Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91823
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華zh_TW
dc.contributor.advisorShing-Hwa Liuen
dc.contributor.author林振宇zh_TW
dc.contributor.authorChen-Yu Linen
dc.date.accessioned2024-02-22T16:53:07Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-02-01-
dc.identifier.citationAsada, N., M. Takase, J. Nakamura, A. Oguchi, M. Asada, N. Suzuki, K. Yamamura, N. Nagoshi, S. Shibata, T. N. Rao, H. J. Fehling, A. Fukatsu, N. Minegishi, T. Kita, T. Kimura, H. Okano, M. Yamamoto, and M. Yanagita. 2011. ''Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice'', J Clin Invest, 121: 3981-90.
Barreto, F. C., D. V. Barreto, S. Liabeuf, N. Meert, G. Glorieux, M. Temmar, G. Choukroun, R. Vanholder, and Z. A. Massy. 2009. ''Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients'', Clin J Am Soc Nephrol, 4: 1551-8.
Basile, D. P., J. M. Rovak, D. R. Martin, and M. R. Hammerman. 1996. ''Increased transforming growth factor-beta 1 expression in regenerating rat renal tubules following ischemic injury'', Am J Physiol, 270: F500-9.
Bataille, S., M. Serveaux, E. Carreno, N. Pedinielli, P. Darmon, and A. Robert. 2017. ''The diagnosis of sarcopenia is mainly driven by muscle mass in hemodialysis patients'', Clin Nutr, 36: 1654-60.
Becker, G. J., and T. D. Hewitson. 2013. ''Animal models of chronic kidney disease: useful but not perfect'', Nephrol Dial Transplant, 28: 2432-8.
Brightwell, C. R., A. S. Kulkarni, W. Paredes, K. Zhang, J. B. Perkins, K. J. Gatlin, M. Custodio, H. Farooq, B. Zaidi, R. Pai, R. S. Buttar, Y. Tang, M. L. Melamed, T. H. Hostetter, J. E. Pessin, M. Hawkins, C. S. Fry, and M. K. Abramowitz. 2021. ''Muscle fibrosis and maladaptation occur progressively in CKD and are rescued by dialysis'', JCI Insight, 6.
Chiang, C. K., J. Z. Loh, T. H. Yang, K. T. Huang, C. T. Wu, S. S. Guan, S. H. Liu, and K. Y. Hung. 2020. ''Prevention of acute kidney injury by low intensity pulsed ultrasound via anti-inflammation and anti-apoptosis'', Sci Rep, 10: 14317.
Chiu, H. C., C. Y. Chiu, R. S. Yang, D. C. Chan, S. H. Liu, and C. K. Chiang. 2018. ''Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin-3 down-regulation'', J Cachexia Sarcopenia Muscle, 9: 585-602.
Cho, Y. S., S. Y. Joo, E. K. Lee, Y. K. Kee, C. H. Seo, and D. H. Kim. 2021. ''Effect of Extracorporeal Shock Wave Therapy on Muscle Mass and Function in Patients Undergoing Maintenance Hemodialysis: A Randomized Controlled Pilot Study'', Ultrasound Med Biol, 47: 3202-10.
Cianciaruso, B., G. Brunori, J. D. Kopple, G. Traverso, G. Panarello, G. Enia, P. Strippoli, A. De Vecchi, M. Querques, G. Viglino, and et al. 1995. ''Cross-sectional comparison of malnutrition in continuous ambulatory peritoneal dialysis and hemodialysis patients'', Am J Kidney Dis, 26: 475-86.
Coca, S. G., S. Singanamala, and C. R. Parikh. 2012. ''Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis'', Kidney Int, 81: 442-8.
Dong, J., Y. Dong, Z. Chen, W. E. Mitch, and L. Zhang. 2017. ''The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease'', Kidney Int, 91: 119-28.
Enoki, Y., H. Watanabe, R. Arake, R. Fujimura, K. Ishiodori, T. Imafuku, K. Nishida, R. Sugimoto, S. Nagao, S. Miyamura, Y. Ishima, M. Tanaka, K. Matsushita, H. Komaba, M. Fukagawa, M. Otagiri, and T. Maruyama. 2017. ''Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction'', J Cachexia Sarcopenia Muscle, 8: 735-47.
Fan, H., H. C. Yang, L. You, Y. Y. Wang, W. J. He, and C. M. Hao. 2013. ''The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury'', Kidney Int, 83: 404-13.
Ferenbach, D. A., and J. V. Bonventre. 2015. ''Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD'', Nat Rev Nephrol, 11: 264-76.
Forbes, J. M., T. D. Hewitson, G. J. Becker, and C. L. Jones. 2000. ''Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat'', Kidney Int, 57: 2375-85.
Fu, Y., C. Tang, J. Cai, G. Chen, D. Zhang, and Z. Dong. 2018. ''Rodent models of AKI-CKD transition'', Am J Physiol Renal Physiol, 315: F1098-f106.
Gao, L., X. Zhong, J. Jin, J. Li, and X. M. Meng. 2020. ''Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression'', Signal Transduct Target Ther, 5: 9.
García-Sánchez, O., F. J. López-Hernández, and J. M. López-Novoa. 2010. ''An integrative view on the role of TGF-beta in the progressive tubular deletion associated with chronic kidney disease'', Kidney Int, 77: 950-5.
Gewin, L. 2019. ''The many talents of transforming growth factor-β in the kidney'', Curr Opin Nephrol Hypertens, 28: 203-10.
Gigliotti, J. C., L. Huang, A. Bajwa, H. Ye, E. H. Mace, J. A. Hossack, K. Kalantari, T. Inoue, D. L. Rosin, and M. D. Okusa. 2015. ''Ultrasound Modulates the Splenic Neuroimmune Axis in Attenuating AKI'', J Am Soc Nephrol, 26: 2470-81.
Gigliotti, J. C., L. Huang, H. Ye, A. Bajwa, K. Chattrabhuti, S. Lee, A. L. Klibanov, K. Kalantari, D. L. Rosin, and M. D. Okusa. 2013. ''Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway'', J Am Soc Nephrol, 24: 1451-60.
Granger, D. N., and P. R. Kvietys. 2015. ''Reperfusion injury and reactive oxygen species: The evolution of a concept'', Redox Biol, 6: 524-51.
Harwood, R., J. Bridge, L. Ressel, L. Scarfe, J. Sharkey, G. Czanner, P. A. Kalra, A. Odudu, S. Kenny, B. Wilm, and P. Murray. 2022. ''Murine models of renal ischemia reperfusion injury: An opportunity for refinement using noninvasive monitoring methods'', Physiol Rep, 10: e15211.
Heckman, J. D., J. P. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne. 1994. ''Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound'', J Bone Joint Surg Am, 76: 26-34.
Holecek, M. 2012. ''Muscle wasting in animal models of severe illness'', Int J Exp Pathol, 93: 157-71.
Hu, M. C., M. Kuro-o, and O. W. Moe. 2013. ''Renal and extrarenal actions of Klotho'', Semin Nephrol, 33: 118-29.
Jaiswal, N., M. Gavin, E. Loro, J. Sostre-Colón, P. A. Roberson, K. Uehara, N. Rivera-Fuentes, M. Neinast, Z. Arany, S. R. Kimball, T. S. Khurana, and P. M. Titchenell. 2022. ''AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology'', J Cachexia Sarcopenia Muscle, 13: 495-514.
Jia, T., H. Olauson, K. Lindberg, R. Amin, K. Edvardsson, B. Lindholm, G. Andersson, A. Wernerson, Y. Sabbagh, S. Schiavi, and T. E. Larsson. 2013. ''A novel model of adenine-induced tubulointerstitial nephropathy in mice'', BMC Nephrol, 14: 116.
Kinashi, H., Y. Ito, T. Sun, T. Katsuno, and Y. Takei. 2018. ''Roles of the TGF-β⁻VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis'', Int J Mol Sci, 19.
Kito, Y., C. Saigo, and T. Takeuchi. 2017. ''Novel Transgenic Mouse Model of Polycystic Kidney Disease'', Am J Pathol, 187: 1916-22.
Kobayashi, M., H. Sugiyama, D. H. Wang, N. Toda, Y. Maeshima, Y. Yamasaki, N. Masuoka, M. Yamada, S. Kira, and H. Makino. 2005. ''Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice'', Kidney Int, 68: 1018-31.
Koppe, L., D. Fouque, and K. Kalantar-Zadeh. 2019. ''Kidney cachexia or protein-energy wasting in chronic kidney disease: facts and numbers'', J Cachexia Sarcopenia Muscle, 10: 479-84.
Kovesdy, C. P. 2022. ''Epidemiology of chronic kidney disease: an update 2022'', Kidney Int Suppl (2011), 12: 7-11.
Kovesdy, C. P., and L. D. Quarles. 2013. ''Fibroblast growth factor-23: what we know, what we don''t know, and what we need to know'', Nephrol Dial Transplant, 28: 2228-36.
Mak, R. H., A. T. Ikizler, C. P. Kovesdy, D. S. Raj, P. Stenvinkel, and K. Kalantar-Zadeh. 2011. ''Wasting in chronic kidney disease'', J Cachexia Sarcopenia Muscle, 2: 9-25.
Malek, M., and M. Nematbakhsh. 2015. ''Renal ischemia/reperfusion injury; from pathophysiology to treatment'', J Renal Inj Prev, 4: 20-7.
McHugh, D., and J. Gil. 2018. ''Senescence and aging: Causes, consequences, and therapeutic avenues'', J Cell Biol, 217: 65-77.
Molina, P., J. J. Carrero, J. Bover, P. Chauveau, S. Mazzaferro, and P. U. Torres. 2017. ''Vitamin D, a modulator of musculoskeletal health in chronic kidney disease'', J Cachexia Sarcopenia Muscle, 8: 686-701.
Muratsubaki, S., A. Kuno, M. Tanno, T. Miki, T. Yano, H. Sugawara, S. Shibata, K. Abe, S. Ishikawa, K. Ohno, Y. Kimura, Y. Tatekoshi, K. Nakata, W. Ohwada, M. Mizuno, and T. Miura. 2017. ''Suppressed autophagic response underlies augmentation of renal ischemia/reperfusion injury by type 2 diabetes'', Sci Rep, 7: 5311.
Noce, A., G. Marrone, E. Ottaviani, C. Guerriero, F. Di Daniele, A. Pietroboni Zaitseva, and N. Di Daniele. 2021. ''Uremic Sarcopenia and Its Possible Nutritional Approach'', Nutrients, 13.
Ogata, T., K. Ito, T. Shindo, K. Hatanaka, K. Eguchi, R. Kurosawa, Y. Kagaya, Y. Monma, S. Ichijo, H. Taki, H. Kanai, and H. Shimokawa. 2017. ''Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice'', PLoS One, 12: e0185555.
Palanisamy, P., M. Alam, S. Li, S. K. H. Chow, and Y. P. Zheng. 2022. ''Low-Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing: A Review'', J Ultrasound Med, 41: 547-63.
Ponnusamy, M., X. Zhou, Y. Yan, J. Tang, E. Tolbert, T. C. Zhao, R. Gong, and S. Zhuang. 2014. ''Blocking sirtuin 1 and 2 inhibits renal interstitial fibroblast activation and attenuates renal interstitial fibrosis in obstructive nephropathy'', J Pharmacol Exp Ther, 350: 243-56.
Qian, Y., X. Guo, L. Che, X. Guan, B. Wu, R. Lu, M. Zhu, H. Pang, Y. Yan, Z. Ni, and L. Gu. 2018. ''Klotho Reduces Necroptosis by Targeting Oxidative Stress Involved in Renal Ischemic-Reperfusion Injury'', Cell Physiol Biochem, 45: 2268-82.
Rahman, A., D. Yamazaki, A. Sufiun, K. Kitada, H. Hitomi, D. Nakano, and A. Nishiyama. 2018. ''A novel approach to adenine-induced chronic kidney disease associated anemia in rodents'', PLoS One, 13: e0192531.
Ruiz-Ortega, M., S. Rayego-Mateos, S. Lamas, A. Ortiz, and R. R. Rodrigues-Diez. 2020. ''Targeting the progression of chronic kidney disease'', Nat Rev Nephrol, 16: 269-88.
Sabatino, A., L. Cuppari, P. Stenvinkel, B. Lindholm, and C. M. Avesani. 2021. ''Sarcopenia in chronic kidney disease: what have we learned so far?'', J Nephrol, 34: 1347-72.
Sasako, T., T. Umehara, K. Soeda, K. Kaneko, M. Suzuki, N. Kobayashi, Y. Okazaki, M. Tamura-Nakano, T. Chiba, D. Accili, C. R. Kahn, T. Noda, H. Asahara, T. Yamauchi, T. Kadowaki, and K. Ueki. 2022. ''Deletion of skeletal muscle Akt1/2 causes osteosarcopenia and reduces lifespan in mice'', Nat Commun, 13: 5655.
Schardong, J., T. Dipp, C. B. Bozzeto, M. G. da Silva, G. L. Baldissera, R. C. Ribeiro, B. P. Valdemarca, A. S. do Pinho, G. Sbruzzi, and R. D. M. Plentz. 2017. ''Effects of Intradialytic Neuromuscular Electrical Stimulation on Strength and Muscle Architecture in Patients With Chronic Kidney Failure: Randomized Clinical Trial'', Artif Organs, 41: 1049-58.
Schardong, J., M. Falster, I. R. Sisto, A. P. O. Barbosa, T. C. Normann, K. S. de Souza, G. Jaroceski, C. B. Bozzetto, B. M. Baroni, and R. D. M. Plentz. 2021. ''Photobiomodulation therapy increases functional capacity of patients with chronic kidney failure: randomized controlled trial'', Lasers Med Sci, 36: 119-29.
Shobeiri, N., M. A. Adams, and R. M. Holden. 2010. ''Vascular calcification in animal models of CKD: A review'', Am J Nephrol, 31: 471-81.
Shu, S., J. Zhu, Z. Liu, C. Tang, J. Cai, and Z. Dong. 2018. ''Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease'', EBioMedicine, 37: 269-80.
Tang, L., N. Li, W. Jian, Y. Kang, B. Yin, S. Sun, J. Guo, L. Sun, and D. Ta. 2017. ''Low-intensity pulsed ultrasound prevents muscle atrophy induced by type 1 diabetes in rats'', Skelet Muscle, 7: 29.
Webster, A. C., E. V. Nagler, R. L. Morton, and P. Masson. 2017. ''Chronic Kidney Disease'', Lancet, 389: 1238-52.
Wu, P. P., Y. P. Hsieh, C. T. Kor, and P. F. Chiu. 2019. ''Association between Albumin-Globulin Ratio and Mortality in Patients with Chronic Kidney Disease'', J Clin Med, 8.
Xin, Z., G. Lin, H. Lei, T. F. Lue, and Y. Guo. 2016. ''Clinical applications of low-intensity pulsed ultrasound and its potential role in urology'', Transl Androl Urol, 5: 255-66.
Yang, C., C. Liu, Q. Zhou, Y. C. Xie, X. M. Qiu, and X. Feng. 2015. ''Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure'', Indian J Pharm Sci, 77: 103-7.
Yang, K., C. Du, X. Wang, F. Li, Y. Xu, S. Wang, S. Chen, F. Chen, M. Shen, M. Chen, M. Hu, T. He, Y. Su, J. Wang, and J. Zhao. 2017. ''Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice'', Blood, 129: 2667-79.
Yokozawa, T., H. Oura, and F. Koizumi. 1985. ''2,8-Dihydroxyadenine urolithiasis induced by dietary adenine in rats'', Nihon Jinzo Gakkai Shi, 27: 371-8.
Yokozawa, T., P. D. Zheng, and H. Oura. 1984. ''Biochemical features induced by adenine feeding in rats. Polyuria, electrolyte disorders, and 2,8-dihydroxyadenine deposits'', J Nutr Sci Vitaminol (Tokyo), 30: 245-54.
Zhang, Y., Y. Liu, X. Bi, C. Hu, F. Ding, and W. Ding. 2019. ''Therapeutic Approaches in Mitochondrial Dysfunction, Inflammation, and Autophagy in Uremic Cachexia: Role of Aerobic Exercise'', Mediators Inflamm, 2019: 2789014.
國衛院(2023). 2022台灣腎病年報. https://lib.nhri.edu.tw/NewWeb/nhri/ebook/39000000476874.pdf
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91823-
dc.description.abstract低強度脈衝超音波(Low-intensity pulsed ultrasound, LIPUS)是一種治療超音波,可以幫助改善骨折修復及使組織癒合。在本研究中,我們分別使用單側腎缺血/再灌流損傷(ischemia/reperfusion injury, IRI)、對側腎切除術和腺嘌呤(adenine)給藥等兩種小鼠模式來誘導慢性腎病變(chronic kidney disease, CKD)。接著使用LIPUS以3MHz、100mW/cm2、20分鐘/天的條件自第1天治療CKD小鼠的左腎,並在IRI後14天或腺嘌呤每日給藥(50mg/kg)後28天對小鼠進行安樂死。由實驗結果可知,LIPUS治療顯著降低了兩種CKD模式小鼠的血清BUN/肌酸酐水平,也減緩體重、握力、肌肉重量、白蛋白/球蛋白比值、肌纖維橫截面積的下降。而且經由CKD小鼠的免疫組織化學(immunohistochemistry)與西方墨點法(Western blot)分析結果可知肌肉磷酸化Akt蛋白表達下降、肌肉萎縮基因(atrogenes)相關蛋白(Atrogin-1和MuRF1)表達增加、纖維母細胞生長因子23 (FGF23)、腎臟病理變化和腎纖維化的蛋白表達增加。此外LIPUS治療顯著減輕了CKD小鼠腎臟內的上皮間質轉化(epithelial-mesenchymal transition, EMT)參數、衰老相關信號誘導以及α-Klotho和內源性抗氧化酶蛋白表達的抑制。以上結果證實LIPUS能透過抑制EMT和老化相關訊號來減緩CKD,並改善肌肉力量減弱、肌肉質量損失、肌肉萎縮相關蛋白表達和Akt失活。zh_TW
dc.description.abstractLow-intensity pulsed ultrasound (LIPUS) is a type of therapeutic ultrasound that can help improve fracture repair and tissue healing. In this study, we used two mouse models: unilateral renal ischemia/reperfusion injury (IRI) with contralateral nephrectomy, and adenine administration to induce chronic kidney disease (CKD). Then LIPUS was used to treat the left kidney of CKD mice from day 1 at 3MHz, 100mW/cm2, 20 minutes/day, and the mice were euthanized 14 days after IRI or 28 days after daily administration of adenine (50mg/kg). It can be seen from the experimental results that LIPUS treatment significantly reduced the serum BUN/creatinine levels of two CKD model mice, and also slowed the decrease in body weight, grip strength, muscle weight, albumin/globulin ratio, and muscle fiber cross-sectional area. Moreover, the results of immunohistochemistry and Western blot analysis of CKD mice showed that the expression of muscle phosphorylated Akt protein decreased, the expression of muscle atrophy gene (atrogenes)-related proteins (Atrogin-1 and MuRF1) increased, and the expression of muscle fiber increased protein expression of blast growth factor 23 (FGF23), renal pathological changes, and renal fibrosis. In addition, LIPUS treatment significantly alleviated epithelial-mesenchymal transition (EMT) parameters, induction of aging-related signals, and inhibition of α-Klotho and endogenous antioxidant enzyme protein expression in the kidneys of CKD mice. The above results show that LIPUS can slow down CKD by inhibiting EMT and aging-related signals, and improve muscle strength weakening, muscle mass loss, muscle atrophy-related protein expression and Akt inactivation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:53:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:53:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
縮寫清單 XI
第壹章 緒論 1
第一節 慢性腎臟病(CKD)目前的發展與影響 1
第二節 慢性腎臟病造成的肌肉減少症(Sarcopenia) 5
第三節 低強度脈衝超音波(LIPUS)治療 8
第四節 缺血/再灌流損傷(IRI) 8
第五節 餵食腺嘌呤(Adenine)誘導CKD 9
第六節 研究目標 11
第貳章 材料與方法 12
第一節 動物和實驗方案 12
第二節 IRI誘導的CKD模型 12
第三節 腺嘌呤誘導的CKD模型 13
第四節 LIPUS治療 13
第五節 血清生化分析 14
第六節 血清硫酸吲哚酚(IS)的檢測 14
第七節 握力測試 14
第八節 組織學分析 15
第九節 免疫印跡(Immunoblotting) 15
第十節 即時定量PCR (qPCR) 16
第十一節 統計分析 17
第參章 結果與討論 18
第一節 LIPUS治療能減輕IRI或腺嘌呤誘導的CKD小鼠模型的體重、血清生化值和腎損傷的變化 18
(一) 結果 18
1. LIPUS減輕IRI誘導的CKD小鼠模型的體重、血清生化值和腎損傷的變化 18
2. LIPUS減輕腺嘌呤誘導的CKD小鼠模型的體重、血清生化值和腎損傷的變化 19
(二) 討論 20
第二節 LIPUS治療能減緩IRI或腺嘌呤誘導的CKD小鼠模型的肌肉流失、肌肉膠原沉積和肌肉萎縮的變化 25
(一) 結果 25
1. LIPUS對兩種CKD小鼠模型的體重、腎功能標記、握力和肌肉重量的影響 25
2. LIPUS對兩種CKD小鼠模型中肌纖維橫截面積(CSA)和分佈以及肌肉膠原沉積的影響 25
3. LIPUS對兩種CKD小鼠模型中肌肉消耗/萎縮相關訊號分子Akt和atrogen的影響 26
(二) 討論 26
第肆章 結論與未來展望 29
結果圖 30
參考文獻 64
附錄 75
-
dc.language.isozh_TW-
dc.title探討治療性超音波治療慢性腎病及肌肉萎縮透過調節腎上皮間質轉化和老化相關蛋白的機制zh_TW
dc.titleExplore the mechanism of therapeutic ultrasound to treatment chronic kidney disease and muscle atrophy by regulating related proteins from renal epithelial to mesenchymal transition and senescence.en
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee許美玲;姜至剛;藍國徵;吳鎮天zh_TW
dc.contributor.oralexamcommitteeMeei-Ling Sheu;Chih-Kang Chiang;Kuo-Cheng Lan;Cheng-Tien Wuen
dc.subject.keyword低強度脈衝超音波,缺血/再灌流損傷,腺嘌呤,慢性腎病變,腎纖維化,上皮間質轉化,老化,肌肉減少症,zh_TW
dc.subject.keywordLow-intensity pulsed ultrasound,Ischemia/reperfusion injury,Adenine,Chronic kidney disease,Renal fibrosis,Epithelial-mesenchymal transition,Senescence,Sarcopenia,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202400377-
dc.rights.note未授權-
dc.date.accepted2024-02-01-
dc.contributor.author-college醫學院-
dc.contributor.author-dept毒理學研究所-
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved