Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 公共衛生碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佳堃zh_TW
dc.contributor.advisorJia-Kun Chenen
dc.contributor.author陳宥序zh_TW
dc.contributor.authorYou-Hsu Chenen
dc.date.accessioned2024-02-23T16:17:37Z-
dc.date.available2024-02-24-
dc.date.copyright2024-02-23-
dc.date.issued2024-
dc.date.submitted2024-02-02-
dc.identifier.citation1. Dietz L, Horve PF, Coil DA, Fretz M, Eisen JA, Van Den Wymelenberg K. 2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations To Reduce Transmission. mSystems. 2020; 5.
2. 財團法人醫院評鑑暨醫療品質策進會. 醫療機構現況. 台灣臨床試驗資訊平台: 財團法人醫藥品查驗中心; 2021 [updated 2022.7.22]; Available from: https://www.taiwanclinicaltrials.tw/tw/spotlight/health_overview/medical_institution.
3. 大眾醫院. 認識大眾. Available from: http://www.jiahuo.com.tw/index.html.
4. (IHME) IfHMaE. Global Burden of Diseases, GBD Compare. University of Washington2019 [cited 2023]; Available from: https://vizhub.healthdata.org/gbd-compare/#.
5. Zhang S, Zhang W, Tang YW. Molecular diagnosis of viral respiratory infections. Curr Infect Dis Rep. 2011; 13:149-58.
6. Lin WH, Wu FT, Chen YY, Wang CW, Lin HC, Kuo CC, et al. Unprecedented outbreak of respiratory syncytial virus in Taiwan associated with ON1 variant emergence between 2010 and 2020. Emerg Microbes Infect. 2022; 11:1000-9.
7. Tsou TP, Tan BF, Chang HY, Chen WC, Huang YP, Lai CY, et al. Community outbreak of adenovirus, Taiwan, 2011. Emerg Infect Dis. 2012; 18:1825-32.
8. Su C-p, Tsou T-P, Chen C-H, Lin T-Y, Chang S-C. Seasonal influenza prevention and control in Taiwan—Strategies revisited. Journal of the Formosan Medical Association. 2019; 118:657-63.
9. Zhang N, Wang L, Deng X, Liang R, Su M, He C, et al. Recent advances in the detection of respiratory virus infection in humans. Journal of Medical Virology. 2020; 92:408-17.
10. Bake B, Larsson P, Ljungkvist G, Ljungström E, Olin AC. Exhaled particles and small airways. Respir Res. 2019; 20:8.
11. Naming the coronavirus disease (COVID-19) and the virus that causes it. World Health Organization(WHO); 2020 [updated 11 February 2020]; Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it.
12. COVID-19 Public Health Emergency of International Concern (PHEIC) Global research and innovation forum. World Health Organization(WHO); 2020 [updated 12 February 2020]; Available from: https://www.who.int/publications/m/item/covid-19-public-health-emergency-of-international-concern-(pheic)-global-research-and-innovation-forum.
13. Rutter H, Parker S, Stahl-Timmins W, Noakes C, Smyth A, Macbeth R, et al. Visualising SARS-CoV-2 transmission routes and mitigations. BMJ. 2021; 375:e065312.
14. Scientific Brief: SARS-CoV-2 Transmission. Centers for Disease Control and Prevention (CDC); 2021 [updated May 7, 2021]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html.
15. Huy LD, Nguyen NTH, Phuc PT, Huang CC. The Effects of Non-Pharmaceutical Interventions on COVID-19 Epidemic Growth Rate during Pre- and Post-Vaccination Period in Asian Countries. Int J Environ Res Public Health. 2022; 19.
16. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020; 41:1100-15.
17. Andrejko KL, Pry JM, Myers JF, Fukui N, DeGuzman JL, Openshaw J, et al. Effectiveness of Face Mask or Respirator Use in Indoor Public Settings for Prevention of SARS-CoV-2 Infection - California, February-December 2021. MMWR Morb Mortal Wkly Rep. 2022; 71:212-6.
18. Kim M-C, Kweon OJ, Lim YK, Choi S-H, Chung J-W, Lee M-K. Impact of social distancing on the spread of common respiratory viruses during the coronavirus disease outbreak. PLOS ONE. 2021; 16:e0252963.
19. Qian M, Jiang J. COVID-19 and social distancing. Journal of Public Health. 2022; 30:259-61.
20. Askarizad R, He J. Post-pandemic urban design: The equilibrium between social distancing and social interactions within the built environment. Cities. 2022; 124:103618.
21. Haque MT, Hamid F. Social distancing and revenue management—A post-pandemic adaptation for railways. Omega. 2023; 114:102737.
22. Haston JC, Miller GF, Berendes D, Andújar A, Marshall B, Cope J, et al. Characteristics Associated with Adults Remembering to Wash Hands in Multiple Situations Before and During the COVID-19 Pandemic - United States, October 2019 and June 2020. MMWR Morb Mortal Wkly Rep. 2020; 69:1443-9.
23. Suman R, Javaid M, Haleem A, Vaishya R, Bahl S, Nandan D. Sustainability of Coronavirus on Different Surfaces. J Clin Exp Hepatol. 2020; 10:386-90.
24. Hirose R, Itoh Y, Ikegaya H, Miyazaki H, Watanabe N, Yoshida T, et al. Differences in environmental stability among SARS-CoV-2 variants of concern: both omicron BA.1 and BA.2 have higher stability. Clin Microbiol Infect. 2022; 28:1486-91.
25. Fiorillo L, Cervino G, Matarese M, D’Amico C, Surace G, Paduano V, et al. COVID-19 Surface Persistence: A Recent Data Summary and Its Importance for Medical and Dental Settings. International Journal of Environmental Research and Public Health. 2020; 17:3132.
26. Govind V, Bharadwaj S, Sai Ganesh MR, Vishnu J, Shankar KV, Shankar B, et al. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. Biometals. 2021; 34:1217-35.
27. Navaratnam S, Nguyen K, Selvaranjan K, Zhang G, Mendis P, Aye L. Designing Post COVID-19 Buildings: Approaches for Achieving Healthy Buildings. Buildings. 2022; 12:74.
28. Bazant MZ, Bush JWM. A guideline to limit indoor airborne transmission of COVID-19. Proc Natl Acad Sci U S A. 2021; 118.
29. Clements N, Binnicker MJ, Roger VL. Indoor Environment and Viral Infections. Mayo Clin Proc. 2020; 95:1581-3.
30. Senatore V, Zarra T, Buonerba A, Choo KH, Hasan SW, Korshin G, et al. Indoor versus outdoor transmission of SARS-COV-2: environmental factors in virus spread and underestimated sources of risk. EuroMediterr J Environ Integr. 2021; 6:30.
31. 鄭雅文. 單元十一:公共衛生的興起. 中央研究院; 2010; Available from: https://www.ihp.sinica.edu.tw/~medicine/medical/.
32. SARS-CoV-2 Variant Classifications and Definitions. Centers for Disease Control and Prevention(CDC); [updated Mar. 20, 2023]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html.
33. Lai J, Coleman KK, Tai SHS, German J, Hong F, Albert B, et al. Exhaled Breath Aerosol Shedding of Highly Transmissible Versus Prior Severe Acute Respiratory Syndrome Coronavirus 2 Variants. Clin Infect Dis. 2023; 76:786-94.
34. Menni C, Valdes AM, Polidori L, Antonelli M, Penamakuri S, Nogal A, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. The Lancet. 2022; 399:1618-24.
35. Lee CY, Wu TH, Fang YP, Chang JC, Wang HC, Lin SJ, et al. Delayed respiratory syncytial virus outbreak in 2020 in Taiwan was correlated with two novel RSV-A genotype ON1 variants. Influenza and Other Respiratory Viruses. 2022; 16:511-20.
36. 衛生福利部疾病管制署. 傳染病統計資料查詢系統. [cited 2023 May. 30]; Available from: https://nidss.cdc.gov.tw/Home/Index?op=2.
37. Groenheit R, Bacchus P, Galanis I, Sondén K, Bujila I, Efimova T, et al. High Prevalence of SARS-CoV-2 Omicron Infection Despite High Seroprevalence, Sweden, 2022. Emerg Infect Dis. 2023; 29:1240-3.
38. Christine Szablewski MD, Eduardo Azziz-Baumgartner. CDC Yellow Book 2024. Travel-Associated Infections & DiseasesMay 01, 2023.
39. Chen C-HS, Cheng T-J. Reduction of Influenza and Enterovirus Infection in Taiwan during the COVID-19 Pandemic. Aerosol and Air Quality Research. 2020; 20:2071-4.
40. National influenza and COVID-19 report, monitoring COVID-19 activity, seasonal flu and other seasonal respiratory illnesses.: UK Health Security Agency; 14 July 2022 [updated 30 May 2023 ]; Available from: https://www.gov.uk/government/statistics/national-flu-and-covid-19-surveillance-reports-2022-to-2023-season.
41. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001; 11:231-52.
42. Cholowsky NL, Chen MJ, Selouani G, Pett SC, Pearson DD, Danforth JM, et al. Consequences of changing Canadian activity patterns since the COVID-19 pandemic include increased residential radon gas exposure for younger people. Scientific Reports. 2023; 13:5735.
43. (NIOSH) TNIfOSaH. Hierarchy of Controls. Last Reviewed: January 17, 2023; Available from: https://www.cdc.gov/niosh/topics/hierarchy/default.html.
44. Sopeyin A, Hornsey E, Okwor T, Alimi Y, Raji T, Mohammed A, et al. Transmission risk of respiratory viruses in natural and mechanical ventilation environments: implications for SARS-CoV-2 transmission in Africa. BMJ Glob Health. 2020; 5.
45. Lu J, Gu J, Li K, Xu C, Su W, Lai Z, et al. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerg Infect Dis. 2020; 26:1628-31.
46. National Center for Immunization and Respiratory Diseases (NCIRD) DoVD. Ventilation in Buildings. May 12, 2023; Available from: https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html.
47. American Society of Heating R, and Air-condition Engineers, ASHRAE. ANSI/ASHRAE Standard 62.1-2022, Ventilation and Acceptable Indoor Air Quality2022. Report No.: ISSN 1041-2336.
48. Zhivov A, Skistad H, Mundt E, Posokhin V, Ratcliff M, Shilkrot E, et al. Chapter 7 - Principles of air and contaminant movement inside and around buildings. In: Goodfellow HD, Kosonen R, editors. Industrial Ventilation Design Guidebook (Second Edition): Academic Press; 2020. p. 245-370.
49. Park S, Choi Y, Song D, Kim EK. Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building. Sci Total Environ. 2021; 789:147764.
50. Buonanno G, Ricolfi L, Morawska L, Stabile L. Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy''s Marche region. Front Public Health. 2022; 10:1087087.
51. Aini Mohd Sari K, Farhah Almar Mastaza K, Ashraf Abdul Rahman M, Saji N, Muslim R, Syafiq Syazwan Mustafa M, et al. Assessment of indoor air quality parameters at Ambulatory Care Centre XYZ, Malaysia. IOP Conference Series: Earth and Environmental Science. 2019; 373:012013.
52. Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, et al. Architectural design influences the diversity and structure of the built environment microbiome. The ISME Journal. 2012; 6:1469-79.
53. Ibrahim F, Samsudin EZ, Ishak AR, Sathasivam J. Hospital indoor air quality and its relationships with building design, building operation, and occupant-related factors: A mini-review. Front Public Health. 2022; 10:1067764.
54. Nottmeyer L, Armstrong B, Lowe R, Abbott S, Meakin S, O''Reilly K, et al. The association of COVID-19 incidence with temperature, humidity, and UV radiation - A global multi-city analysis. Sci Total Environ. 2022; 854:158636.
55. Shamim JA, Hsu WL, Daiguji H. Review of component designs for post-COVID-19 HVAC systems: possibilities and challenges. Heliyon. 2022; 8:e09001.
56. American Society of Heating R, and Air-condition Engineers (ASHRAE). Indoor Air Quality Guide: Best Practices for Design, Construction and Commissioning2010.
57. Zhiqiang (John) Zhai PDRBKTBGHL, Ph.D. Mitigating COVID-19 in Public Spaces: Central HVAC Filtration vs. Portable Air Purifier Filtration. ASHRAE. October 2021; 63, no. 10:12.
58. Berry G, Parsons A, Morgan M, Rickert J, Cho H. A review of methods to reduce the probability of the airborne spread of COVID-19 in ventilation systems and enclosed spaces. Environ Res. 2022; 203:111765.
59. Buonanno G, Stabile L, Morawska L. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ Int. 2020; 141:105794.
60. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71.
61. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008; 61:344-9.
62. Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019; 13:S31-s4.
63. Qian H, Miao T, Liu L, Zheng X, Luo D, Li Y. Indoor transmission of SARS-CoV-2. Indoor Air. 2021; 31:639-45.
64. Li Y, Qian H, Hang J, Chen X, Cheng P, Ling H, et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build Environ. 2021; 196:107788.
65. Hiroshi N, Hitoshi O, Tetsuro K, Tomoya S, Tomimasa S, Tamano M, et al. Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19). medRxiv. 2020:2020.02.28.20029272.
66. Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. Int J Infect Dis. 2020; 93:201-4.
67. Xu P, Qian H, Miao T, Yen H-L, Tan H, Kang M, et al. Transmission routes of Covid-19 virus in the Diamond Princess Cruise ship. medRxiv. 2020:2020.04.09.20059113.
68. Miller SL, Nazaroff WW, Jimenez JL, Boerstra A, Buonanno G, Dancer SJ, et al. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 2021; 31:314-23.
69. Gettings J, Czarnik M, Morris E, Haller E, Thompson-Paul AM, Rasberry C, et al. Mask Use and Ventilation Improvements to Reduce COVID-19 Incidence in Elementary Schools - Georgia, November 16-December 11, 2020. MMWR Morb Mortal Wkly Rep. 2021; 70:779-84.
70. Jang S, Han SH, Rhee JY. Cluster of Coronavirus Disease Associated with Fitness Dance Classes, South Korea. Emerg Infect Dis. 2020; 26:1917-20.
71. Park SY, Yu J, Bae S, Song JS, Lee SY, Kim JH, et al. Ventilation strategies based on an aerodynamic analysis during a large-scale SARS-CoV-2 outbreak in an acute-care hospital. J Clin Virol. 2023; 165:105502.
72. Charlotte N. High Rate of SARS-CoV-2 Transmission Due to Choir Practice in France at the Beginning of the COVID-19 Pandemic. J Voice. 2023; 37:292.e9-.e14.
73. Moritz S, Gottschick C, Horn J, Popp M, Langer S, Klee B, et al. The risk of indoor sports and culture events for the transmission of COVID-19. Nat Commun. 2021; 12:5096.
74. Bazzazpour S, Rahmatinia M, Mohebbi SR, Hadei M, Shahsavani A, Hopke PK, et al. The detection of SARS-CoV-2 RNA in indoor air of dental clinics during the COVID-19 pandemic. Environ Sci Pollut Res Int. 2022; 29:85586-94.
75. Zemouri C, Awad SF, Volgenant CMC, Crielaard W, Laheij A, de Soet JJ. Modeling of the Transmission of Coronaviruses, Measles Virus, Influenza Virus, Mycobacterium tuberculosis, and Legionella pneumophila in Dental Clinics. J Dent Res. 2020; 99:1192-8.
76. Villers J, Henriques A, Calarco S, Rognlien M, Mounet N, Devine J, et al. SARS-CoV-2 aerosol transmission in schools: the effectiveness of different interventions. Swiss Med Wkly. 2022; 152:w30178.
77. Ghoroghi A, Rezgui Y, Wallace R. Impact of ventilation and avoidance measures on SARS-CoV-2 risk of infection in public indoor environments. Sci Total Environ. 2022; 838:156518.
78. 室內空氣品質管理法. 中華民國立法院民國 100 年 11 月 23 日[cited 2023].
79. Ho CC, Hung SC, Ho WC. Effects of short- and long-term exposure to atmospheric pollution on COVID-19 risk and fatality: analysis of the first epidemic wave in northern Italy. Environ Res. 2021; 199:111293.
80. Li H-H, Liu C-C, Hsu T-W, Lin J-H, Hsu J-W, Li AF-Y, et al. Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe COVID-19. Particle and Fibre Toxicology. 2021; 18:11.
81. Kim H, Bell ML. Air Pollution and COVID-19 Mortality in New York City. Am J Respir Crit Care Med. 2021; 204:97-9.
82. Hiwar W, King MF, Kharrufa H, Tidswell E, Fletcher LA, Noakes CJ. The impact of ventilation rate on reducing the microorganisms load in the air and on surfaces in a room-sized chamber. Indoor Air. 2022; 32:e13161.
83. (NIOSH) NIfOSaH. Ventilation in Healthcare Facilities.2015.
84. Zanganeh Kia H, Choi Y, Nelson D, Park J, Pouyaei A. Large eddy simulation of sneeze plumes and particles in a poorly ventilated outdoor air condition: A case study of the University of Houston main campus. Sci Total Environ. 2023; 891:164694.
85. Kalliomäki P, Saarinen P, Tang JW, Koskela H. Airflow patterns through single hinged and sliding doors in hospital isolation rooms - Effect of ventilation, flow differential and passage. Build Environ. 2016; 107:154-68.
86. Stockwell RE, Ballard EL, O''Rourke P, Knibbs LD, Morawska L, Bell SC. Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. J Hosp Infect. 2019; 103:175-84.
87. Anderson K, Morris G, Kennedy H, Croall J, Michie J, Richardson MD, et al. Aspergillosis in immunocompromised paediatric patients: associations with building hygiene, design, and indoor air. Thorax. 1996; 51:256-61.
88. Kildesø J, Würtz H, Nielsen KF, Kruse P, Wilkins K, Thrane U, et al. Determination of fungal spore release from wet building materials. Indoor Air. 2003; 13:148-55.
89. Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J. The direct cost and incidence of systemic fungal infections. Value Health. 2002; 5:26-34.
90. Anderson RL, Mackel DC, Stoler BS, Mallison GF. Carpeting in hospitals: an epidemiological evaluation. J Clin Microbiol. 1982; 15:408-15.
91. Jutkowitz E, Shewmaker P, Reddy A, Braun JM, Baier RR. The Benefits of Nursing Home Air Purification on COVID-19 Outcomes: A Natural Experiment. J Am Med Dir Assoc. 2023; 24:1151-6.
92. National Institute for Occupational Safety and Health N. Engineering Controls To Reduce Airborne, Droplet and Contact Exposures During Epidemic/Pandemic Response. 2023 [updated May 8, 2023]; Available from: https://www.cdc.gov/niosh/topics/pandemic/headboards.html.
93. Correia G, Rodrigues L, Gameiro da Silva M, Gonçalves T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med Hypotheses. 2020; 141:109781.
94. Organization UNEPWH. Basic Environmental Health2001.
95. Thacker SB, Stroup DF, Parrish RG, Anderson HA. Surveillance in environmental public health: issues, systems, and sources. Am J Public Health. 1996; 86:633-8.
96. 中華民國衛生福利部. 醫院環境監視規範. 1997.8.7 [updated 2004.10.9]; Available from: https://www.ttyl.mohw.gov.tw/public/law/bcdacab838ddb7362fd3d7da25a23582.pdf.
97. TEAM W. Environmental surveillance for SARS-COV-2 to complement public health surveillance – Interim Guidance 14 April 2022. Available from: https://www.who.int/publications/i/item/WHO-HEP-ECH-WSH-2022.1.
98. Fernández-de-Mera IG, Rodríguez Del-Río FJ, de la Fuente J, Pérez-Sancho M, Hervás D, Moreno I, et al. Detection of environmental SARS-CoV-2 RNA in a high prevalence setting in Spain. Transbound Emerg Dis. 2021; 68:1487-92.
99. Li L, Mazurowski L, Dewan A, Carine M, Haak L, Guarin TC, et al. Longitudinal monitoring of SARS-CoV-2 in wastewater using viral genetic markers and the estimation of unconfirmed COVID-19 cases. Sci Total Environ. 2022; 817:152958.
100. Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020; 181:115942.
101. Barua VB, Juel MAI, Blackwood AD, Clerkin T, Ciesielski M, Sorinolu AJ, et al. Tracking the temporal variation of COVID-19 surges through wastewater-based epidemiology during the peak of the pandemic: A six-month long study in Charlotte, North Carolina. Sci Total Environ. 2022; 814:152503.
102. Galani A, Aalizadeh R, Kostakis M, Markou A, Alygizakis N, Lytras T, et al. SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Sci Total Environ. 2022; 804:150151.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91851-
dc.description.abstract2019年 12月於中國湖北省武漢市爆發的嚴重特殊傳染性肺炎引發全球大流行,自 2022年始以傳播力高、症狀輕微且致死率較低的 Omicron 與其亞型變種病毒株為感染主流;在有利於回復社交的同時,也面臨著過去盛行的呼吸道傳染性疾病流行重現以及脆弱族群再次感染的挑戰;為降低危害暴露的風險,有必要討論建築物室內通風換氣條件與呼吸道病毒傳染病經氣溶膠傳播的議題。
本報告預期完成的項目有二,第一,參考 PRISMA 2020 聲明書的檢索流程,合併以 STROBE 檢核表評讀研究以降低篩選偏誤風險,並使用 EndNote 20 文獻管理軟體,按照步驟進行系統性文獻回顧撰寫;第二,根據系統性綜合證據以臺灣苗栗縣竹南鎮某地區醫院為例,提出有助於維護醫療場所從業人員職業環境安全、降低院內感染風險的實質性建議。
系統性回顧主要檢索於 PubMed 和 Web of Science 資料庫,自 2019年 12 月至 2023年 11月索引的英文出版物,統合納入共 18 篇研究,強調新冠病毒主要於室內空間傳播,且受室內活動的型態影響;無論自然性或機械性換氣,達到有效換氣率皆能降低暴露風險;雖然過濾及淨化設備有優化換氣的效果,但換氣量才是影響通風換氣降低暴露風險的關鍵因素;且即便醫院建議以機械性換氣為首選,自然性通風的混合併用尚且重要。實習應用結論,建議該院候診人數增多或是呼吸道傳染性疾病盛行時,候診區前後門窗維持自然通風的同時增加排風扇以提升換氣量;為降低診室內氣溶膠再循環,建議全日半開對外門、室內陳設刪減並使用嵌入櫃體以避免阻礙氣流;實測診室換氣量,並定期以二氧化碳測量作為室內空氣品質的環境監測,間接提供通風換氣程度的證據,以監控呼吸道病毒的傳染風險,同時提示醫療場所工作人員評估增添個人防護設備的需要。
zh_TW
dc.description.abstractIn December 2019, an outbreak of Coronavirus disease, Covid-19, in Wuhan, China triggered a global pandemic. Since 2022, Omicron and its subtype mutant virus strains with high contagiousness, mild symptoms, and low fatality rate have become the mainstream of infection, which is conducive to restore normal life. At the same time, we also face risks such as epidemics of past respiratory infectious diseases, and reinfection of vulnerable groups. Therefore, building ventilation design is worth exploring as one of the engineering control measures to reduce indoor exposure risks.
There are two objects in this report. First, refer to the research process of the PRISMA 2020 statement, incorporate the STROBE checklist as a research review tool to avoid selection bias, and use EndNote 20 literature management software to conduct a systematic literature review. Secondly, based on the comprehensive results, taking the local hospital in Zhunan Town, Miaoli County, Taiwan as an example, it can help create a safe occupational environment for medical staff and prevent nosocomial infection.
This systematic review searched PubMed and Web of Science databases for all publications in English between Dec. 2019 and Nov. 2023. A total of 18 studies were included, highlighting that Covid-19 mainly spreads in indoor spaces and that differences in types of activities result in different attack rates. Both natural and mechanical ventilation can reduce the incidence. While filtration and purification equipment can optimize results, ventilation rate is a key factor in reducing exposure risk. Natural ventilation remains important even though mechanical ventilation is preferred in hospitals.
The practical implications for local hospitals are suggested as follows. Although natural ventilation is achieved through doors and windows, the use of fans or exhaust fans should be considered to increase ventilation rate especially when the number of patients waiting in the hospital increases or respiratory infectious diseases are prevalent. To reduce aerosol recirculation within the clinic, it is better to keep the door ajar throughout the day rather than closed. Also, indoor furniture should be reduced and replaced with built-in cupboards so as not to block airflow. Regular measurements of true ventilation rates and carbon dioxide levels in hospitals can help monitor indoor air quality in occupational settings and may also serve as a signal of infectious risk. Moreover, it may prompt healthcare facility staff to evaluate the need for additional personal protective equipment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:17:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-23T16:17:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
第一章 導論 1
第一節 實習單位特色與簡介 1
第二節 文獻回顧 3
第三節 研究架構與假設 9
第四節 研究目的與研究問題 14
第二章 方法 15
第三章 結果 23
第一節 納入研究綜合結果 23
第二節 評讀與偏差 33
第四章 討論 35
第一節 空氣品質的影響 35
第二節 通風換氣於醫院的重要性 37
第三節 病房的自然性換氣 40
第四節 環境監視的延伸 41
第五節 限制 43
第六節 實習的應用 45
第五章 結論 47
參考文獻 48
附錄 56
-
dc.language.isozh_TW-
dc.title環境監視與新冠病毒後疫情呼吸道疾病相關探討 — 以室內通風換氣為例zh_TW
dc.titleEnvironmental Surveillance and Respiratory Diseases After COVID-19 Pandemic — Indoor Ventilation Illustrationsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor陳秀熙zh_TW
dc.contributor.coadvisorHsiu-Hsi Chenen
dc.contributor.oralexamcommittee陳立昇;許辰陽zh_TW
dc.contributor.oralexamcommitteeLi-Sheng Chen;Chen-Yang Hsuen
dc.subject.keyword新冠肺炎,新型冠狀病毒,室內通風換氣,自然性換氣,機械性換氣,zh_TW
dc.subject.keywordCovid-19,SARS-CoV-2,building ventilation,indoor air quality,natural ventilation,mechanical ventilation,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202400372-
dc.rights.note未授權-
dc.date.accepted2024-02-02-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept公共衛生碩士學位學程-
顯示於系所單位:公共衛生碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
2.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved