Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周涵怡zh_TW
dc.contributor.advisorHan-Yi Elizabeth Chouen
dc.contributor.author林孟緹zh_TW
dc.contributor.authorMeng-Tie Linen
dc.date.accessioned2024-02-23T16:12:46Z-
dc.date.available2024-02-24-
dc.date.copyright2024-02-23-
dc.date.issued2024-
dc.date.submitted2024-02-16-
dc.identifier.citation1. Welfare, M.o.H.a., 111年國人死因統計結果-分析. 2023.
2. Bugshan, A. and I. Farooq, Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Research, 2020. 9: p. 229.
3. Gupta, A.A., et al., Chronic mechanical irritation and oral squamous cell carcinoma: A systematic review and meta-analysis. Bosnian Journal of Basic Medical Sciences, 2021.
4. Johnson, D.E., et al., Head and neck squamous cell carcinoma. Nat Rev Dis Primers, 2020. 6(1): p. 92.
5. Chou, H.C., et al., Clinical outcomes of oral cancer patients who survive for more than 5 years in Taiwan. J Formos Med Assoc, 2019. 118(12): p. 1616-1622.
6. foundation, F.c. Oral Cavity Cancer. 2022qpslcm@ikd Available from: https://www.canceraway.org.tw/cancerinfo.php?id=D0052AC3-BE9A-46BCB9F4-164FF14F3BF9.
7. Warburg, O., The Metabolism of Carcinoma Cells. The Journal of Cancer Research, 1925. 9(1): p. 148-163.
8. Wang, Y. and G.J. Patti, The Warburg effect: a signature of mitochondrial overload. Trends in Cell Biology, 2023. 33(12): p. 1014-1020.
9. Wicks, E.E. and G.L. Semenza, Hypoxia-inducible factors: cancer progression and clinical translation. Journal of Clinical Investigation, 2022. 132(11).
10. Pillai, S.R., et al., Causes, consequences, and therapy of tumors acidosis. Cancer and Metastasis Reviews, 2019. 38(1-2): p. 205-222.
11. Barnes, E.M.E., et al., Lactic acidosis induces resistance to the pan-Akt inhibitor uprosertib in colon cancer cells. British Journal of Cancer, 2020. 122(9): p. 1298-1308.
12. Dutta, S., et al., Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. Biology, 2023. 12(2): p. 218.
13. P.rez-Tom.s, R. and I. P.rez-Guill.n, Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers, 2020. 12(11): p. 3244.
14. Anemone, A., et al., Tumour acidosis evaluated in vivo by MRI-CEST pH imaging reveals breast cancer metastatic potential. British Journal of Cancer, 2021. 124(1):p. 207-216.
15. Shie, W.-Y., et al., Acidosis promotes the metastatic colonization of lung cancer via remodeling of the extracellular matrix and vasculogenic mimicry. International Journal of Oncology, 2023. 63(6).
16. Herrmann, I.K., M.J.A. Wood, and G. Fuhrmann, Extracellular vesicles as a nextgeneration drug delivery platform. Nature Nanotechnology, 2021. 16(7): p. 748-759.
17. Garcia-Martin, R., et al., Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Reports, 2022. 38(3): p. 110277.
18. Maia, J., et al., Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2018. 6.
19. Rodrigues-Junior, D.M., et al., Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Frontiers in Cell and Developmental Biology, 2022.10.
20. Zhao, H., et al., Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 2016. 5: p. e10250.
21. Yu, D., et al., Exosomes as a new frontier of cancer liquid biopsy. Molecular Cancer, 2022. 21(1).
22. Mukerjee, N., et al., Exosomes in liquid biopsy and oncology: Nanotechnological interplay and the quest to overcome cancer drug resistance. The Journal of Liquid Biopsy, 2024. 3: p. 100134.
23. Lee, B.S., et al., Crosstalk between head and neck cancer cells and lymphatic endothelial cells promotes tumor metastasis via CXCL5‐CXCR2 signaling. The FASEB Journal, 2021. 35(1).
24. Committee, C.C.S.A. Survival statistics for oral cancer. 2021qpslcm@ikd Available from: https://cancer.ca/en/cancer-information/cancer-types/oral/prognosis-andsurvival/survival-statistics.
25. Paget, S., THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. The Lancet, 1889. 133(3421): p. 571-573.
26. Ribatti, D., G. Mangialardi, and A. Vacca, Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clinical and Experimental Medicine, 2006. 6(4): p. 145-149.
27. Hoshino, A., et al., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): p. 329-335.
28. Wang, S.H., et al., Laminin γ2‐enriched extracellular vesicles of oral squamous cell carcinoma cells enhance <i>in vitro</i> lymphangiogenesis <i>via</i> integrin α3‐dependent uptake by lymphatic endothelial cells. International Journal of Cancer, 2019.144(11): p. 2795-2810.
29. Norden, P.R. and T. Kume, Molecular Mechanisms Controlling Lymphatic Endothelial Junction Integrity. Frontiers in Cell and Developmental Biology, 2021. 8.
