Harvesting Based on Mixed Connection of Piezoelectric Oscillators. Smart Materials and Structures, 26: 094005, 2017.
陳彥禎,「混合陣列式壓電振子應用於能量擷取之實驗驗證」,台灣大學應用力學所碩士論文,2017。
M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli and A. Taroni. Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems. Sensors and Actuators A: Physical, 142: 329-335, 2008.
H. Xue, Y. Hu and Q. M. Wang. Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55: 2104-2108, 2008.
M. F. Lumentut, L. A. Francis and I. M. Howard. Analytical Techniques for Broadband Multielectromechanical Piezoelectric Bimorph Beams with Multifrequency Power Harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59: 2555-2568, 2012.
H. Wu, L. Tang, Y. Yang and C. K. Soh. A Novel Two-Degrees-of-Freedom Piezoelectric Energy Harvester. Journal of Intelligent Material Systems and Structures, 24: 357-368, 2013.
F. Qian, M. R. Hajj and L. Zuo. Bio-Inspired Bi-Stable Piezoelectric Harvester for Broadband Vibration Energy Harvesting. Energy Conversion and Management, 222: 113174, 2020.
V. J. Caetano and M. A. Savi. Multimodal pizza-shaped piezoelectric vibration-based energy harvesters. Journal of Intelligent Material Systems and Structures, 32: 2505-2528, 2021.
Y. Chen, Z. Yang, Z. Chen, K. Li and S. Zhou. Design, Modeling, and Experiment of a Multi-Bifurcated Cantilever Piezoelectric Energy Harvester. Journal of Intelligent Material Systems and Structures, 32: 2403-2419, 2021.
J. Wang, Z. Liu, K. Shi and G. Ding. Development and Application Performance of Road Spring-Type Piezoelectric Transducer for Energy Harvesting. Smart Materials and Structures, 30: 085020, 2021.
Y. Wang, Z. Yang, P. Li, D. Cao, W. Huang and D. J. Inman. Energy Harvesting for Jet Engine Monitoring. Nano Energy, 75: 104853, 2020.
S. X. Long, S. Y. Khoo, Z. C. Ong and M. F. Soong. Design, Modeling and Testing of a new Compressive Amplifier Structure for Piezoelectric Harvester. Smart Materials and Structure, 30: 125010, 2021.
J. Zheng, S. Li and B. Wang. Design of Low-Frequency Broadband Flextensional Transducers Based on Combined Particle Swarm Optimization and Finite Element Method. Smart Materials and Structure, 30: 105002, 2021.
Q. Ou, X. Chen, S. Gutschmidt, A. Wood, N. Leigh and A. F. Arrieta. An Experimentally Validated Double-Mass Piezoelectric Cantilever Model for Broadband Vibration–Based Energy Harvesting. Journal of Intelligent Material Systems and Structures, 23: 117-126, 2012.
H. Wu, L. Tang, Y. Yamg and C. K. Soh. A Novel Two-Degrees-of-Freedom Piezoelectric Energy Harvester. Journal of Intelligent Material Systems and Structures, 24: 357-368, 2013.
F. Qian, M. R. Hajj and L. Zou. Bio-Iinspired Bi-Stable Piezoelectric Harvester for Broadband Vibration Energy Harvesting. Energy Conversion and Management, 222: 113174, 2020.
A. Erturk, J. M. Renno, and D. J. Inman. Modeling of Piezoelectric Energy Harvesting from an L-Shaped Beam-mass Structure with an Application to UAVs. Journal of Intelligent Material Systems and Structures, 20: 529–544, 2009.
Q. Wu, S. Gao, L. Jin, X. Zhang, Z. Yin and C. A Tuning Fork Frequency Up-Conversion Energy Harvester. Sensor, 21: 7285, 2021.
S. C. Stanton, A. Erturk, B. P. Mann, E. H. Dowell and D. J. Inman. Nonlinear Nonconservative Behavior and Modeling of Piezoelectric Energy Harvesters Including Proof Mass Effects. Journal of Intelligent Material Systems and Structures, 23: 183-199, 2012.
S. Zhou, J. Cao, D. J. Inman, J. Lin, S. Liu and Z. Wang. Broadband Tristable Energy Harvester: Modeling and Experiment Verification. Applied Energy, 133: 33-39, 2014.
S. Zhou, J. Cao, D. J. Inman, J. Lin and D. Li. Harmonic Balance Analysis of Nonlinear Tristable Energy Harvesters for Performance Enhancement. Journal of Sound and Vibration, 373: 223-235, 2016.
Y. C. Wang, T. W. Huang, Y. C. Shu, S. C. Lin and W. J. Wu. Nonlinear Modeling of MEMS Piezoelectric Energy Harvesters. Proc. SPIE, 9799: 659-665, 2016.
Y. C. Wang, S. A. Chen, Y. C. Shu, S. C. Lin, C. T. Chen and W. J. Wu. Nonlinear Analysis of Micro Piezoelectric Energy Harvesters. Proc. SPIE, 10164: 265-272, 2017.
K. Fan, Q. Tan, H. Liu, Y. Zhang and M. Cai. Improved Energy Harvesting from Low-Frequency Small Vibrations Through a Monostable Piezoelectric Energy Harvester. Mechanical Systems and Signal Processing, 117: 594-608.
Z. Wang, Y. Du, T. Li, Z. Yan and T. Tan. A Flute-Inspired Broadband Piezoelectric Vibration Energy Harvesting Device with Mechanical Intelligent Design. Applied Energy, 303: 117577, 2021.
K. Moon, J. Choe, H. Kim, D. Ahn and J. Jeong. A method of Broadening the Bandwidth by Tuning the Proof Mass in a Piezoelectric Energy Harvesting Cantilever. Sensors and Actuators A: Physical, 276: 17-25, 2018.
S. Fang, G. Miao, K. Chen, J. Xing, S. Zhou, Z. Yang and W. H. Liao. Broadband Energy Harvester for Low-Frequency Rotations Utilizing Centrifugal Softening Piezoelectric Beam Array. Energy, 241: 122833, 2022.
M. Lallart, S. R. Anton and D. J. Inman. Frequency Self-tuning Scheme for Broadband Vibration Energy Harvesting Journal of Intelligent Material Systems and Structures, 21: 897-906, 2010.
M. F. Lumentut and Y. C. Shu. Shunted Optimal Vibration Energy Harvesting Control of Discontinuous Smart Beams. Composite Structures, 242: 112126, 2020.
M. Pozzi. Impulse Excitation of Piezoelectric Bimorphs for Energy Harvesting: a Dimensionless Model. Smart Materials and Structures, 23: 045044, 2014.
R. Dauksevicius, R. Gaidys, V. Ostasevicius, R. Lockhart, A. V. Quintero, N. de Rooij, and D. Briand. Nonlinear Piezoelectric Vibration Energy Harvester with Frequency-Tuned Impacting Resonators for Improving Broadband Performance at Low Frequencies. Smart Materials and Structures, 28: 025025, 2019.
X. Rui, Y. Zhang, Z. Zeng, G. Yue, X. Huang, and J. Li. Design and Analysis of a Broadband Three-Beam Impact Piezoelectric Energy Harvester for Low-Frequency Rotational Motion. Mechanical Systems and Signal Processing, 149 :107307, 2021.
K. H. Mak, S. McWilliam and A. A. Popov. Piezoelectric Energy Harvesting for Tyre Pressure Measurement Applications. Journal of Automobile Engineering, 227: 842-852, 2013.
Y. Kuang, Z. Yang, and M. Zhu. Design and Characterisation of a Piezoelectric Knee-Joint Energy Harvester with Frequency Up-Conversion Through Magnetic Plucking. Smart Materials and Structures, 25: 085029, 2016.
B Kathpalia, D. Tan, I. Stern, and A. Erturk. An Experimentally Validated Model for Geometrically Nonlinear Plucking-Based Frequency Up-Conversion in Energy Harvesting. Smart Materials and Structures, 27: 015024, 2018.
H. G. Yeo, T. Xue, S. Roundy, X. Ma, C. Rahn and S. R. McKinstry. Strongly (001) Oriented Bimorph PZT Film on Metal Foils Grown by rf-Sputtering for Wrist-Worn Piezoelectric Energy Harvesters. Advanced Functional Materials, 28: 1801327, 2018.
T. Xue, H. G. Yeo, S. Trolier-McKinstry, and S. Roundy. Wearable Inertial Energy Harvester with Sputtered Bimorph Lead Zirconate Titanate (PZT) Thin-Film Beams. Smart Materials and Structures, 27: 085026, 2018.
P. Pillatsch, E. M. Yeatman, and A. S. Holmes. Magnetic Plucking of Piezoelectric Beams for Frequency Up Converting Energy Harvesters. Smart Materials and Structures, 23: 025009, 2014.
P. Pillatsch, E. M. Yeatman, and A. S. Holmes. A Piezoelectric Frequency Up-Converting Energy Harvester with Rotating Proof Mass for Human Body Applications. Sensors and Actuators A: Physical, 206: 178–185, 2014.
H. H. T. Chan, F. Gao, B. L. H. Chung, W.H. Liao and J. Cao. Knee Energy Harvester with Variable Transmission to Reduce the Effect on the Walking Gait. Smart Materials and Structures, 30: 085024, 2021.
H. Fu and E. M. Yeatman. A Methodology for Low-Speed Broadband Rotational Energy Harvesting Using Piezoelectric Transduction and Frequency Up-Conversion. Energy, 125: 152–161, 2017.
J. X. Wang, W. B. Su, J. C. Li and C. M. Wang. A Rotational Piezoelectric Energy Harvester Based on Trapezoid Beam: Simulation and Experiment. Renewable Energy, 184: 619-626, 2022.
M. A. Karami, J. R. Farmer and D. J. Inman. Parametrically Excited Nonlinear Piezoelectric Compact Wind Turbine. Renewable Energy, 50: 977-987, 2013.
王偉丞,「旋轉式週期性磁力應用於壓電振能擷取之研究」,台灣大學應用力學所碩士論文,2017。
陳璽安,「旋轉環境下壓電能量擷取系統之研究」,台灣大學應用力學所碩士論文,2018。
A. Erturk and D. J. Inman. A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. Journal of Vibration and Acoustics, 130:041002-1, 2008.
A. Erturk and D. J. Inman. An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations. Smart Materials and Structures, 18:025009, 2009.
A. Erturk, P. A. Tarazaga, J. R. Farmer and D. J. Inman. Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams. Journal of Vibration and Acoustics, 131: 011010, 2009.
C. Cai, H. Zheng, M. S. Khan and K. C. Hung. Modeling of Material Damping Properties in ANSYS. In CADFEM Users’ Meeting & ANSYS Conference, 9-11, 2002.
F. M. Foong, C. K. Thein and D. Yurchenko. On Mechanical Damping of Cantilever Beam-Based Electromagnetic Resonators. Mechanical Systems and Signal Processing, 119: 120-137, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91893-
dc.description.abstract本研究為探討壓電振子上磁激振位置之最佳化,進行理論分析與實驗驗證。從文獻回顧可知,以升頻轉換之特性,即當壓電振子之共振頻率 ω_n 與旋轉磁力之驅動頻率 ω_d 比值為正整數倍時,能以當前磁鐵之較低驅動頻率激振激發出壓電振子之較高自然共振頻率。另外透過雙點磁激振之特性、壓電振子之模態分析、以及對週期性磁外力進行傅立葉展開,發展出激發第一與第二模態混合之壓電振子理論。本研究以此理論為基礎,分析不同磁激振位置對發電功率之影響,進行理論與實驗驗證。
研究結果顯示,本研究發展之模型,可以分析出不同磁激振位置之輸出電壓,因此可以根據使用條件選取最佳的磁鐵位置。以本實驗式樣為例,第二顆磁鐵擺放於壓電振子全長之0.35~0.51比值的位置會有最佳發電效率。此外,根據實驗現象,當第二顆磁鐵擺放過於外側位置,使得等效第一模態力變為負值時,會導致阻尼比變大,造成電壓驟降。因此對等效模態力量與第二顆磁鐵位置進行解析,並透過回歸的方式得到等效模態力量與等效阻尼比之間的關係,為磁激振位置設計提供依據,能根據不同情況進行設計,增加其應用層面。
zh_TW
dc.description.abstractThe thesis studies the optimal locations of placing magnets on a piezoelectric harvester beam under rotary magnetic plucking. Both the theoretical analysis and experimental validation are performed here. The operation principle is based on the frequency up-conversion, i.e., the high resonant frequency of the oscillator is induced by the low frequency of rotating environment whenever their frequency ratio is some multiples of integers. In addition, the first and second resonant modes of the mixed type can be induced simultaneously under the framework of two-point magnetic plucking. The analysis behind this phenomenon can be achieved by the standard modal analysis and Fourier expansions of the magnetic forces acted on two different locations of the beam. As a result, the effect of magnetic locations on harvested power can be analyzed with experimental justification. The result shows that the harvested power is optimized if the second magnet is placed at the ratio of 0.35~0.51 of the full beam length. Further, the analysis reveals that the sign of the modal force of the first mode is changed from being positive to negative when the second magnet is removed close to the beam tip. The experiment observes the increase of mechanical damping ratio, giving rise to the reduction of piezoelectric voltage. We propose to carry out the regression analysis by exploiting the relation between the modal force and mechanical damping. This provides a great advantage in design when various factors are under considerations.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:19:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:19:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 x
Chapter 1 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 論文架構 11
Chapter 2 壓電振子理論模型 12
2.1 壓電效應 12
2.1.1 正壓電效應 12
2.1.2 逆壓電效應 13
2.2 線彈性壓電材料組成律 14
2.3 壓電懸臂樑模型 16
2.3.1 數學模型與交流分析 16
2.3.2 等效電路模型與直流分析 17
Chapter 3 週期性磁力與旋轉式雙點磁激振模型 20
3.1 旋轉磁激振模型 20
3.1.1 磁位能與週期性磁力 20
3.1.2 磁力之傅立葉展開 21
3.2 雙點磁激振壓電懸臂樑模型 23
3.3 Distributed Parameter Method 28
3.3.1 自然振動方程式與邊界條件 28
3.3.2 模態函數 30
3.4 正交化條件 33
3.5 未貼滿壓電振子之等效參數推導 34
3.6 雙點磁激振理論 37
3.7 磁激振位置之數值模擬分析 39
3.7.1 數值模擬分析 40
Chapter 4 實驗架設與結果分析 48
4.1 實驗儀器架設 48
4.2 實驗操作流程 51
4.2.1 磁力量測 51
4.2.2 壓電懸臂樑與磁鐵裝設 52
4.2.3 壓電振子參數提取 53
4.3 實驗結果 55
4.3.1 兩組磁鐵激振之實驗與理論驗證 55
4.3.2 不同磁激振位置之最佳化 57
4.3.3 阻尼比最佳化 63
Chapter 5 結論與未來展望 80
5.1 結論 80
5.2 未來展望 82
參考文獻 83
-
dc.language.isozh_TW-
dc.title旋轉磁激振位置最佳化之壓電混合共振能源擷取器zh_TW
dc.titleOptimization of Magnetic Location for Plucking a Piezoelectric Harvester Beam with Hybrid Resonant Modesen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇偉儁;林哲宇zh_TW
dc.contributor.oralexamcommitteeWei-Jiun Su;Che-Yu Linen
dc.subject.keyword升頻轉換,旋轉式雙點磁激振,混合模態,位置最佳化,阻尼比,zh_TW
dc.subject.keywordFrequency up-conversion,Rotary two-point magnetic excitation,Mixed mode,Position optimization,Damping ratio,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202201695-
dc.rights.note未授權-
dc.date.accepted2022-07-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  目前未授權公開取用
4.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved