請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91847
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林靖愉 | zh_TW |
dc.contributor.advisor | Ching-Yu Lin | en |
dc.contributor.author | 丁政毓 | zh_TW |
dc.contributor.author | Cheng-Yu Ting | en |
dc.date.accessioned | 2024-02-23T16:16:32Z | - |
dc.date.available | 2024-02-24 | - |
dc.date.copyright | 2024-02-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-15 | - |
dc.identifier.citation | Baliou, S., Kyriakopoulos, A. M., Goulielmaki, M., Panayiotidis, M. I., Spandidos, D. A., & Zoumpourlis, V. (2020). Significance of taurine transporter (TauT) in homeostasis and its layers of regulation. Molecular medicine reports, 22(3), 2163-2173.
Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols, 2(11), 2692. Bell, J. D., Lee, J., Lee, H., Sadler, P. J., Wilkie, D., & Woodham, R. H. (1991). Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-N-oxide. Biochimica et biophysica acta (BBA)-molecular basis of disease, 1096(2), 101-107. Burkart, K. G., Brauer, M., Aravkin, A. Y., Godwin, W. W., Hay, S. I., He, J., Iannucci, V. C., Larson, S. L., Lim, S. S., & Liu, J. (2021). Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. The Lancet, 398(10301), 685-697. Cao, C., Zhu, H., Yao, Y., & Zeng, R. (2022). Gut dysbiosis and kidney diseases. Frontiers in medicine, 9, 829349. Chang, T.-H., Lin, C.-Y., Lee, J. K. W., Chang, J. C.-J., Chen, W.-C., & Yang, H.-Y. (2022). Mobile COVID-19 screening units: heat stress and kidney function among health care workers. American journal of kidney diseases, 80(3), 426-428. Chang, K.-T., Chen, Y.-C., Lai, C.-F., Lin, S.-L., & Tsai, T.-J. (2014). Now and Forever:Long-term Consequences of Acute Kidney Injury. Journal of Internal Medicine(25), 82-15. Chapman, C. L., Hess, H. W., Lucas, R. A. I., Glaser, J., Saran, R., Bragg-Gresham, J., Wegman, D. H., Hansson, E., Minson, C. T., & Schlader, Z. J. (2021). Occupational heat exposure and the risk of chronic kidney disease of nontraditional origin in the United States. Am J physiol regul integr comp physiol, 321(2), R141-r151. Chapman, C. L., Johnson, B. D., Parker, M. D., Hostler, D., Pryor, R. R., & Schlader, Z. (2021). Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature, 8(2), 108-159. Chapman, C. L., Johnson, B. D., Vargas, N. T., Hostler, D., Parker, M. D., & Schlader, Z. J. (2020). Both hyperthermia and dehydration during physical work in the heat contribute to the risk of acute kidney injury. Journal of applied physiology, 128(4), 715-728. Chen, C.-J., Cheng, M.-C., Hsu, C.-N., & Tain, Y.-L. (2023). Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites, 13(6), 688. Chesney, R. W., Han, X., & Patters, A. B. (2010). Taurine and the renal system. Journal of biomedical science, 17(1), 1-10. Contreras-Jodar, A., Nayan, N. H., Hamzaoui, S., Caja, G., & Salama, A. A. (2019). Heat stress modifies the lactational performances and the urinary metabolomic profile related to gastrointestinal microbiota of dairy goats. PLoS One, 14(2), e0202457. Faurie, C., Varghese, B. M., Liu, J., & Bi, P. (2022). Association between high temperature and heatwaves with heat-related illnesses: A systematic review and meta-analysis. Sci Total Environ, 852, 158332. Febbraio, M. A. (2001). Alterations in energy metabolism during exercise and heat stress. Sports medicine, 31, 47-59. Fox, B. M., Gil, H.-W., Kirkbride-Romeo, L., Bagchi, R. A., Wennersten, S. A., Haefner, K. R., Skrypnyk, N. I., Brown, C. N., Soranno, D. E., & Gist, K. M. (2019). Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice. Kidney international, 95(3), 590-610. Gatarek, P., & Kaluzna-Czaplinska, J. (2021). Trimethylamine N-oxide (TMAO) in human health. EXCLI journal, 20, 301. Gest, H. (1981). Evolution of the citric acid cycle and respiratory energy conversion in prokaryotes. FEMS microbiology letters, 12(3), 209-215. Guan, L., & Miao, P. (2020). The effects of taurine supplementation on obesity, blood pressure and lipid profile: A meta-analysis of randomized controlled trials. European journal of pharmacology, 885, 173533. Hansson, E., Glaser, J., Jakobsson, K., Weiss, I., Wesseling, C., Lucas, R. A., Wei, J. L. K., Ekström, U., Wijkström, J., & Bodin, T. (2020). Pathophysiological mechanisms by which heat stress potentially induces kidney inflammation and chronic kidney disease in sugarcane workers. Nutrients, 12(6), 1639. Heled, Y., Bloom, M. S., Wu, T. J., Stephens, Q., & Deuster, P. A. (2007). CM-MM and ACE genotypes and physiological prediction of the creatine kinase response to exercise. Journal of applied physiology, 103(2), 504-510. Holmes, E., Foxall, P. J., Spraul, M., Farrant, R. D., Nicholson, J. K., & Lindon, J. C. (1997). 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. Journal of pharmaceutical and biomedical analysis, 15(11), 1647-1659. Jakaria, M., Azam, S., Haque, M. E., Jo, S.-H., Uddin, M. S., Kim, I.-S., & Choi, D.-K. (2019). Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox biology, 24, 101223. Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., Saran, R., Wang, A. Y.-M., & Yang, C.-W. (2013). Chronic kidney disease: global dimension and perspectives. The Lancet, 382(9888), 260-272. Jäger, R., Purpura, M., Shao, A., Inoue, T., & Kreider, R. B. (2011). Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino acids, 40, 1369-1383. Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and software technology, 51(1), 7-15. Kumar, M. A., Bitla, A. R. R., Raju, K., Manohar, S. M., Kumar, V. S., & Narasimha, S. R. P. V. L. (2012). Branched chain amino acid profile in early chronic kidney disease. Saudi Journal of Kidney Diseases and Transplantation, 23(6), 1202-1207. Kuras, E. R., Richardson, M. B., Calkins, M. M., Ebi, K. L., Hess, J. J., Kintziger, K. W., Jagger, M. A., Middel, A., Scott, A. A., Spector, J. T., Uejio, C. K., Vanos, J. K., Zaitchik, B. F., Gohlke, J. M., & Hondula, D. M. (2017). Opportunities and Challenges for Personal Heat Exposure Research. Environ Health Perspect, 125(8), 085001. Lenz, E. M., Bright, J., Wilson, I. D., Morgan, S., & Nash, A. (2003). A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. Journal of pharmaceutical and biomedical analysis, 33(5), 1103-1115. Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G., & Nicholson, J. K. (2004). Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers, 9(1), 1-31. Liu, J., Varghese, B. M., Hansen, A., Zhang, Y., Driscoll, T., Morgan, G., Dear, K., Gourley, M., Capon, A., & Bi, P. (2022). Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. The Lancet Planetary Health, 6(6), e484-e495. Long, S. (1982). Acid-base balance and urinary acidification in birds. Comparative biochemistry and physiology part A: Physiology, 71(4), 519-526. Luangwilai, T., Robson, M. G., & Siriwong, W. (2021). Effect of heat exposure on dehydration and kidney function among sea salt workers in Thailand. Roczniki państwowego zakładu higieny, 72(4). Lytvyn, Y., Bjornstad, P., van Raalte, D. H., Heerspink, H. L., & Cherney, D. Z. (2020). The new biology of diabetic kidney disease—mechanisms and therapeutic implications. Endocrine reviews, 41(2), 202-231. Ma, B., Zhang, L., Li, J., Xing, T., Jiang, Y., & Gao, F. (2021). Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poultry science, 100(1), 215-223. Mayes, P. A., Bender, D. A., Murray, R., Granner, D., & Rodwell, V. (2003). Gluconeogenesis and control of the blood glucose. Harper’s illustrated biochemistry. 26th ed. New York: Lange medical books/McGraw-Hill, 153-162. Neinast, M., Murashige, D., & Arany, Z. (2019). Branched chain amino acids. Annual review of physiology, 81, 139-164. Nicholson, J. K., & Lindon, J. C. (2008). Metabonomics. Nature, 455(7216), 1054-1056. Occupational Safety And Health Administration, M. O. L. (2023). Guidelines for preventing heat hazards for workers working outdoors in high temperatures. Retrieved from https://www.osha.gov.tw/media/rlwlxcq4/%E9%AB%98%E6%B0%A3%E6%BA%AB%E6%88%B6%E5%A4%96%E4%BD%9C%E6%A5%AD%E5%8B%9E%E5%B7%A5%E7%86%B1%E5%8D%B1%E5%AE%B3%E9%A0%90%E9%98%B2%E6%8C%87%E5%BC%95-112-6-1%E4%BF%AE%E6%AD%A3.pdf Oh, M. S. (2000). ACID‐BASE IN RENAL FAILURE: new perspectives on acid‐base balance. Seminars in dialysis, 13(4), 212-219. Palmer, B. F. (2008). Approach to fluid and electrolyte disorders and acid-base problems. Primary care: clinics in office practice, 35(2), 195-213. Pathania, A., Rawat, A., Dahiya, S. S., Dhanda, S., Barnwal, R. P., Baishya, B., & Sandhir, R. (2020). 1H NMR-based metabolic signatures in the liver and brain in a rat model of hepatic encephalopathy. Journal of proteome research, 19(9), 3668-3679. Piras, C., Pibiri, M., Leoni, V. P., Cabras, F., Restivo, A., Griffin, J. L., Fanos, V., Mussap, M., Zorcolo, L., & Atzori, L. (2020). Urinary 1H-NMR metabolic signature in subjects undergoing colonoscopy for Colon cancer diagnosis. Applied sciences, 10(16), 5401. Rebez, E. B., Sejian, V., Silpa, M. V., & Dunshea, F. R. (2023). Heat stress and histopathological changes of vital organs: A novel approach to assess climate resilience in farm animals. Sustainability, 15(2), 1242. Rothfusz, L. P., & Headquarters, N. S. R. (1990). The heat index equation (or, more than you ever wanted to know about heat index). Fort worth, Texas: national oceanic and atmospheric administration, national weather service, office of meteorology, 9023, 640. Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., Willmitzer, L., Fernie, A. R., Czosnek, H., & Brotman, Y. (2015). Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics, 11(1), 81-97. Safety, O., & Administration, H. (2017). OSHA Technical Manual (OTM)| Section III: Chapter 4—Heat Stress| Occupational Safety and Health Administration. Occupational safety and health administration. Sanz, A. B., Sanchez-Niño, M. D., Ramos, A. M., & Ortiz, A. (2023). Regulated cell death pathways in kidney disease. Nature reviews nephrology, 19(5), 281-299. Sato, Y., Roncal-Jimenez, C. A., Andres-Hernando, A., Jensen, T., Tolan, D. R., Sanchez-Lozada, L. G., Newman, L. S., Butler-Dawson, J., Sorensen, C., & Glaser, J. (2019). Increase of core temperature affected the progression of kidney injury by repeated heat stress exposure. American journal of physiology-renal physiology, 317(5), F1111-F1121. Serkova, N. J., & Niemann, C. U. (2006). Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert review of molecular diagnostics, 6(5), 717-731. Sonia, G., Poonam, R., Sunil, P., Rajendra, P. t., & Subash, K. (2011). Urinary metabolic profiling in rats due to heat exposure using 1H high resolution NMR spectroscopy. Journal of metabolomics and systems biology, 2(1), 1-9. Tomlinson, J. A., & Wheeler, D. C. (2017). The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney international, 92(4), 809-815. Totlibayevich, Y. S., Alisherovna, K. M., Xudoyberdiyevich, G. X., & Toshtemirovna, E. M. m. (2022). Risk Factors for Kidney Damage in Rheumatoid Arthritis. Texas Journal of Medical Science, 13, 79-84. Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp, F., Van Oldenborgh, G. J., Otto, F. E., Ribes, A., & Robin, Y. (2020). Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environmental Research Letters, 15(9), 094077. Velasquez, M. T., Ramezani, A., Manal, A., & Raj, D. S. (2016). Trimethylamine N-oxide: the good, the bad and the unknown. Toxins, 8(11), 326. World Health Organization (2023). The top 10 causes of death. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death Xia, B., Wu, W., Fang, W., Wen, X., Xie, J., & Zhang, H. (2022). Heat stress-induced mucosal barrier dysfunction is potentially associated with gut microbiota dysbiosis in pigs. Animal nutrition, 8, 289-299. Xiang, J., Bi, P., Pisaniello, D., & Hansen, A. (2014). Health impacts of workplace heat exposure: an epidemiological review. Ind health, 52(2), 91-101. Yue, S., Ding, S., Zhou, J., Yang, C., Hu, X., Zhao, X., Wang, Z., Wang, L., Peng, Q., & Xue, B. (2020). Metabolomics approach explore diagnostic biomarkers and metabolic changes in heat-stressed dairy cows. Animals, 10(10), 1741. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91847 | - |
dc.description.abstract | 熱應力對於在職場工作人員身體健康有顯著負面影響。最近的研究顯示,職場中的熱暴露與腎臟疾病之間具有關聯性,其中包括急性腎損傷。在COVID-19疫情爆發期間,由於健康照護人員需要在工作時穿戴個人防護具,此行為可能會影響其體內的熱交換,進而增加健康照護人員面臨熱應力的風險。然而,目前對於熱應力所引起之急性腎損傷的分子效應仍尚未明確。
因此,為了解健康照護人員在熱暴露後的代謝效應,我們利用核磁共振儀進行尿液的代謝體學研究。在這項研究中,收集了在COVID-19篩檢巴士站工作的健康照護人員工作前與工作後的尿液樣本,並藉由核磁共振儀測量了他們的尿液代謝體,測量之圖譜數據經過處理,接著進行多變量和單變量分析,以評估代謝物改變和熱應力之間的關係。 利用核磁共振儀進行的代謝體學研究方法能夠有效地揭示受熱應力影響後的代謝效應。多變量分析之結果顯示,健康照護人員工作前與工作後的尿液樣本之代謝體存在顯著差異;除此之外,單變量分析結果顯示,健康照護人員在工作後,其尿液中有些代謝物的含量產生了顯著變化,包括3-hydroxyisovalerate、creatine、methylguanidine、taurine、trimethylamine N-oxide和valine的增加;4-hydroxybenzoate、adenine、formate、hippurate、methylmalonate和 tryptophan的降低。透過使用不同的分組比較方法,我們發現taurine和trimethylamine N-oxide是與健康照護人員在受熱暴露後發生急性腎損傷相關的重要代謝物。taurine的增加可能與保護腎臟有關連性;而trimethylamine N-oxide的上升則可能反映了腸腎軸內的異常交互作用,進而影響腎臟健康。 綜上所述,這項研究發現了受熱暴露後健康照護人員尿樣中的代謝物變化,此研究發現熱暴露引起的代謝反應,可提供之後開發潛在的生物標記及闡述其可能涉及的機制。 | zh_TW |
dc.description.abstract | Heat stress has significant negative impacts on human health in the occupational environment. Recent studies suggested a link between occupational heat exposure and kidney disease, including acute kidney injury (AKI). Health care workers (HCWs) were at an increased risk of heat stress during the COVID-19 pandemic due to the need to wear personal protective equipment, which can interfere with heat exchange in the body. However, the molecular events of heat stress-induced AKI are still unclear.
A nuclear magnetic resonance (NMR)-based metabolomics study was conducted to understand the metabolic effects of heat exposure in the urine of HCWs. In this study, pre-work and post-work urine samples were collected among HCWs who worked at the COVID-19 screening bus station. The urinary metabolic profiles were measured by NMR. The spectral data were processed and analyzed by multivariate analysis and univariate analysis to assess the relationship between metabolites and heat stress. This NMR-based metabolomic approach revealed the global metabolic effects of exposure to heat stress. The results of the study showed that there was a significant difference between the metabolomics of pre-work and post-work urine samples, as evidenced by partial least squares discriminant analysis. Moreover, t-tests indicated levels of some metabolites had changed significantly in the urine of workers after eight-hour working. Those changed metabolites include increased levels of 3-hydroxyisovalerate, creatine, methylguanidine, taurine, trimethylamine N-oxide, valine and decreased levels of 4-hydroxybenzoate, adenine, formate, hippurate, methylmalonate and tryptophan. We found taurine and trimethylamine N-oxide were the important metabolites related to AKI in HCWs after heat exposure by using different grouping methods. Increased levels of taurine played a role in protecting the kidneys. While the elevation in trimethylamine N-oxide levels may reflected abnormal interactions within the gut-kidney axis which affected kidney health. To sum up, this study highlighted changed metabolites in the urine samples of workers after heat exposure. The results of this study provided valuable information to understand heat-induced biological responses with the expectation of developing potential biomarkers and elucidating the possible mechanisms involved. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:16:32Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-23T16:16:32Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Content vii Figure Index ix Table Index xi Chapter 1. Introduction 1 1.1 Background 1 1.1.1 Heat exposure: 1 1.1.2 Kidney disease: 2 1.2 NMR-based Metabolomics 4 1.3 Research objectives 5 Chapter 2. Materials and methods 7 2.1 Study population (collaborated with Dr. Yang’s group) 8 2.2 Heat exposure 8 2.3 Sample collection 9 2.4 Sample preparation 9 2.5 1H NMR spectral acquisition 10 2.6 NMR spectral processing 10 2.7 Metabolite identification 11 2.8 Statistical analysis 11 Chapter 3. Results 14 3.1 The potential impact of heat stress on HCWs in their worktime 15 3.2 Variation of urinary metabolites between AKI and non-AKI 16 3.2.1 Comparison of pre-work urinary metabolites in non-AKI and AKI group 17 3.2.2 Comparison of post-work urinary metabolites in non-AKI and AKI group 17 3.3 The potential impact of heat stress on HCWs with AKI in their worktime 18 Chapter 4. Discussion 20 4.1 Taurine and trimethylamine N-oxide may play roles in modulation heat exposure in the kidney 20 4.2 Effects of heat stress in kidney on selected metabolites 23 4.3 Metabolic changes after work in AKI. 24 4.4 Perturbed metabolites not related with heat stress induced kidneys injury 25 4.5 Study limitations 26 4.6 Conclusion 27 References 28 Figure Index Figure 1. The personal measurement of temperature, relative humidity, and heat index inside the personal protective equipment. 39 Figure 2. A representative spectrum of urinary metabolic profiling performed by 600MHz 1H NMR from health care workers. 40 Figure 3. PCA scores plot from the analysis of 1H NMR spectra of the pre-work and post-work urine samples among HCWs. ……………41 Figure 4. PLS-DA scores plot from the analysis of 1H NMR spectra of the pre-work and post-work urine samples among HCWs. 42 Figure 5. PLS-DA scores plot from the analysis of 1H NMR spectra of non-AKI and AKI urine samples among HCWs. 43 Figure 6. OPLS-DA scores plot from the analysis of 1H NMR spectra of non-AKI and AKI urine samples among HCWs. 44 Figure 7. S-Plot corresponding to the OPLS-DA model used to characterize the most significant variables associated with non-AKI and AKI groups. 45 Figure 8. PLS-DA scores plot from the analysis of 1H NMR spectra of AKI group with pre-work and post-work urine among HCWs with AKI. 46 Figure 9. Levels of taurine and trimethylamine N-oxide among health care workers’ urine samples between non-AKI and AKI by independent sample t-test 47 Figure 10. The possible relationship about taurine and trimethylamine N-oxide in kidney damage after heat exposure. 48 Figure 11. The green circle represents six significant metabolites in comparison with pre-work and post-work in AKI group; the yellow circle represents four significant metabolites in comparison with non-AKI and AKI. 49 Figure 12. The blue circle represents 12 significant metabolites in comparison with pre-work and post-work; the green circle represents six significant metabolites in comparison with pre-work and post-work in AKI group. 50 Figure 13. The possible mechanisms implicated in heat exposure. 51 Table Index Table 1. Characteristics of the health care workers. 53 Table 2. Changed levels of metabolites between pre-work and post-work by paired t-test. 54 Table 3. Changed levels of metabolites between non-AKI and AKI in pre-work samples by sample t-test. 55 Table 4. Changed levels of metabolites between non-AKI and AKI post-work by sample t-test. 56 Table 5. Changed levels of metabolites of AKI group with pre-work and post-work by paired t-test. 57 | - |
dc.language.iso | en | - |
dc.title | 使用核磁共振儀探討健康照護人員在熱暴露下的尿液代謝體反應 | zh_TW |
dc.title | Urinary Metabolic Responses to Heat Stress Exposure of Healthcare Workers using Nuclear Magnetic Resonance | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊孝友;李昇翰;盧冠宏 | zh_TW |
dc.contributor.oralexamcommittee | Hsiao-Yu Yang;Sheng-Han Lee;Kuan-Hung Lu | en |
dc.subject.keyword | 熱應力,尿液,核磁共振儀,急性腎損傷,代謝體學, | zh_TW |
dc.subject.keyword | heat stress,urine,nuclear magnetic resonance,acute kidney injury,metabolomics, | en |
dc.relation.page | 57 | - |
dc.identifier.doi | 10.6342/NTU202400694 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-02-16 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
顯示於系所單位: | 環境與職業健康科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 2.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。