30. Zhang, F., et al., Lymphatic Endothelial Cell Junctions: Molecular Regulation in Physiology and Diseases. Frontiers in Physiology, 2020. 11.
31. Hasegawa, T., et al., Cystine reduces tight junction permeability and intestinal inflammation induced by oxidative stress in Caco-2 cells. Amino Acids, 2021. 53(7): p. 1021-1032.
32. Scalavino, V., et al., The Increase of miR-195-5p Reduces Intestinal Permeability in Ulcerative Colitis, Modulating Tight Junctions’ Expression. International Journal of Molecular Sciences, 2022. 23(10): p. 5840.
33. Tomita, T., M. Kato, and S. Hiratsuka, Regulation of vascular permeability in cancer metastasis. Cancer Science, 2021. 112(8): p. 2966-2974.
34. Dejana, E., Endothelial cell–cell junctions: happy together. Nature Reviews Molecular Cell Biology, 2004. 5(4): p. 261-270.
35. Dun Niu, T.L., Hanbin Wang, Yiniu Xia, Zhizhong Xie, Lactic acid in tumor invasion. Clinica Chimica Acta, 2021. 522: p. 61-69.
36. Kujawa, M., et al., MicroRNA-466 and microRNA-200 increase endothelial permeability in hyperglycemia by targeting Claudin-5. Molecular Therapy -Nucleic Acids, 2022. 29: p. 259-271.
37. Liu, Y., et al., Integrated bioinformatic analysis of dysregulated microRNA-mRNA co-expression network in ovarian endometriosis. Acta Obstetricia et Gynecologica Scandinavica, 2022. 101(10): p. 1074-1084.
38. Sanchez, T., et al., Induction of Vascular Permeability by the Sphingosine-1-Phosphate Receptor–2 (S1P2R) and its Downstream Effectors ROCK and PTEN. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007. 27(6): p.1312-1318.
39. Li, N., et al., MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death & Disease, 2017. 8(5):p. e2796-e2796.
40. Bian, L., et al., MiR-29c-3p and MiR-223-3p regulate the proliferation and drug resistance of oral squamous cell carcinoma by targeting ANGPTL4. Frontiers of Oral and Maxillofacial Medicine, 2022. 4.
41. Fan, H., et al., CircPTK2 Inhibits the Tumorigenesis and Metastasis of Gastric Cancer by Sponging miR-134-5p and Activating CELF2/PTEN Signaling. 2021, Research Square Platform LLC.
42. Zhang, L., et al., miR-134-5p Promotes Stage I Lung Adenocarcinoma Metastasis and Chemoresistance by Targeting DAB2. Molecular Therapy - Nucleic Acids, 2019. 18: p. 627-637.
43. Zhao, L., et al., miR‐34c Regulates the Permeability of Blood–Tumor Barrier via MAZ‐Mediated Expression Changes of ZO‐1, Occludin, and Claudin‐5. Journal of Cellular Physiology, 2015. 230(3): p. 716-731.
44. Minemura, C., et al. Identification of Antitumor miR-30e-5p Controlled Genesqpslcm@ikd Diagnostic and Prognostic Biomarkers for Head and Neck Squamous Cell Carcinoma. Genes, 2022. 13, DOI: 10.3390/genes13071225.
45. Zongdan, J., et al., The mechanism of miR-363-3p/DUSP10 signaling pathway involved in the gastric mucosal injury induced by clopidogrel. Toxicology Mechanisms and Methods, 2021. 31(2): p. 150-158.
46. Gao, M., et al., Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1. Clinical Science, 2021. 135(2): p. 347-365.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91833-
dc.description.abstract口腔癌在本國男性為第四常見之癌症,若轉移到淋巴,其五年存活率極低。根據實驗室先前研究成果得知,口腔癌微環境酸化與轉移密切相關。腫瘤微環境會透過不同因子影響腫瘤轉移,而胞外體作為生物體內訊息傳遞的工具,參與腫瘤和微環境之間的交互作用。然而,在口腔癌中,微環境對其胞外體分泌的影響尚未充分被了解。
本研究主軸是酸化微環境對口腔癌細胞的影響,除了實際搜集臨床口腔癌檢體以建立其即時測量酸鹼值方法外,我們也發現長期酸化之口腔癌細胞株具有大量釋放胞外體的特性,並進一步使用蛋白質體學和轉錄體學分析來研究其內容物。另一方面,我們將口腔癌胞外體添加至淋巴內皮細胞的培養基中進行刺激,使用跨膜電阻儀和免疫螢光細胞染色觀察內皮細胞之間的連結是否受到影響,並使用帶有螢光標記之葡聚醣測試內皮屏障之滲透度。根據實驗結果發現,酸化會造成口腔癌細胞釋放出大於正常酸鹼值的囊泡,且帶有不同蛋白質和 miRNA 內容物,這樣的細胞外囊泡具有破壞淋巴內皮細胞屏障的特性。結合臨床檢體的實際觀察和細胞實驗的證據,有助於更進一步了解酸化微環境所釋放的胞外體對口腔癌細胞轉移的潛力。
zh_TW
dc.description.abstractOral cancer ranks as the fourth most common cancer among men in Taiwan. Once it metastasizes to lymph nodes, the five-year survival rate becomes even lower than the tumor in situ. Based on previous research in our laboratory, we found that the acidotic microenvironment correlates to cancer metastasis by establishing the acidotic animal and cell line model.
Tumor metastasis is a complex process influenced by various factors, and one of these factors is the in vivo message transmission via extracellular vesicles, which participates in the reciprocal interaction between tumors and their metastatic site. However, the impact of acidosis on oral cancer metastasis remains largely unknown.
This study aims to evaluate the effect of oral cancer acidosis and its relationship with extracellular vesicle secretion and metastasis. We collected clinical oral cancer specimens and developed a protocol to obtain reliable pH measurements at the operation site. We isolated extracellular vesicles secreted by our long-term acidosis oral cell line model and found increased secretion and differential population as compared to its neutral pH counterpart. Subsequent proteomic and transcriptomic analyses were employed to analyze the contents of these extracellular vesicles. Also, we stimulated lymphatic endothelial cells with extracellular vesicles, then the integrity of the endothelial cell barrier was tested by transmembrane resistance using trans-epithelial electrical resistance (TEER) and immunofluorescence staining (IF). Furthermore, we used fluorescent-labeled dextran to interrogate the change in endothelial layer permeability after extracellular vesicle treatment.
In summary, our results show that acidosis oral cancer cells release more extracellular vesicles, which contain distinct protein and miRNA contents. Moreover, these extracellular vesicles exhibit the capability to disrupt the lymphatic endothelial cell barrier. The amalgamation of our clinical observations, omics analyses, and functional experiments contribute to a more comprehensive understanding on the role of oral cancer acidosis in lymph metastasis in the context of extracellular vesicles.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:12:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-23T16:12:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Oral Cancer 1
1.2 Microenvironment Acidosis 1
1.3 Extracellular Vesicles 2
1.4 Lymphatic Metastasis 3
1.5 Lymphatic Endothelial Cell-Cell Barrier 4
1.6 Hypothesis 4
1.7 Experimental Design 5
Chapter 2 Material and Methods 6
2.1 Clinical Data Collection and pH Value Detection 6
2.2 Cell Culture 6
2.2.1 Oral Squamous Cell Carcinoma 6
2.2.2 Lymphatic Endothelial Cell 7
2.3 Extracellular Vesicles Isolation 7
2.3.1 qEV Size Exclusion Chromatography (SEC) 7
2.3.2 Tangential Flow Filtration (TFF) 8
2.4 Characteristics of Extracellular Vesicles 9
2.4.1 Nanoparticles Tracking Analysis (NTA) 9
2.4.2 Transmission Electron Microscope (TEM) 9
2.4.3 Proteomics Analysis 9
2.4.4 miRNA Extraction, RNA Library Construction and Sequencing 11
2.4.5 microRNA-seq Data Analysis 12
2.5 Endothelial Functional Assay 12
2.5.1 Trans Endothelial Electrical Resistance (TEER) 12
2.5.2 Immunofluorescence Staining 13
2.5.3 Permeability Assay 13
2.5.4 Extracellular Vesicles Labeling 14
2.6 Statistical Analysis 14
Chapter 3 Results 15
3.1 Correlation between the acidic microenvironment of oral cancer and tumor
clinicopathology 15
3.2 The acidic microenvironment induces a more active interaction between oral
cancer and the extracellular matrix 17
3.3 Characterization of extracellular vesicles released from oral cancer cell SAS under different pH microenvironments 18
3.4 Effects of acidification on proteomics of oral cancer cell extracellular vesicles 20
3.5 Characterization of SAS extracellular vesicles by tangential flow filtration under different pH conditions 23
3.6 Extracellular vesicles derived from SAS cells disrupt the endothelial integrity, especially under acidification 24
3.7 Extracellular vesicles at different pH values contain miRNAs that influence endothelial integrity 27
Chapter 4 Conclusion and Discussion 30
Chapter 5 Reference 33
-
dc.language.isoen-
dc.subject口腔癌zh_TW
dc.subject酸化微環境zh_TW
dc.subject緊密連結zh_TW
dc.subject內皮屏障zh_TW
dc.subject胞外體zh_TW
dc.subjectextracellular vesiclesen
dc.subjectendothelial barrieren
dc.subjecttight junctionen
dc.subjectoral canceren
dc.subjectacidotic microenvironmenten
dc.title口腔癌酸化的臨床相關性及其對淋巴轉移的影響zh_TW
dc.titleClinical Relevance of Oral Cancer Acidosis and its Implication on Lymphatic Migrationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭世榮;沈湯龍zh_TW
dc.contributor.oralexamcommitteeShih-Jung Cheng;Tang-Long Shenen
dc.subject.keyword酸化微環境,口腔癌,胞外體,內皮屏障,緊密連結,zh_TW
dc.subject.keywordacidotic microenvironment,oral cancer,extracellular vesicles,endothelial barrier,tight junction,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202400570-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-17-
dc.contributor.author-college醫學院-
dc.contributor.author-dept口腔生物科學研究所-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf10.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved