請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91892
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭瑋庭 | zh_TW |
dc.contributor.advisor | Wei-Ting Kuo | en |
dc.contributor.author | 張映捷 | zh_TW |
dc.contributor.author | Ying-Chieh Chang | en |
dc.date.accessioned | 2024-02-26T16:19:23Z | - |
dc.date.available | 2024-02-27 | - |
dc.date.copyright | 2024-02-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-19 | - |
dc.identifier.citation | Baker, J., & Garrod, D. (1993). Epithelial cells retain junctions during mitosis. J Cell Sci, 104 ( Pt 2), 415-425. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7685036
Balda, M. S., Garrett, M. D., & Matter, K. (2003). The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol, 160(3), 423-432. https://doi.org/10.1083/jcb.200210020 jcb.200210020 [pii] Balda, M. S., & Matter, K. (2009). Tight junctions and the regulation of gene expression [Research Support, Non-U.S. Gov''t Review]. Biochim Biophys Acta, 1788(4), 761-767. https://doi.org/10.1016/j.bbamem.2008.11.024 Balda, M. S., Whitney, J. A., Flores, C., Gonzalez, S., Cereijido, M., & Matter, K. (1996). Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol, 134(4), 1031-1049. http://www.ncbi.nlm.nih.gov/pubmed/8769425 Bazzoni, G., Martinez-Estrada, O. M., Mueller, F., Nelboeck, P., Schmid, G., Bartfai, T., Dejana, E., & Brockhaus, M. (2000). Homophilic interaction of junctional adhesion molecule. J Biol Chem. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=0010913139 http://www.jbc.org/cgi/content/abstract/M003946200v1 Bergstralh, D. T., Lovegrove, H. E., & St Johnston, D. (2013). Discs large links spindle orientation to apical-basal polarity in Drosophila epithelia. Curr Biol, 23(17), 1707-1712. https://doi.org/10.1016/j.cub.2013.07.017 Braga, V. M., & Yap, A. S. (2005). The challenges of abundance: epithelial junctions and small GTPase signalling. Curr Opin Cell Biol, 17(5), 466-474. https://doi.org/10.1016/j.ceb.2005.08.012 Busson, S., Dujardin, D., Moreau, A., Dompierre, J., & De Mey, J. R. (1998). Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr Biol, 8(9), 541-544. https://doi.org/10.1016/s0960-9822(98)70208-8 Cartagena-Rivera, A. X., Van Itallie, C. M., Anderson, J. M., & Chadwick, R. S. (2017). Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat Commun, 8(1), 1030. https://doi.org/10.1038/s41467-017-01145-8 Cavey, M., & Lecuit, T. (2009). Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb Perspect Biol, 1(5), a002998. https://doi.org/10.1101/cshperspect.a002998 Chassaing, B., Kumar, M., Baker, M. T., Singh, V., & Vijay-Kumar, M. (2014). Mammalian gut immunity. Biomed J, 37(5), 246-258. https://doi.org/10.4103/2319-4170.130922 Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med, 50(8), 103. https://doi.org/10.1038/s12276-018-0126-x Citi, S., & Cordenonsi, M. (1998). Tight junction proteins. Biochim Biophys Acta, 1448(1), 1-11. https://doi.org/S0167-4889(98)00125-6 [pii] Clevers, H. C., & Bevins, C. L. (2013). Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol, 75, 289-311. https://doi.org/10.1146/annurev-physiol-030212-183744 Colegio, O. R., Van Itallie, C. M., McCrea, H. J., Rahner, C., & Anderson, J. M. (2002). Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol, 283(1), C142-147. https://doi.org/10.1152/ajpcell.00038.2002 Coue, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Lett, 213(2), 316-318. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3556584 den Elzen, N., Buttery, C. V., Maddugoda, M. P., Ren, G., & Yap, A. S. (2009). Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell, 20(16), 3740-3750. https://doi.org/10.1091/mbc.e09-01-0023 Ebnet, K., Aurrand-Lions, M., Kuhn, A., Kiefer, F., Butz, S., Zander, K., Meyer zu Brickwedde, M. K., Suzuki, A., Imhof, B. A., & Vestweber, D. (2003). The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci, 116(Pt 19), 3879-3891. https://doi.org/10.1242/jcs.00704 116/19/3879 [pii] Fanning, A. S., & Anderson, J. M. (2009). Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci, 1165, 113-120. https://doi.org/10.1111/j.1749-6632.2009.04440.x Fanning, A. S., Jameson, B. J., Jesaitis, L. A., & Anderson, J. M. (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem, 273(45), 29745-29753. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jbc.org/cgi/content/full/273/45/29745 Fanning, A. S., Ma, T. Y., & Anderson, J. M. (2002). Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J, 16(13), 1835-1837. https://doi.org/10.1096/fj.02-0121fje Farquhar, M., & Palade, G. (1963). Junctional complexes in various epithelia. J Cell Biol, 17(2), 375-412. <Go to ISI>://A19634065B00002 Finnie, I. A., Dwarakanath, A. D., Taylor, B. A., & Rhodes, J. M. (1995). Colonic mucin synthesis is increased by sodium butyrate. Gut, 36(1), 93-99. https://doi.org/10.1136/gut.36.1.93 Fleming, T. P., McConnell, J., Johnson, M. H., & Stevenson, B. R. (1989). Development of tight junctions de novo in the mouse early embryo: control of assembly of the tight junction-specific protein, ZO-1. J Cell Biol, 108(4), 1407-1418. http://www.ncbi.nlm.nih.gov/pubmed/2647768 Founounou, N., Loyer, N., & Le Borgne, R. (2013). Septins regulate the contractility of the actomyosin ring to enable adherens junction remodeling during cytokinesis of epithelial cells [Research Support, Non-U.S. Gov''t]. Dev Cell, 24(3), 242-255. https://doi.org/10.1016/j.devcel.2013.01.008 Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., & Tsukita, S. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol, 123(6 Pt 2), 1777-1788. https://doi.org/10.1083/jcb.123.6.1777 Gallo, R. L., & Hooper, L. V. (2012). Epithelial antimicrobial defence of the skin and intestine [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov''t Research Support, U.S. Gov''t, Non-P.H.S. Review]. Nat Rev Immunol, 12(7), 503-516. https://doi.org/10.1038/nri3228 Gillies, T. E., & Cabernard, C. (2011). Cell division orientation in animals. Curr Biol, 21(15), R599-609. https://doi.org/10.1016/j.cub.2011.06.055 Gonzalez-Mariscal, L., Dominguez-Calderon, A., Raya-Sandino, A., Ortega-Olvera, J. M., Vargas-Sierra, O., & Martinez-Revollar, G. (2014). Tight junctions and the regulation of gene expression. Semin Cell Dev Biol, 36, 213-223. https://doi.org/10.1016/j.semcdb.2014.08.009 Green, R. A., Wollman, R., & Kaplan, K. B. (2005). APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell, 16(10), 4609-4622. https://doi.org/10.1091/mbc.e05-03-0259 Guillemot, L., Schneider, Y., Brun, P., Castagliuolo, I., Pizzuti, D., Martines, D., Jond, L., Bongiovanni, M., & Citi, S. (2012). Cingulin is dispensable for epithelial barrier function and tight junction structure, and plays a role in the control of claudin-2 expression and response to duodenal mucosa injury. J Cell Sci, 125(Pt 21), 5005-5014. https://doi.org/10.1242/jcs.101261 Guillot, C., & Lecuit, T. (2013a). Adhesion disengagement uncouples intrinsic and extrinsic forces to drive cytokinesis in epithelial tissues. Dev Cell, 24(3), 227-241. https://doi.org/10.1016/j.devcel.2013.01.010 Guillot, C., & Lecuit, T. (2013b). Mechanics of epithelial tissue homeostasis and morphogenesis [Research Support, Non-U.S. Gov''t Review]. Science, 340(6137), 1185-1189. https://doi.org/10.1126/science.1235249 Gunzel, D., & Yu, A. S. (2013). Claudins and the modulation of tight junction permeability. Physiol Rev, 93(2), 525-569. https://doi.org/10.1152/physrev.00019.2012 Halbleib, J. M., & Nelson, W. J. (2006). Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev, 20(23), 3199-3214. https://doi.org/10.1101/gad.1486806 Hamazaki, Y., Itoh, M., Sasaki, H., Furuse, M., & Tsukita, S. (2002). Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem, 277(1), 455-461. https://doi.org/10.1074/jbc.M109005200 M109005200 [pii] Harris, T. J., & Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol, 11(7), 502-514. https://doi.org/10.1038/nrm2927 Herszterg, S., Leibfried, A., Bosveld, F., Martin, C., & Bellaiche, Y. (2013). Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue [Research Support, Non-U.S. Gov''t]. Dev Cell, 24(3), 256-270. https://doi.org/10.1016/j.devcel.2012.11.019 Holzinger, A. (2009). Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Methods Mol Biol, 586, 71-87. https://doi.org/10.1007/978-1-60761-376-3_4 Horwitz, S. B. (1992). Mechanism of action of taxol. Trends Pharmacol Sci, 13(4), 134-136. https://doi.org/10.1016/0165-6147(92)90048-b Howard, A., & Pelc, S. R. (1986). Synthesis of Deoxyribonucleic-Acid in Normal and Irradiated-Cells and Its Relation to Chromosome Breakage. International Journal of Radiation Biology, 49(2), 207-218. https://doi.org/Doi 10.1080/09553008514552501 Ikenouchi, J., Umeda, K., Tsukita, S., & Furuse, M. (2007). Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization. J Cell Biol, 176(6), 779-786. https://doi.org/jcb.200612080 [pii] 10.1083/jcb.200612080 Jaffe, A. B., Kaji, N., Durgan, J., & Hall, A. (2008). Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J Cell Biol, jcb.200807121. https://doi.org/10.1083/jcb.200807121 Katsuno, T., Umeda, K., Matsui, T., Hata, M., Tamura, A., Itoh, M., Takeuchi, K., Fujimori, T., Nabeshima, Y., Noda, T., & Tsukita, S. (2008). Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell, 19(6), 2465-2475. https://doi.org/E07-12-1215 [pii] 10.1091/mbc.E07-12-1215 Keir, M., Yi, Y., Lu, T., & Ghilardi, N. (2020). The role of IL-22 in intestinal health and disease. J Exp Med, 217(3), e20192195. https://doi.org/10.1084/jem.20192195 Knoop, K. A., & Newberry, R. D. (2018). Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol, 11(6), 1551-1557. https://doi.org/10.1038/s41385-018-0039-y Kotak, S., Busso, C., & Gonczy, P. (2012). Cortical dynein is critical for proper spindle positioning in human cells. J Cell Biol, 199(1), 97-110. https://doi.org/10.1083/jcb.201203166 Kucharzik, T., Walsh, S. V., Chen, J., Parkos, C. A., & Nusrat, A. (2001). Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol, 159(6), 2001-2009. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11733350 Kunda, P., Pelling, A. E., Liu, T., & Baum, B. (2008). Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol, 18(2), 91-101. https://doi.org/10.1016/j.cub.2007.12.051 Kuo, W. T., Zuo, L., Odenwald, M. A., Madha, S., Singh, G., Gurniak, C. B., Abraham, C., & Turner, J. R. (2021). The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology, 161(6), 1924-1939. https://doi.org/10.1053/j.gastro.2021.08.047 Kurashima, Y., & Kiyono, H. (2017). Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing. Annu Rev Immunol, 35, 119-147. https://doi.org/10.1146/annurev-immunol-051116-052424 Lancaster, O. M., & Baum, B. (2014). Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin Cell Dev Biol, 34, 109-115. https://doi.org/10.1016/j.semcdb.2014.02.015 Lau, H. W., Ma, H. T., Yeung, T. K., Tam, M. Y., Zheng, D., Chu, S. K., & Poon, R. Y. C. (2021). Quantitative differences between cyclin-dependent kinases underlie the unique functions of CDK1 in human cells. Cell Rep, 37(2), 109808. https://doi.org/10.1016/j.celrep.2021.109808 Legoff, L., Rouault, H., & Lecuit, T. (2013). A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Development, 140(19), 4051-4059. https://doi.org/10.1242/dev.090878 Mack, D. R., Michail, S., Wei, S., McDougall, L., & Hollingsworth, M. A. (1999). Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol, 276(4), G941-950. https://doi.org/10.1152/ajpgi.1999.276.4.G941 MacLean-Fletcher, S., & Pollard, T. D. (1980). Mechanism of action of cytochalasin B on actin. Cell, 20(2), 329-341. https://doi.org/0092-8674(80)90619-4 [pii] Mao, Y., Tournier, A. L., Hoppe, A., Kester, L., Thompson, B. J., & Tapon, N. (2013). Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J, 32(21), 2790-2803. https://doi.org/10.1038/emboj.2013.197 Matsumoto, K., Imasato, M., Yamazaki, Y., Tanaka, H., Watanabe, M., Eguchi, H., Nagano, H., Hikita, H., Tatsumi, T., Takehara, T., Tamura, A., & Tsukita, S. (2014). Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice. Gastroenterology, 147(5), 1134-1145 e1110. https://doi.org/10.1053/j.gastro.2014.07.033 Mattagajasingh, S. N., Huang, S. C., Hartenstein, J. S., & Benz, E. J., Jr. (2000). Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem, 275(39), 30573-30585. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10874042 Mazmanian, S. K., Round, J. L., & Kasper, D. L. (2008). A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 453(7195), 620-625. http://dx.doi.org/10.1038/nature07008 http://www.nature.com/nature/journal/v453/n7195/suppinfo/nature07008_S1.html McCauley, H. A., & Guasch, G. (2015). Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. Trends Mol Med, 21(8), 492-503. https://doi.org/10.1016/j.molmed.2015.06.003 Medina, R., Rahner, C., Mitic, L. L., Anderson, J. M., & Van Itallie, C. M. (2000). Occludin localization at the tight junction requires the second extracellular loop. J Membr Biol, 178(3), 235-247. http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=0011140279 Mendoza, M., Norden, C., Durrer, K., Rauter, H., Uhlmann, F., & Barral, Y. (2009). A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol, 11(4), 477-483. https://doi.org/10.1038/ncb1855 Mikhailov, A., Cole, R. W., & Rieder, C. L. (2002). DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr Biol, 12(21), 1797-1806. https://doi.org/10.1016/s0960-9822(02)01226-5 Mondel, M., Schroeder, B. O., Zimmermann, K., Huber, H., Nuding, S., Beisner, J., Fellermann, K., Stange, E. F., & Wehkamp, J. (2009). Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunol, 2(2), 166-172. https://doi.org/10.1038/mi.2008.77 Morais-de-Sa, E., & Sunkel, C. (2013). Adherens junctions determine the apical position of the midbody during follicular epithelial cell division. EMBO Rep, 14(8), 696-703. https://doi.org/10.1038/embor.2013.85 Morbe, U. M., Jorgensen, P. B., Fenton, T. M., von Burg, N., Riis, L. B., Spencer, J., & Agace, W. W. (2021). Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol, 14(4), 793-802. https://doi.org/10.1038/s41385-021-00389-4 Morin, X., & Bellaiche, Y. (2011). Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell, 21(1), 102-119. https://doi.org/10.1016/j.devcel.2011.06.012 Mowat, A. M., & Agace, W. W. (2014). Regional specialization within the intestinal immune system. Nat Rev Immunol, 14(10), 667-685. https://doi.org/10.1038/nri3738 Nakajima, Y. I., Meyer, E. J., Kroesen, A., McKinney, S. A., & Gibson, M. C. (2013). Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature. https://doi.org/10.1038/nature12335 Noatynska, A., Gotta, M., & Meraldi, P. (2012). Mitotic spindle (DIS)orientation and DISease: cause or consequence? J Cell Biol, 199(7), 1025-1035. https://doi.org/10.1083/jcb.201209015 Norden, C., Mendoza, M., Dobbelaere, J., Kotwaliwale, C. V., Biggins, S., & Barral, Y. (2006). The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell, 125(1), 85-98. https://doi.org/10.1016/j.cell.2006.01.045 Odenwald, M. A., Choi, W., Buckley, A., Shashikanth, N., Joseph, N. E., Wang, Y., Warren, M. H., Buschmann, M. M., Pavlyuk, R., Hildebrand, J., Margolis, B., Fanning, A. S., & Turner, J. R. (2017). ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci, 130(1), 243-259. https://doi.org/10.1242/jcs.188185 Odenwald, M. A., Choi, W., Kuo, W. T., Singh, G., Sailer, A., Wang, Y., Shen, L., Fanning, A. S., & Turner, J. R. (2018). The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem, 293(45), 17317-17335. https://doi.org/10.1074/jbc.RA118.003908 Okamoto, K., Fujiya, M., Nata, T., Ueno, N., Inaba, Y., Ishikawa, C., Ito, T., Moriichi, K., Tanabe, H., Mizukami, Y., Chang, E. B., & Kohgo, Y. (2012). Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection. Int J Colorectal Dis, 27(8), 1039-1046. https://doi.org/10.1007/s00384-012-1416-8 Otani, T., Ichii, T., Aono, S., & Takeichi, M. (2006). Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. J Cell Biol, 175(1), 135-146. https://doi.org/jcb.200605012 [pii] 10.1083/jcb.200605012 Otani, T., Nguyen, T. P., Tokuda, S., Sugihara, K., Sugawara, T., Furuse, K., Miura, T., Ebnet, K., & Furuse, M. (2019). Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J Cell Biol, 218(10), 3372-3396. https://doi.org/10.1083/jcb.201812157 Pabst, O. (2012). New concepts in the generation and functions of IgA. Nat Rev Immunol, 12(12), 821-832. https://doi.org/10.1038/nri3322 Papusheva, E., & Heisenberg, C. P. (2010). Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J, 29(16), 2753-2768. https://doi.org/emboj2010182 [pii] 10.1038/emboj.2010.182 Pardee, A. B. (1974). A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A, 71(4), 1286-1290. https://doi.org/10.1073/pnas.71.4.1286 Pertz, O., Bozic, D., Koch, A. W., Fauser, C., Brancaccio, A., & Engel, J. (1999). A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J, 18(7), 1738-1747. https://doi.org/10.1093/emboj/18.7.1738 Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol, 14(3), 141-153. https://doi.org/10.1038/nri3608 Peyre, E., Jaouen, F., Saadaoui, M., Haren, L., Merdes, A., Durbec, P., & Morin, X. (2011). A lateral belt of cortical LGN and NuMA guides mitotic spindle movements and planar division in neuroepithelial cells. J Cell Biol, 193(1), 141-154. https://doi.org/10.1083/jcb.201101039 Phua, D. C., Xu, J., Ali, S. M., Boey, A., Gounko, N. V., & Hunziker, W. (2014). ZO-1 and ZO-2 are required for extra-embryonic endoderm integrity, primitive ectoderm survival and normal cavitation in embryoid bodies derived from mouse embryonic stem cells. PLoS One, 9(6), e99532. https://doi.org/10.1371/journal.pone.0099532 Piontek, J., Winkler, L., Wolburg, H., Muller, S. L., Zuleger, N., Piehl, C., Wiesner, B., Krause, G., & Blasig, I. E. (2008). Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J, 22(1), 146-158. https://doi.org/10.1096/fj.07-8319com Pollard, T. D., & Weihing, R. R. (1974). Actin and myosin and cell movement. CRC Crit Rev Biochem, 2(1), 1-65. https://doi.org/10.3109/10409237409105443 Qin, Y., Meisen, W. H., Hao, Y., & Macara, I. G. (2010). Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov''t]. J Cell Biol, 189(4), 661-669. https://doi.org/10.1083/jcb.201002097 Ramanathan, S. P., Helenius, J., Stewart, M. P., Cattin, C. J., Hyman, A. A., & Muller, D. J. (2015). Cdk1-dependent mitotic enrichment of cortical myosin II promotes cell rounding against confinement. Nat Cell Biol. https://doi.org/10.1038/ncb3098 Reinsch, S., & Karsenti, E. (1994). Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol, 126(6), 1509-1526. http://www.ncbi.nlm.nih.gov/pubmed/8089182 Rieder, C. L., & Maiato, H. (2004). Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell, 7(5), 637-651. https://doi.org/10.1016/j.devcel.2004.09.002 Rodgers, L. S., Beam, M. T., Anderson, J. M., & Fanning, A. S. (2013). Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1 [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]. J Cell Sci, 126(Pt 7), 1565-1575. https://doi.org/10.1242/jcs.113399 Roh, M. H., Liu, C. J., Laurinec, S., & Margolis, B. (2002). The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem, 277(30), 27501-27509. https://doi.org/10.1074/jbc.M201177200 M201177200 [pii] Rouaud, F., Sluysmans, S., Flinois, A., Shah, J., Vasileva, E., & Citi, S. (2020). Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. Biochim Biophys Acta Biomembr, 1862(10), 183399. https://doi.org/10.1016/j.bbamem.2020.183399 Schiestl, R. H., Reynolds, P., Prakash, S., & Prakash, L. (1989). Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol, 9(5), 1882-1896. https://doi.org/10.1128/mcb.9.5.1882-1896.1989 Schlee, M., Harder, J., Koten, B., Stange, E. F., Wehkamp, J., & Fellermann, K. (2008). Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol, 151(3), 528-535. https://doi.org/10.1111/j.1365-2249.2007.03587.x Schneeberger, E. E., & Lynch, R. D. (2004). The tight junction: a multifunctional complex. Am J Physiol Cell Physiol, 286(6), C1213-1228. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15151915 Shan, M., Gentile, M., Yeiser, J. R., Walland, A. C., Bornstein, V. U., Chen, K., He, B., Cassis, L., Bigas, A., Cols, M., Comerma, L., Huang, B., Blander, J. M., Xiong, H., Mayer, L., Berin, C., Augenlicht, L. H., Velcich, A., & Cerutti, A. (2013). Mucus Enhances Gut Homeostasis and Oral Tolerance by Delivering Immunoregulatory Signals. Science. https://doi.org/10.1126/science.1237910 Singh, A. B., Sharma, A., & Dhawan, P. (2010). Claudin family of proteins and cancer: an overview. J Oncol, 2010, 541957. https://doi.org/10.1155/2010/541957 Sluder, G., Thompson, E. A., Miller, F. J., Hayes, J., & Rieder, C. L. (1997). The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci, 110 ( Pt 4), 421-429. https://doi.org/10.1242/jcs.110.4.421 Soderholm, J. D., Olaison, G., Peterson, K. H., Franzen, L. E., Lindmark, T., Wiren, M., Tagesson, C., & Sjodahl, R. (2002). Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn''s disease. Gut, 50(3), 307-313. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11839706 Stevenson, B. R., Siliciano, J. D., Mooseker, M. S., & Goodenough, D. A. (1986). Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol, 103(3), 755-766. https://doi.org/10.1083/jcb.103.3.755 Stewart, M. P., Helenius, J., Toyoda, Y., Ramanathan, S. P., Muller, D. J., & Hyman, A. A. (2011). Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature, 469(7329), 226-230. https://doi.org/10.1038/nature09642 Svoboda, K. K., Moessner, P., Field, T., & Acevedo, J. (2004). ROCK inhibitor (Y27632) increases apoptosis and disrupts the actin cortical mat in embryonic avian corneal epithelium. Dev Dyn, 229(3), 579-590. https://doi.org/10.1002/dvdy.20008 Tanaka, T. U. (2010). Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J, 29(24), 4070-4082. https://doi.org/10.1038/emboj.2010.294 Temin, H. M. (1971). Stimulation by serum of multiplication of stationary chicken cells. J Cell Physiol, 78(2), 161-170. https://doi.org/10.1002/jcp.1040780202 Tepass, U., Tanentzapf, G., Ward, R., & Fehon, R. (2001). Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet, 35, 747-784. https://doi.org/10.1146/annurev.genet.35.102401.091415 35/1/747 [pii] Thery, M., & Bornens, M. (2006). Cell shape and cell division. Curr Opin Cell Biol, 18(6), 648-657. https://doi.org/10.1016/j.ceb.2006.10.001 Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease [10.1038/nri2653]. Nat Rev Immunol, 9(11), 799-809. https://doi.org/10.1038/nri2653 Umeda, K., Ikenouchi, J., Katahira-Tayama, S., Furuse, K., Sasaki, H., Nakayama, M., Matsui, T., Tsukita, S., & Furuse, M. (2006). ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell, 126(4), 741-754. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16923393 Unbekandt, M., & Olson, M. F. (2014). The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. J Mol Med (Berl), 92(3), 217-225. https://doi.org/10.1007/s00109-014-1133-6 Van Itallie, C. M., & Anderson, J. M. (2006). Claudins and epithelial paracellular transport. Annu Rev Physiol, 68, 403-429. https://doi.org/10.1146/annurev.physiol.68.040104.131404 Van Itallie, C. M., Fanning, A. S., Bridges, A., & Anderson, J. M. (2009). ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell, 20(17), 3930-3940. https://doi.org/10.1091/mbc.E09-04-0320 Van Itallie, C. M., Tietgens, A. J., Krystofiak, E., Kachar, B., & Anderson, J. M. (2015). A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell, 26(15), 2769-2787. https://doi.org/10.1091/mbc.E15-04-0232 Vassilev, L. T. (2006). Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle, 5(22), 2555-2556. https://doi.org/10.4161/cc.5.22.3463 Weinert, T., & Hartwell, L. (1989). Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J Cell Sci Suppl, 12, 145-148. https://doi.org/10.1242/jcs.1989.supplement_12.12 Wittchen, E. S., Haskins, J., & Stevenson, B. R. (1999). Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem, 274(49), 35179-35185. http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/referer?http://www.jbc.org/cgi/content/full/274/49/35179 Woolner, S., & Papalopulu, N. (2012). Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces. Dev Cell, 22(4), 775-787. https://doi.org/10.1016/j.devcel.2012.01.002 Xu, J., Lim, S. B., Ng, M. Y., Ali, S. M., Kausalya, J. P., Limviphuvadh, V., Maurer-Stroh, S., & Hunziker, W. (2012). ZO-1 regulates Erk, Smad1/5/8, Smad2, and RhoA activities to modulate self-renewal and differentiation of mouse embryonic stem cells [Research Support, Non-U.S. Gov''t]. Stem Cells, 30(9), 1885-1900. https://doi.org/10.1002/stem.1172 Yingling, J., Youn, Y. H., Darling, D., Toyo-Oka, K., Pramparo, T., Hirotsune, S., & Wynshaw-Boris, A. (2008). Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell, 132(3), 474-486. https://doi.org/10.1016/j.cell.2008.01.026 Yu, D., Marchiando, A. M., Weber, C. R., Raleigh, D. R., Wang, Y., Shen, L., & Turner, J. R. (2010). MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc Natl Acad Sci U S A, 107(18), 8237-8241. https://doi.org/10.1073/pnas.0908869107 Yu, Y., Sitaraman, S., & Gewirtz, A. T. (2004). Intestinal epithelial cell regulation of mucosal inflammation. Immunol Res, 29(1-3), 55-68. https://doi.org/10.1385/IR:29:1-3:055 Zemljic-Harpf, A. E., Godoy, J. C., Platoshyn, O., Asfaw, E. K., Busija, A. R., Domenighetti, A. A., & Ross, R. S. (2014). Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci, 127(Pt 5), 1104-1116. https://doi.org/10.1242/jcs.143743 Zheng, Z., Zhu, H., Wan, Q., Liu, J., Xiao, Z., Siderovski, D. P., & Du, Q. (2010). LGN regulates mitotic spindle orientation during epithelial morphogenesis. J Cell Biol, 189(2), 275-288. https://doi.org/10.1083/jcb.200910021 Zieve, G. W., Turnbull, D., Mullins, J. M., & McIntosh, J. R. (1980). Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res, 126(2), 397-405. https://doi.org/10.1016/0014-4827(80)90279-7 Zirkle, R. E. (1970). Ultraviolet-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase, and delay of true anaphase. Radiat Res, 41(3), 516-537. https://www.ncbi.nlm.nih.gov/pubmed/5438206 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91892 | - |
dc.description.abstract | 免疫誘發的腸道和全身性疾病(包括黏膜損傷)會導致腸道屏障功能降低。為恢復平衡,黏膜迅速癒合至關重要。緊密連接蛋白ZO-1除了已知的屏障功能外,目前研究也發現其可透過有絲分裂紡錘體的排列方向發揮關鍵作用來促進上皮細胞生長,然而,ZO-1調節細胞分裂的分子機制尚未明瞭。
目的:確定ZO-1在黏膜癒合的關鍵過程中調節有絲分裂紡錘體方向的機制。 結果:應用CRISPR/Cas9技術產生ZO-1缺陷的腸上皮Caco-2細胞,與正常Caco-2細胞相比,這些細胞中缺乏ZO-1表達,且屏障功能下降。ZO-1缺失的細胞表現出傷口癒合受損和細胞遷移不良的現象。缺乏ZO-1蛋白的細胞在有絲分裂的Sub-G1期出現程序性細胞凋亡的細胞數量較多,且細胞分裂方向不規則。透過使用三維細胞培養,結果顯示在給予paclitaxel或nocodazole處理增加有絲分裂細胞後,ZO-1的缺失會導致有絲分裂紡錘體的排列方向錯誤。先前的研究顯示,抑制ZO-1的表達會對微絨毛的排列和上皮細胞頂部表面的結構產生負面影響。透過使用抑制和穩定肌動蛋白聚合的latrunculin A、cytochalasin B和jasplakinolide結果證明,ZO-1- cortical actin相互作用的存在不會影響Caco-2細胞中有絲分裂紡錘體的方向。值得一提的是,YBX3和VCL轉錄子的含量增加,這些基因參與細胞分裂方向的調節並與ZO-1交互作用。相反地,缺乏ZO-1的Caco-2細胞,DNMBP和CTTN表達減少。此外,ZO-1的缺失會降低有絲分裂機制和訊號分子的水平,包括pericentrin 和aurora A。同樣地,這些發現也出現在被診斷患有發炎性腸道疾病(IBD)的個體中,這些人的ZO-1表現量降低。ZO-1蛋白透過與細胞骨架結合蛋白(而不是皮質肌動蛋白)相互作用來幫助有絲分裂的有效執行。 結論:這項研究顯示ZO-1在有絲分裂紡錘體的排列方向方面具有還未被探索的非典型功能,這與其參與維持屏障功能無關。根據我們的觀點,ZO-1相關的細胞骨架結合蛋白和轉錄因子YBX3在調節有絲分裂方向上具有重要功能。IBD患者可能由於潛在的根本原因而導致黏膜癒合受損。 | zh_TW |
dc.description.abstract | Immune-mediated intestinal and systemic illnesses that include mucosal injury result in a reduced intestinal barrier function. It is crucial that the mucosa be promptly healed in order to restore balance. Zonula occludens-1 (ZO-1) facilitates the growth of epithelial cells by playing a crucial role in the orientation of the mitotic spindle, irrespective of its barrier function. However, the mechanism by which ZO-1 drives cell division has not yet been established.
Objective: To determine the mechanism by which ZO-1 regulates the orientation of the mitotic spindle, a crucial process for mucosal healing. Results: Applying CRISPR/Cas9 technology to generate ZO-1-deficient intestinal epithelial Caco-2 cells demonstrated the absence of ZO-1 expression in these cells, leading to a decreased barrier function compared to cells that do express ZO-1. Cells missing ZO-1 exhibited impaired healing of purse-string wounds and poor cell migration. Cells lacking the ZO-1 protein show a higher number of cells undergoing programmed cell death in the sub-G1 phase of mitosis, as well as irregular cellular orientation. Through the use of three-dimensional cell culture, it was shown that the absence of ZO-1 led to a misorientation of the mitotic spindle after exposure to paclitaxel or nocodazole. Previous studies have shown that suppressing the expression of ZO-1 has negative consequences on the arrangement of microvilli and the structure at the top surface of epithelial cells. By using latrunculin A, cytochalasin B, and jasplakinolide, which inhibit and stabilize actin polymerization, the presence of ZO-1-cortical actin interaction did not influence the orientation of the mitotic spindle in Caco-2 cells. It is important to mention that the levels of YBX3 and VCL transcripts were increased. These genes are involved in the regulation of cell division direction and interact with ZO-1. Conversely, cells lacking ZO-1, DNMBP and CTTN exhibited a decrease in expression. In addition, the absence of ZO-1 reduces the levels of mitotic machinery and signaling molecules, including pericentrin and aurora A. Similarly, the findings were seen in individuals diagnosed with inflammatory bowel disease (IBD) who have decreased levels of ZO-1 expression. The ZO-1 protein aids in the effective execution of mitosis by interacting with cytoskeletal binding proteins, rather than cortical actin. Conclusion: This work reveals that ZO-1 has an unexplored, unconventional function in the orientation of the mitotic spindle, which is not related to its involvement in maintaining barriers. According to our perspective, ZO-1-associated cytoskeletal binding proteins and transcription factor YBX3 have significant functions in regulating mitotic direction. Patients with IBD may have impaired mucosal healing due to a potential underlying cause. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:19:23Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-26T16:19:23Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 目錄 vi 一、前言 1 1.1 黏膜屏障 1 1.1.1 物理屏障 1 1.1.2 化學屏障 2 1.1.3 免疫屏障 3 1.2 細胞間連接 3 1.2.1 緊密連接 4 1.2.2 黏附連接 5 1.3. 緊密連接蛋白ZO-1 6 1.3.1 主要結構及與屏障功能相關的交互作用蛋白 6 1.3.2 ZO-1的屏障功能 7 1.3.3 ZO-1調節上皮頂端特化結構 7 1.3.4 ZO-1調節體外管腔形成 8 1.4 細胞週期與細胞分裂 9 1.4.1 細胞週期的四個階段 9 1.4.2 上皮細胞的分裂與極化 10 1.5 ZO-1調節上皮增殖、有絲分裂紡錘體方向和黏膜修復 13 1.6 目的 14 二、材料與方法 15 2.1 細胞培養 15 2.2 建立ZO-1敲除細胞株 15 2.3 蛋白質萃取及濃度測量 17 2.4 細胞核與細胞質蛋白質萃取及濃度測量 17 2.5 西方墨點法 18 2.6 RNA萃取 21 2.7 反轉錄合成cDNA反應 21 2.8 定量聚合酶連鎖反應 22 2.9 2D免疫染色 24 2.10 3D免疫染色 25 2.11 顯微拍照與擷取影像分析 28 2.12 細胞分裂角度分析 28 2.13 流式細胞儀分析細胞週期 29 2.14 跨上皮電阻 29 2.15 傷口癒合試驗 30 2.16 藥理抑制劑 30 2.17 人類基因表達資料庫 32 2.18 統計分析 32 三、結果 33 3.1 透過CRISPR/CAS9系統在人類結直腸癌腸道上皮細胞Caco-2細胞中建立ZO-1敲除的細胞株 33 3.2 ZO-1參與傷口修復與細胞遷移 33 3.3 ZO-1的敲除導致細胞凋亡增加 34 3.4 ZO-1的敲除造成3D培養之細胞球形成多腔型態 34 3.5 細胞周期阻滯藥物Paclitaxel及Nocodazole能明顯提高S-G2-M細胞週期比例 35 3.6 低劑量細胞周期阻滯藥物Paclitaxel及Nocodazole不會提高細胞凋亡 36 3.7 ZO-1的缺失會破壞有絲分裂方向性,導致多腔發生 36 3.8 ZO-1- cortical actin交互作用不會影響有絲分裂的方向 37 3.8.1 利用Latrunculin A阻斷actin生成,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 37 3.8.2 利用Cytochalasin B阻斷actin生成,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 38 3.8.3 利用ROCK抑制劑Y27632影響actin與myosin交互作用,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 38 3.8.4 利用Latrunculin A阻斷actin生成,使用細胞周期阻滯藥物Nocodazole確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 39 3.8.5 利用Jasplakinolide穩固actin生成,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 39 3.9 ZO-1的缺失調節與有絲分裂紡錘體方向相關的轉錄和轉譯訊號 40 3.9.1 利用定量聚合酶連鎖反應偵測ZO-1缺失調節與有絲分裂紡錘體方向相關轉錄訊息分子表現 40 3.9.2 利用西方墨點法偵測ZO-1缺失調節與有絲分裂紡錘體方向相關的轉錄因子表現 41 3.10 ZO-1的缺失在有絲分裂過程中調節與有絲分裂紡錘體方向相關的轉錄和轉譯訊號 43 3.11 IBD患者的ZO-1缺失,調節與有絲分裂紡錘體方向相關的轉錄和翻譯訊號 44 四、討論 45 五、圖表 49 圖一、透過CRISPR/CAS9系統在人類直腸癌腸道上皮細胞Caco-2中建立ZO-1敲除的細胞株 49 圖二、ZO-1參與傷口修復與細胞遷移 51 圖三、ZO-1的敲除會導致細胞凋亡增加 52 圖四、ZO-1的敲除造成3D培養之細胞球形成多腔型態 53 圖五、細胞周期阻滯藥物Paclitaxel能明顯提高S-G2-M細胞週期比例 55 圖六、細胞周期阻滯藥物Nocodazole能明顯提高S-G2-M細胞週期比例 57 圖七、細胞周期阻滯藥物RO-3306無法明顯提高S-G2-M細胞週期比例 59 圖八、低劑量細胞周期阻滯藥物不會提高細胞凋亡 60 圖九、利用細胞周期阻滯藥物Paclitaxel觀察ZO-1的缺失會破壞有絲分裂方向性 61 圖十、利用細胞周期阻滯藥物Nocodazole觀察ZO-1缺失對有絲分裂方向性的影響 63 圖十一、利用Latrunculin A阻斷actin生成,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 64 圖十二、利用Cytochalasin B阻斷actin生成,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 66 圖十三、利用ROCK抑制劑Y27632影響actin與myosin交互作用,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 68 圖十四、利用Latrunculin A阻斷actin生成,使用細胞周期阻滯藥物Nocodazole確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 70 圖十五、利用Jasplakinolide穩固actin生成,確認ZO-1- cortical actin交互作用不會影響有絲分裂的方向 71 圖十六、ZO-1缺失調節與有絲分裂紡錘體方向相關的轉錄訊息分子表現 72 圖十七、ZO-1缺失調節與有絲分裂紡錘體方向相關的轉錄訊息分子表現 74 圖十八、ZO-1缺失調節與有絲分裂相關轉錄訊息分子表現 76 圖十九、ZO-1缺失調節與有絲分裂相關轉錄訊息分子表現 77 圖二十、ZO-1 的缺失調節與有絲分裂紡錘體方向相關的轉譯訊息分子表現 78 圖二十二、ZO-1 的缺失調節與有絲分裂紡錘體方向相關的轉錄因子表現 80 圖二十三、在有絲分裂的情況下,ZO-1缺失調節與有絲分裂紡錘體方向相關的轉錄訊息分子表現 81 圖二十四、在有絲分裂的情況下,ZO-1缺失調節與有絲分裂紡錘體方向相關的轉錄訊息分子表現 83 圖二十五、在有絲分裂的情況下,ZO-1缺失調節與有絲分裂相關轉錄訊息分子表現 85 圖二十六、在有絲分裂的情況下,ZO-1缺失調節與有絲分裂相關轉錄訊息分子表現 86 圖二十七、IBD患者的ZO-1表現量降低調節與有絲分裂紡錘體方向相關的轉錄訊息分子表現 87 圖二十八、IBD患者的ZO-1表現量降低調節與有絲分裂相關轉錄訊息分子表現 88 圖二十九、IBD患者的ZO-1表現量降低調節與有絲分裂紡錘體方向相關的轉錄訊息分子表現 89 圖三十、IBD患者的ZO-1表現量降低調節與有絲分裂相關轉錄訊息分子表現 90 圖三十一、IBD患者的ZO-1表現量降低調節與有絲分裂紡錘體方向相關的轉錄訊息分子表現 91 圖三十二、IBD患者的ZO-1表現量降低調節與有絲分裂相關轉錄訊息分子表現 92 圖三十三、ZO-1缺失及表現量降低的上皮細胞中,YBX3、VCL和DNMBP訊息分子表現的改變可能引起有絲分裂紡錘體方向異常 93 六、參考文獻 94 | - |
dc.language.iso | zh_TW | - |
dc.title | 緊密連接蛋白ZO-1調節有絲分裂紡錘體方向性促進上皮細胞修復的機制探討 | zh_TW |
dc.title | The Mechanism of Tight Junction Protein ZO-1 in Regulating Mitotic Spindle Orientation for Epithelial Cell Repair | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 江皓森;魏妊亘;翁瑞霞 | zh_TW |
dc.contributor.oralexamcommittee | Hao-Sen Chiang;Jen-Hsuan Wei;Jui-Hsia Weng | en |
dc.subject.keyword | 屏障功能,黏膜修復,上皮細胞穩態,緊密連接,ZO-1,炎症性腸疾,細胞增殖,有絲分裂紡錘體, | zh_TW |
dc.subject.keyword | Barrier function,Mucosal repair,Epithelial homeostasis,Tight junction,Zonula occludens-1 (ZO-1),Inflammatory bowel disease (IBD),Cell proliferation,Mitotic spindle, | en |
dc.relation.page | 106 | - |
dc.identifier.doi | 10.6342/NTU202400137 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-01-22 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 口腔生物科學研究所 | - |
dc.date.embargo-lift | 2029-01-18 | - |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 此日期後於網路公開 2029-01-18 | 13.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。