Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91827
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉宴齊zh_TW
dc.contributor.advisorYan-Ci Liuen
dc.contributor.author鄒孟璇zh_TW
dc.contributor.authorMeng-Hsuan Tsouen
dc.date.accessioned2024-02-22T16:54:10Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-01-22-
dc.identifier.citationReferences
1. Fugl-Meyer AR, Jaasko L, Norlin V. The post-stroke hemiplegic patient. II. Incidence, mortality, and vocational return in Goteborg, Sweden with a review of the literature. Scand J Rehabil Med. 1975;7:73-83.
2. Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther. 1966;46:357-375. doi: 10.1093/ptj/46.4.357
3. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74:443-480. doi: 10.1093/brain/74.4.443
4. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741-754. doi: 10.1016/S1474-4422(09)70150-4
5. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, Wolfe CD. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32:1279-1284. doi: 10.1161/01.str.32.6.1279
6. Hussain N, Alt Murphy M, Sunnerhagen KS. Upper Limb Kinematics in Stroke and Healthy Controls Using Target-to-Target Task in Virtual Reality. Front Neurol. 2018;9:300. doi: 10.3389/fneur.2018.00300
7. Broeks JG, Lankhorst GJ, Rumping K, Prevo AJ. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 1999;21:357-364. doi: 10.1080/096382899297459
8. Ingram LA, Butler AA, Brodie MA, Lord SR, Gandevia SC. Quantifying upper limb motor impairment in chronic stroke: a physiological profiling approach. J Appl Physiol (1985). 2021;131:949-965. doi: 10.1152/japplphysiol.00078.2021
9. Raghavan P. Upper Limb Motor Impairment After Stroke. Phys Med Rehabil Clin N Am. 2015;26:599-610. doi: 10.1016/j.pmr.2015.06.008
10. Paci M, Nannetti L, Casavola D, Lombardi B. Differences in motor recovery between upper and lower limbs: does stroke subtype make the difference? Int J Rehabil Res. 2016;39:185-187. doi: 10.1097/MRR.0000000000000172
11. Skurvydas A, Juodzbaliene V, Darbutas T, Brazaitis M. One year after ischemic stroke: Changes in leg movement path stability in a speed-accuracy task but no major effects on the hands. Hum Mov Sci. 2018;57:50-58. doi: 10.1016/j.humov.2017.11.005
12. Kong KH, Lee J. Temporal recovery and predictors of upper limb dexterity in the first year of stroke: a prospective study of patients admitted to a rehabilitation centre. NeuroRehabilitation. 2013;32:345-350. doi: 10.3233/NRE-130854
13. Sherrington C. Hughlings Jackson Lecture on QUANTITATIVE MANAGEMENT OF CONTRACTION FOR "LOWEST-LEVEL" CO-ORDINATION. Br Med J. 1931;1:207-211. doi: 10.1136/bmj.1.3657.207
14. Taub E. Movement in nonhuman primates deprived of somatosensory feedback. Exerc Sport Sci Rev. 1976;4:335-374.
15. Taub E, Uswatte G, Mark VW, Morris DM. The learned nonuse phenomenon: implications for rehabilitation. Eura Medicophys. 2006;42:241-256.
16. Brunnstrom S. Associated reactions of the upper extremity in adult patients with hemiplegia; an approach to training. Phys Ther Rev (1948). 1956;36:225-236. doi: 10.1093/ptj/36.4.225
17. Nijland RHM, Van Wegen EEH, Harmeling-Van Der Wel BC, Kwakkel G. Presence of Finger Extension and Shoulder Abduction Within 72 Hours After Stroke Predicts Functional Recovery. Stroke. 2010;41:745-750. doi: 10.1161/strokeaha.109.572065
18. Zarahn E, Alon L, Ryan SL, Lazar RM, Vry MS, Weiller C, Marshall RS, Krakauer JW. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex. 2011;21:2712-2721. doi: 10.1093/cercor/bhr047
19. Nakashima A, Moriuchi T, Mitsunaga W, Yonezawa T, Kataoka H, Nakashima R, Koizumi T, Shimizu T, Ryu N, Higashi T. Prediction of prognosis of upper-extremity function following stroke-related paralysis using brain imaging. J Phys Ther Sci. 2017;29:1438-1443. doi: 10.1589/jpts.29.1438
20. Cramer SC, Parrish TB, Levy RM, Stebbins GT, Ruland SD, Lowry DW, Trouard TP, Squire SW, Weinand ME, Savage CR, et al. Predicting functional gains in a stroke trial. Stroke. 2007;38:2108-2114. doi: 10.1161/STROKEAHA.107.485631
21. Borich MR, Brown KE, Boyd LA. Motor skill learning is associated with diffusion characteristics of white matter in individuals with chronic stroke. J Neurol Phys Ther. 2014;38:151-160. doi: 10.1097/NPT.0b013e3182a3d353
22. Feys H, Van Hees J, Bruyninckx F, Mercelis R, De Weerdt W. Value of somatosensory and motor evoked potentials in predicting arm recovery after a stroke. J Neurol Neurosurg Psychiatry. 2000;68:323-331. doi: 10.1136/jnnp.68.3.323
23. Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, Carter AR, Leff AP, Copland DA, Carey LM, et al. Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017;12:480-493. doi: 10.1177/1747493017714176
24. Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci. 2017;11:469. doi: 10.3389/fnhum.2017.00469
25. Roland PE, Larsen B, Lassen NA, Skinhoj E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol. 1980;43:118-136. doi: 10.1152/jn.1980.43.1.118
26. Erhsson H FA, Jonsson T, Westling G, Johansson R, Forssberg H. Cortical activity in precision- versus power-grip tasks: an fMRI study. Journal of neurophysiology. 2000;83:528-536.
27. Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, et al. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study. Brain Res. 1996;716:141-148. doi: 10.1016/0006-8993(96)00032-7
28. Sadato N, Ibanez V, Deiber MP, Campbell G, Leonardo M, Hallett M. Frequency-dependent changes of regional cerebral blood flow during finger movements. J Cereb Blood Flow Metab. 1996;16:23-33. doi: 10.1097/00004647-199601000-00003
29. Kinoshita H, Oku N, Hashikawa K, Nishimura T. Functional brain areas used for the lifting of objects using a precision grip: a PET study. Brain Res. 2000;857:119-130. doi: 10.1016/s0006-8993(99)02416-6
30. Carey LM, Abbott DF, Egan GF, Bernhardt J, Donnan GA. Motor Impairment and Recovery in the Upper Limb After Stroke. Stroke. 2005;36:625-629. doi: 10.1161/01.str.0000155720.47711.83
31. McCabe CS, Haigh RC, Ring EF, Halligan PW, Wall PD, Blake DR. A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1). Rheumatology (Oxford). 2003;42:97-101. doi: 10.1093/rheumatology/keg041
32. Altschuler EL, Wisdom SB, Stone L, Foster C, Galasko D, Llewellyn DM, Ramachandran VS. Rehabilitation of hemiparesis after stroke with a mirror. Lancet. 1999;353:2035-2036. doi: 10.1016/s0140-6736(99)00920-4
33. Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review. Front Neurol. 2019;10:1188. doi: 10.3389/fneur.2019.01188
34. McCrea PH, Eng JJ, Hodgson AJ. Biomechanics of reaching: clinical implications for individuals with acquired brain injury. Disability and Rehabilitation. 2002;24:534-541. doi: 10.1080/09638280110115393
35. Lana EP AB, Tierra-Criollo CJ. . Detection of movement intention using EEG in a human-root interaction environment. Research on Biomedical Engineering. 2015;31:285-294.
36. Suwannarat A, Pan-Ngum S, Israsena P. Comparison of EEG measurement of upper limb movement in motor imagery training system. Biomed Eng Online. 2018;17:103. doi: 10.1186/s12938-018-0534-0
37. Jones TA, Adkins DL. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology (Bethesda). 2015;30:358-370. doi: 10.1152/physiol.00014.2015
38. Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272:1791-1794. doi: 10.1126/science.272.5269.1791
39. Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75:2144-2149. doi: 10.1152/jn.1996.75.5.2144
40. Friel KM, Nudo RJ. Recovery of motor function after focal cortical injury in primates: compensatory movement patterns used during rehabilitative training. Somatosens Mot Res. 1998;15:173-189. doi: 10.1080/08990229870745
41. Chen R, Yung D, Li JY. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol. 2003;89:1256-1264. doi: 10.1152/jn.00950.2002
42. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain. 2003;126:1430-1448. doi: 10.1093/brain/awg145
43. Yeo SS, Chang PH, Jang SH. The cortical activation differences between proximal and distal joint movements of the upper extremities: a functional NIRS study. NeuroRehabilitation. 2013;32:861-866. doi: 10.3233/NRE-130910
44. Yang CL, Lim SB, Peters S, Eng JJ. Cortical Activation During Shoulder and Finger Movements in Healthy Adults: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Front Hum Neurosci. 2020;14:260. doi: 10.3389/fnhum.2020.00260
45. Jalalvandi M, Riahi Alam N, Sharini H. Optical Imaging of Brain Motor Cortex Activation During Wrist Movement Using Functional Near-Infrared Spectroscopy (fNIRS). Archives of Neuroscience. 2019;6. doi: 10.5812/ans.90089
46. Huo C, Xu G, Li Z, Lv Z, Liu Q, Li W, Ma H, Wang D, Fan Y. Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: A functional near-infrared spectroscopy study. Sci Rep. 2019;9:6226. doi: 10.1038/s41598-019-42674-0
47. Arun KM, Smitha KA, Rajesh PG, Kesavadas C. Functional near-infrared spectroscopy is in moderate accordance with functional MRI in determining lateralisation of frontal language areas. Neuroradiol J. 2018;31:133-141. doi: 10.1177/1971400917739083
48. Arun KM, Smitha KA, Sylaja PN, Kesavadas C. Identifying Resting-State Functional Connectivity Changes in the Motor Cortex Using fNIRS During Recovery from Stroke. Brain Topography. 2020;33:710-719. doi: 10.1007/s10548-020-00785-2
49. Matarasso AK, Rieke JD, White K, Yusufali MM, Daly JJ. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study. PLOS ONE. 2021;16:e0250431. doi: 10.1371/journal.pone.0250431
50. Yang M, Yang Z, Yuan T, Feng W, Wang P. A Systemic Review of Functional Near-Infrared Spectroscopy for Stroke: Current Application and Future Directions. Front Neurol. 2019;10:58. doi: 10.3389/fneur.2019.00058
51. Woytowicz EJ, Rietschel JC, Goodman RN, Conroy SS, Sorkin JD, Whitall J, McCombe Waller S. Determining Levels of Upper Extremity Movement Impairment by Applying a Cluster Analysis to the Fugl-Meyer Assessment of the Upper Extremity in Chronic Stroke. Arch Phys Med Rehabil. 2017;98:456-462. doi: 10.1016/j.apmr.2016.06.023
52. Hijikata N, Kawakami M, Ishii R, Tsuzuki K, Nakamura T, Okuyama K, Liu M. Item Difficulty of Fugl-Meyer Assessment for Upper Extremity in Persons With Chronic Stroke With Moderate-to-Severe Upper Limb Impairment. Front Neurol. 2020;11:577855. doi: 10.3389/fneur.2020.577855
53. Lu CF, Liu YC, Yang YR, Wu YT, Wang RY. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study. PLoS One. 2015;10:e0129390. doi: 10.1371/journal.pone.0129390
54. Huppert TJ, Diamond SG, Franceschini MA, Boas DA. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt. 2009;48:D280-298. doi: 10.1364/ao.48.00d280
55. Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, Obrig H, Schmitz CH. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage. 2014;85 Pt 1:64-71. doi: 10.1016/j.neuroimage.2013.06.062
56. Molavi B, Dumont GA. Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol Meas. 2012;33:259-270. doi: 10.1088/0967-3334/33/2/259
57. Kocsis L, Herman P, Eke A. The modified Beer-Lambert law revisited. Phys Med Biol. 2006;51:N91-98. doi: 10.1088/0031-9155/51/5/N02
58. Cope M, Delpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988;26:289-294. doi: 10.1007/BF02447083
59. Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJ, Mandeville JB. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage. 2001;13:76-90. doi: 10.1006/nimg.2000.0674
60. Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang GZ. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage. 2011;54:2922-2936. doi: 10.1016/j.neuroimage.2010.10.058
61. Hoshi Y, Tamura M. Dynamic changes in cerebral oxygenation in chemically induced seizures in rats: study by near-infrared spectrophotometry. Brain Res. 1993;603:215-221. doi: 10.1016/0006-8993(93)91240-s
62. Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Muller KR, Blankertz B. Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage. 2012;59:519-529. doi: 10.1016/j.neuroimage.2011.07.084
63. Lecrux C, Hamel E. The neurovascular unit in brain function and disease. Acta Physiol (Oxf). 2011;203:47-59. doi: 10.1111/j.1748-1716.2011.02256.x
64. Bisconti S, Di Sante G, Ferrari M, Quaresima V. Functional near-infrared spectroscopy reveals heterogeneous patterns of language lateralization over frontopolar cortex. Neurosci Res. 2012;73:328-332. doi: 10.1016/j.neures.2012.05.013
65. Borrell JA, Fraser K, Manattu AK, Zuniga JM. Laterality Index Calculations in a Control Study of Functional Near Infrared Spectroscopy. Brain Topogr. 2023;36:210-222. doi: 10.1007/s10548-023-00942-3
66. Khaksari K, Smith EG, Miguel HO, Zeytinoglu S, Fox N, Gandjbakhche AH. An fNIRS Study of Brain Lateralization During Observation and Execution of a Fine Motor Task. Front Hum Neurosci. 2021;15:798870. doi: 10.3389/fnhum.2021.798870
67. Crofts A, Kelly ME, Gibson CL. Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies. J Neuroimaging. 2020;30:5-14. doi: 10.1111/jon.12668
68. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol. 1992;31:463-472. doi: 10.1002/ana.410310502
69. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33:181-189. doi: 10.1002/ana.410330208
70. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28:2518-2527. doi: 10.1161/01.str.28.12.2518
71. Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage. 2011;55:1147-1158. doi: 10.1016/j.neuroimage.2011.01.014
72. Bonnal J, Ozsancak C, Monnet F, Valery A, Prieur F, Auzou P. Neural Substrates for Hand and Shoulder Movement in Healthy Adults: A Functional near Infrared Spectroscopy Study. Brain Topogr. 2023;36:447-458. doi: 10.1007/s10548-023-00972-x
73. Vasilyev AN, Liburkina SP, Kaplan AY. [Lateralization of EEG Patterns in Humans during Motor Imagery of Arm Movements in the Brain-Computer Interface]. Zh Vyssh Nerv Deiat Im I P Pavlova. 2016;66:302-312.
74. Calautti C, Leroy F, Guincestre JY, Marie RM, Baron JC. Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport. 2001;12:3883-3886. doi: 10.1097/00001756-200112210-00005
75. Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, Burnod Y, Maier MA. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke. 2002;33:1610-1617. doi: 10.1161/01.str.0000017100.68294.52
76. Mutha PK, Haaland KY, Sainburg RL. The effects of brain lateralization on motor control and adaptation. J Mot Behav. 2012;44:455-469. doi: 10.1080/00222895.2012.747482
77. Seghier ML. Laterality index in functional MRI: methodological issues. Magn Reson Imaging. 2008;26:594-601. doi: 10.1016/j.mri.2007.10.010
78. Mani S, Mutha PK, Przybyla A, Haaland KY, Good DC, Sainburg RL. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain. 2013;136:1288-1303. doi: 10.1093/brain/aws283
79. Schaefer SY, Haaland KY, Sainburg RL. Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain. 2007;130:2146-2158. doi: 10.1093/brain/awm145
80. Cao Y, D''Olhaberriague L, Vikingstad EM, Levine SR, Welch KM. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke. 1998;29:112-122. doi: 10.1161/01.str.29.1.112
81. Honda M, Nagamine T, Fukuyama H, Yonekura Y, Kimura J, Shibasaki H. Movement-related cortical potentials and regional cerebral blood flow change in patients with stroke after motor recovery. J Neurol Sci. 1997;146:117-126. doi: 10.1016/s0022-510x(96)00291-2
82. Delorme MF, J.; Perrey, S.; Vergotte, G.; Laffont, I. . Changes in hemodynamic responses during movements of the upper extremities in the acute phase after stroke: A fNIRS study. Annals of Physical and Rehabilitation Medicine. 2017;60:1877-0657.
83. Milani G, Antonioni A, Baroni A, Malerba P, Straudi S. Relation Between EEG Measures and Upper Limb Motor Recovery in Stroke Patients: A Scoping Review. Brain Topogr. 2022;35:651-666. doi: 10.1007/s10548-022-00915-y
84. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. The influence of time after stroke on brain activations during a motor task. Ann Neurol. 2004;55:829-834. doi: 10.1002/ana.20099
85. Sui Y, Kan C, Zhu S, Zhang T, Wang J, Xu S, Zhuang R, Shen Y, Wang T, Guo C. Resting-state functional connectivity for determining outcomes in upper extremity function after stroke: A functional near-infrared spectroscopy study. Front Neurol. 2022;13:965856. doi: 10.3389/fneur.2022.965856
86. Kim TH, Vemuganti R. Effect of sex and age interactions on functional outcome after stroke. CNS Neurosci Ther. 2015;21:327-336. doi: 10.1111/cns.12346
87. Phan T, Nguyen H, Vermillion BC, Kamper DG, Lee SW. Abnormal proximal-distal interactions in upper-limb of stroke survivors during object manipulation: A pilot study. Front Hum Neurosci. 2022;16:1022516. doi: 10.3389/fnhum.2022.1022516
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91827-
dc.description.abstract肢體動作受損為常見的中風後遺症之一,其嚴重影響個案之自主生活功能及社會參與度。先前影像實驗使用功能性磁振造影或正子斷層造影探討肢體動作時之腦部活化情形;研究結果指出,患側大腦活化程度低下與上肢動作表現嚴重度呈現正相關性。然而,因造影儀器對於個案之姿勢限制,相關文章僅探討上肢遠端動作時之功能性腦部活化,尚未釐清上肢近端功能性動作與腦部活化之相關性。因此,本實驗為一橫斷面研究,使用較無姿勢限制之穿戴式近紅外光頻譜儀,探討中風患者在執行遠端及近端上肢功能性動作時之大腦皮質活化情形,並與健康成年人之腦部活化情形比較。本實驗共收取31位中風患者及9位健康受試者,請受試者執行右側及左側上肢的近端與遠端動作,包含近端之前伸任務(手臂往前伸碰到前方物品),及遠端之抓握任務(手抓握再放開)動作。上肢有嚴重癱瘓或無力情形之中風受試者則以動作心像 (motor imagery) 模式進行此實驗。執行任務中同時使用近紅外光頻譜儀探討大腦雙側前運動皮質區(premotor cortex, PMC)、主要動作皮質 (primary motor cortex, M1) 及主要感覺皮質區 (primary sensory cortex, S1) 執行各項動作任務時之活化情形。本研究使用二因子變異數分析與重複量數 (Two-way ANOVA with repeated measures) 搭配Tukey事後檢定,探討大腦活化皮質區域執行前伸任務及抓握任務時族群與任務之間是否有顯著相互作用 (p < 0.05);此外,使用皮爾森相關分析法 (Pearson’s correlation),探討腦部活化與中風後動作損傷之關係。研究結果顯示,與健康受試者相比,中風受試者執行上肢功能性任務時的大腦活化程度整體較高。動作恢復較差之中風受試者(動作心像)相較於動作恢復較好之中風受試者(實際執行)及健康受試者在執行患側遠端動作時,其健側大腦之PMC及M1活化更高。此外,近端和遠端上肢任務之大腦活化沒有顯著差異,但執行近端與遠端任務時,大腦活化皆呈現顯著的側化現象。最後,本研究也發現執行近遠端上肢功能性動作時之腦部活化與中風後動作恢復呈現顯著相關性。zh_TW
dc.description.abstractBackground and Purpose: Impairment of upper limb function is a significant cause of disability following stroke. Studies revealed that brain reorganization post-stroke shows increased overactivation of the contralesional cortex, which was associated with poor upper limb motor recovery. Previous investigations under functional magnetic resonance imaging and positron emission tomography have sought to characterize the differences in cortical activity between stroke and healthy individuals during upper limb movement, but cortical activity during distal movements were mainly assessed, and little is known about the cortical activity associated with proximal upper limb movements following stroke. The purpose of this cross-sectional study was to investigate the cortical activation patterns in stroke individuals during functional tasks of the proximal and distal upper limb and compare activation of stroke survivors with that of healthy individuals.
Methods: Thirty-one participants with stroke and 9 healthy individuals were recruited for this cross-sectional study. After initial screening for eligibility, all participants were instructed to perform four upper limb functional tasks: forward reaching of the non-affected/right arm, forward reaching of the affected/left arm, grasping of the non-affected/right hand, and grasping of the affected/left hand. Stroke participants with severe paralysis or weakness performed motor imagery in place of actual movement execution. Functional near-infrared spectroscopy (fNIRS) was used to record brain activation patterns in the bilateral premotor cortices (PMC), primary motor cortices (M1), and primary somatosensory cortices (S1). Two-way analysis of variance (ANOVA) with Tukey post hoc test was used to assess significant differences in cortical activation between groups (healthy, stroke motor execution, and stroke motor imagery) and the tasks. Pearson’s correlation analysis was used to assess the relationship between cortical activation of each channel and stroke characteristics.
Results: Significant differences in cortical activation were found between groups and between tasks. Overall, greater brain activation was seen in the stroke participants compared to healthy participants. Stroke participants with poorer motor recovery, when engaging in motor imagery, exhibit higher activation in the non-affected hemisphere''s PMC and M1compared to stroke participants with better motor recovery (actual execution) and healthy participants during the execution of affected-side distal movements. No significant activation pattern differences were found between proximal and distal upper limb tasks, but rather, significant differences were observed between tasks of the non-affected and affected limbs. Stroke individuals in the motor execution group showed lateralization index patterns similar to that of the healthy participants. In other words, Stroke individuals in the motor imagery group tend to exhibit ipsilateral activation. Significant correlation was also found between cortical activation during the upper limb tasks and upper limb motor outcome and stroke characteristics.
Conclusion: Cortical activation patterns differ between subacute stroke participants depending on their stage of recovery. Significantly higher, bilateral cortical activation was observed in subacute stroke as compared to healthy participants, and stroke participants using motor imagery showed greater contra-lesional activation patterns as compared to stroke participants using motor execution. Cortical activation during proximal and distal upper limb tasks was significantly correlated with upper limb motor outcomes and stroke characteristics, thus making it an important marker for movement recovery.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:54:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:54:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
中文摘要 ii
Abstract iv
Acknowledgements vi
Table of Contents viii
List of Figures xi
List of Tables xii
Chapter 1: Introduction 1
1.1. Statement of the Problem and Current Knowledge Gaps 1
1.2. Research Question 3
1.3. Hypotheses 3
1.4. Clinical Significance 4
Chapter 2: Review of the Literature 5
2.1 Upper Limb Impairment and Recovery in Stroke 5
2.2 Predictors of upper limb motor outcomes in stroke 7
2.3 Cortical Activation Changes Associated with Upper Limb Tasks 8
2.4 Cortical Activity Changes After Stroke 11
2.5 Functional Near-Infrared Spectroscopy to Assess Upper Limb-Associated Cortical Activity 12
2.6 Summary 14
Chapter 3: Methodology 15
3.1 Study Design 15
3.2 Participants 15
3.3 Procedures 16
3.3.1 Experimental Protocol 16
3.3.2 Fugl-Meyer Assessment for Upper Extremity 17
3.3.3 Proximal and Distal Motor Tasks 17
3.3.4 fNIRS System and Probe Placement 19
3.3.5 Signal Processing for Brain Activation 20
3.4 Measures 22
3.4.1 Cortical Activation 22
3.4.2 Laterality Index 22
3.5 Data Analysis 23
Chapter 4: Results 25
4.1 Participants 25
4.2 Cortical Activation between Stroke and Healthy 26
4.3 Statistical Analysis of Cortical Activation 28
4.3.1 Group Differences 28
4.3.2 Task Differences 30
4.3.3 Group and Task Interaction 31
4.4 Brain Lateralization 32
4.5 Cortical Activation Correlates with Stroke Characteristics 33
Chapter 5: Discussion 35
5.1 Discussion 35
5.1.1 Cortical Activation Differences in Subacute Stroke 35
5.1.2 Cortical Activation Between Proximal and Distal Limb Tasks 37
5.1.3 Group and Task Interactions in Cortical Activation 39
5.1.4 Brain Lateralization 40
5.1.5 Correlations between Cortical Activation and Stroke Characteristics 42
5.2 Limitations 44
5.3 Future Research 45
5.4 Conclusion 45
Appendices 59
Appendix 1: Area(s) of brain lesion for each participant 59
Appendix 2: Institutional Review Board Approval Letters from National Taiwan University Hospital 60
Appendix 3: Participant Informed Consent Form 63
Appendix 4: Fugl-Meyer Assessment for Upper Extremity Form 71
Appendix 5: Recruitment Poster 74
References 75
-
dc.language.isoen-
dc.title中風後執行上肢近端與遠端功能性動作任務之大腦活化情形: 近紅外光頻譜儀研究zh_TW
dc.titleBrain Activation during Proximal and Distal Upper Limb Functional Tasks in Subacute Stroke: A Functional Near-Infrared Spectroscopy Studyen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林孟廷;陸哲駒;王瑞瑤zh_TW
dc.contributor.oralexamcommitteeMeng-Ting Lin;Jer-Junn Luh;Ray-Yau Wangen
dc.subject.keyword中風,上肢功能,近紅外光頻譜儀,大腦活化,zh_TW
dc.subject.keywordstroke,upper limb function,functional near-infrared spectroscopy,brain activation,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202400183-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-23-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf3.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved