請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓仁毓 | zh_TW |
| dc.contributor.advisor | Jen-Yu Han | en |
| dc.contributor.author | 洪子媛 | zh_TW |
| dc.contributor.author | Tzu-Yuan Hung | en |
| dc.date.accessioned | 2024-02-23T16:20:16Z | - |
| dc.date.available | 2024-02-24 | - |
| dc.date.copyright | 2024-02-23 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-10-13 | - |
| dc.identifier.citation | Ahrens, C. Donald. (2007). Meteorology today : an introduction to weather, climate, and the environment. Belmont, CA :Thomson/Brooks/Cole.
Bornstein, R., & Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environment, 34(3), 507-516. Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar energy, 77(2), 231-249. Feranec, J., Kopecká, M., Szatmári, D., Holec, J., Šťastný, P., Pazúr, R., & Bobáľová, H. (2019). A review of studies involving the effect of land cover and land use on the urban heat island phenomenon, assessed by means of the MUKLIMO model. Geografie, 124(1), 383-101. Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordóñez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and sustainable energy reviews, 25, 749-758. Haselbach, L. (2009). Pervious concrete and mitigation of the urban heat island effect. Retrieved from Haselbach, L., Boyer, M., Kevern, J. T., & Schaefer, V. R. (2011). Cyclic heat island impacts on traditional versus pervious concrete pavement systems. Transportation Research Record, 2240(1), 107-115. Hondula, D. M., Georgescu, M., & Balling Jr, R. C. (2014). Challenges associated with projecting urbanization-induced heat-related mortality. Science of the total environment, 490, 538-544. Huang, K.-T., Yang, S.-R., Matzarakis, A., & Lin, T.-P. (2018). Identifying outdoor thermal risk areas and evaluation of future thermal comfort concerning shading orientation in a traditional settlement. Science of the total environment, 626, 567-580. Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504-513. doi:10.1016/j.rse.2009.10.008 Karasawa, A., Toriiminami, K., Ezumi, N., & Kamaya, K. (2006). Evaluation of performance of water-retentive concrete block pavements. Paper presented at the 8th International conference on concrete block paving. Kato, S., & Yamaguchi, Y. (2007). Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment, 110(1), 1-17. Kevern, J. T., Haselbach, L., & Schaefer, V. R. (2012). Hot weather comparative heat balances in pervious concrete and impervious concrete pavement systems. Journal of Heat Island Institute International Vol, 7(2), 2012. Matzarakis, A., & Endler, C. (2010). Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. International journal of biometeorology, 54(4), 479-483. Mensah, C., Atayi, J., Kabo-Bah, A. T., Svik, M., Acheampong, D., Kyere-Boateng, R., . . . Marek, M. V. (2020). Impact of urban land cover change on the garden city status and land surface temperature of Kumasi. Cogent Environmental Science, 6(1). doi:10.1080/23311843.2020.1787738 Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of environmental management, 197, 522-538. Morini, E., Touchaei, A. G., Castellani, B., Rossi, F., & Cotana, F. (2016). The impact of albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF model. Sustainability, 8(10), 999. Mutani, G., Todeschi, V., & Matsuo, K. (2019). Urban Heat Island Mitigation: A GIS-based Model for Hiroshima. Instrumentation, Mesures, Métrologies, 18(4). Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24. Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings, 85, 389-399. Rehan, R. M. (2016). Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC journal, 12(2), 191-204. Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124. Yavuzturk, C., Ksaibati, K., & Chiasson, A. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17(4), 465-475. Yilmaz, H., Toy, S., Irmak, M., Yilmaz, S., & Bulut, Y. (2008). Determination of temperature differences between asphalt concrete, soil and grass surfaces of the City of Erzurum, Turkey. Atmósfera, 21(2), 135-146. Zhang, X., Zhong, T. Y., Feng, X. Z., & Wang, K. (2009). Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 30(8), 2105-2118. doi:10.1080/01431160802549252 林宗輝、黃治峯、劉家銘、陳炳麟、陳鏗元,2017。打造臺北市海綿城市-以市區道路人行道透水性鋪面之透水率及都市效能為例。鋪面工程,15卷2期,台北市。 黃亞薇,2021。利用熱紅外影像技術於密級配瀝青混凝土鋪面之孔隙率與熱行為分析。碩士論文,國立臺灣大學土木工程學系研究所,台北市。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91861 | - |
| dc.description.abstract | 都市熱島效應日趨嚴重,使得都市區域氣溫升高,也影響了城市的宜居性。近年來,多孔瀝青混凝土路面因減少熱島效應而受到推崇,但也有部分學者證實它會使熱島效應惡化。本研究旨在通過引入中央氣象局更全面的氣候參數並結合合理的三維為建築模型做為空間資料輔助以評估大範圍的都市熱島效應,並通過實際使用紅外線熱像儀拍攝不同道路鋪面之熱影像,採集路面的物理參數來探討都市選擇哪種路面對於都市整體熱環境更加友善。研究顯示,都市選擇舖築多孔隙瀝青混凝土面相較於傳統的密集配瀝青混凝土鋪面會使得都市環境吸收較少太陽輻射能量,約可減少 45%的太陽輻射吸收,人類對於熱環境的體感溫度平均也可以下降 0.3°C 左右,使人類有較涼爽的感受,可提供給政府作為都市未來路面選擇時的參考,進而打造宜居城市。 | zh_TW |
| dc.description.abstract | Urban heat island effect has become more serious, which makes urban-area temperature increase, also affecting the city's livability. In recent years, porous asphalt concrete pavement has been praised to reduce the heat island effect, but some scholars have confirmed that it can worsen the heat island effect. This study aims to evaluate the large-scale heat island effect by introducing more comprehensive climate parameters and combining reasonable three-dimensional spatial information, and by actually collecting the physical parameters of the pavement to explore which kind of pavement the city chooses to be more friendly to the overall thermal environment of the city. Studies have shown that the city's choice of paving porous asphalt concrete pavement compared with traditional dense asphalt concrete pavement will make the urban environment absorb less solar radiation energy. It can reduce the absorption of solar radiation by about 45%, and the average temperature of human beings to the thermal environment can also drop by about 0.3°C, which can be provided to the government as a reference for urban road surface selection in the future, and then create a livable city. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:20:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-23T16:20:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 vi 表目錄 ix Chapter 1 前言 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究流程 3 1.4 論文架構 4 Chapter 2 文獻回顧 5 2.1 熱島效應 5 2.1.1 評估熱島效應的方法 6 2.1.2 影響熱島效應的因子 6 2.2 瀝青混凝土鋪面 8 2.2.1 密級配瀝青混凝土 8 2.2.2 多孔隙瀝青混凝土 9 2.3 熱輻射 9 2.3.1 太陽輻射 9 2.3.2 熱輻射與地球的交互作用 10 2.4 多孔隙瀝青混凝土鋪面對熱島效應的影響 12 2.4.1 多孔隙瀝青混凝土的熱行為 12 2.4.2 加劇熱島效應 12 2.4.3 減輕熱島效應 13 2.5 三維建物模型 13 2.6 熱紅外線 14 2.6.1 紅外線熱像儀 15 2.7 小結 16 Chapter 3 研究方法 17 3.1 資料蒐集 17 3.2 資料前處理 18 3.3 模型數值運算 20 3.3.1 太陽輻射運算 20 3.3.2 太陽輻射遮蔽分析 21 3.3.3 都市情境模擬 23 3.3.4 都市熱舒適性指標計算 23 3.3.5 實地蒐集鋪面資料 24 3.4 小結 26 Chapter 4 研究成果與分析 27 4.1 研究區域 27 4.2 研究資料蒐集 27 4.3 太陽輻射分析 28 4.3.1 20年的太陽輻射量比較 28 4.3.2 太陽輻射量遮蔽分析 31 4.3.3 太陽輻射量在不同季節的變化分析 32 4.4 熱舒適性指標計算分析 37 4.5 實地蒐集鋪面資料分析 39 4.6 小結 50 Chapter 5 結論與未來工作建議 51 5.1 結論 51 5.2 未來工作建議 52 參考文獻 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 3D建築模型 | zh_TW |
| dc.subject | 城市熱島效應 | zh_TW |
| dc.subject | 瀝青混凝土路面 | zh_TW |
| dc.subject | 孔隙率 | zh_TW |
| dc.subject | 大氣輻射模型 | zh_TW |
| dc.subject | Porosity | en |
| dc.subject | Atmospheric radiation model | en |
| dc.subject | 3D building model | en |
| dc.subject | Asphalt concrete pavement | en |
| dc.subject | Urban heat island effect | en |
| dc.title | 整合三維空間資訊與大氣輻射模型探討瀝青混凝土鋪面孔隙率對於都市熱島效應之影響 | zh_TW |
| dc.title | Integrating Three-dimensional Spatial Information and Atmospheric Radiation Model to Explore the Influence of Asphalt Concrete Pavement Porosity on Urban Heat Island Effect | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊明德;石婉瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Der Yang;Wan-Yu Shih | en |
| dc.subject.keyword | 孔隙率,瀝青混凝土路面,城市熱島效應,大氣輻射模型,3D建築模型, | zh_TW |
| dc.subject.keyword | Porosity,Asphalt concrete pavement,Urban heat island effect,Atmospheric radiation model,3D building model, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202304321 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-10-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2028-10-12 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 3.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
