Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許書睿zh_TW
dc.contributor.advisorJacob Shujui Hsuen
dc.contributor.author莊惠文zh_TW
dc.contributor.authorHui-Wen Chuangen
dc.date.accessioned2024-02-22T16:52:51Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-01-25-
dc.identifier.citationRichard Apps, Lucy Gardner, and Ashley Moffett. A critical look at hla-g. Trends in immunology, 29(7):313–321, 2008.
Khadijeh Dizaji Asl, Kobra Velaei, Ali Rafat, Hamid Tayefi Nasrabadi, Ali Akbar Movassaghpour, Majid Mahdavi, and Hojjatollah Nozad Charoudeh. The role of kir positive nk cells in diseases and its importance in clinical intervention. International Immunopharmacology, 92:107361, 2021.
Dominic J Barker, Giuseppe Maccari, Xenia Georgiou, Michael A Cooper, Paul Flicek, James Robinson, and Steven GE Marsh. The ipd-imgt/hla database. Nucleic Acids Research, 51(D1):D1053–D1060, 2023.
Sung Yoon Choo. The hla system: genetics, immunology, clinical testing, and clinical implications. Yonsei medical journal, 48(1):11–23, 2007.
Ya-Ching Chou, Chi-Huang Chen, Ming-Jer Chen, Ching-Wen Chang, Pi-Hua Chen, Mu-Hsien Yu, Yi-Jen Chen, Eing-Mei Tsai, Peng-Sheng Yang, Shyr-Yeu Lin, et al. Killer cell immunoglobulin-like receptors (kir) and human leukocyte antigen-c (hla-c) allorecognition patterns in women with endometriosis. Scientific reports, 10(1):4897,2020.
Chien-Te Fan, Jui-Chu Lin, and Chung-His Lee. Taiwan biobank: a project aiming to aid taiwan's transition into a biomedical island. 2008.
Sherif S Farag, Todd A Fehniger, Loredana Ruggeri, Andrea Velardi, and Michael A Caligiuri. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood, The Journal of the American Society of Hematology, 100(6):1935–1947, 2002.
Jinping Gao, Caihong Zhu, Zhengwei Zhu, Lili Tang, Lu Liu, Leilei Wen, and Liangdan Sun. The human leukocyte antigen and genetic susceptibility in human diseases. journal of Bio-X Research, 2(03):112–120, 2019.
Faviel F Gonzalez-Galarza, Antony McCabe, Eduardo J Melo dos Santos, Louise Takeshita, Gurpreet Ghattaoraya, Andrew R Jones, and Derek Middleton. Allele frequency net database. HLA typing: methods and protocols, pages 49–62, 2018.
Faviel F Gonzalez-Galarza, Antony McCabe, Eduardo J Melo dos Santos, James Jones, Louise Takeshita, Nestor D Ortega-Rivera, Glenda M Del Cid-Pavon, Kerry Ramsbottom, Gurpreet Ghattaoraya, Ana Alfirevic, et al. Allele frequency net database (and) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic acids research, 48(D1):D783–D788, 2020.
Zorana Grubic. Human leucocyte antigens in blood transfusion. ISBT Science Series, 15(1):164–173, 2020.
Jeffrey R Gruen and Sherman M Weissman. Human mhc class iii and iv genes and disease associations. Front Biosci, 6:D960–972, 2001.
Wu Hejing, Liu Fang, Zhao Long, Shao Yabin, and Cui Ran. Application research of crawler and data analysis based on python. International Journal of Advanced Network, Monitoring and Controls, 5(2):64–70, 2020.
Katharine C Hsu, Shohei Chida, Daniel E Geraghty, and Bo Dupont. The killer cell immunoglobulin-like receptor (kir) genomic region: gene-order, haplotypes and allelic polymorphism. Immunological reviews, 190(1):40–52, 2002.
Tsung-Kai Hung, Wan-Chi Liu, Sheng-Kai Lai, Hui-Wen Chuang, Yi-Che Lee, Hong-Ye Lin, Chia-Lang Hsu, Chien-Yu Chen, Ya-Chien Yang, Jacob Shujui Hsu, et al. Genetic diversity and structural complexity of the killer-cell immunoglobulin-like receptor gene complex: A comprehensive analysis using human pangenome assemblies. bioRxiv, pages 2023–11, 2023.
Md Abu Kausar, VS Dhaka, and Sanjeev Kumar Singh. Web crawler: a review. International Journal of Computer Applications, 63(2):31–36, 2013.
Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L Salzberg. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype. Nature biotechnology, 37(8):907–915, 2019.
Smita Kulkarni, Maureen P Martin, and Mary Carrington. The yin and yang of hla and kir in human disease. In Seminars in immunology, volume 20, pages 343–352. Elsevier, 2008.
Georgy Lebedev, Eduard Fartushnyi, Igor Fartushnyi, Igor Shaderkin, Herman Klimenko, Pavel Kozhin, Konstantin Koshechkin, Ilya Ryabkov, Vadim Tarasov, Evgeniy Morozov, et al. Technology of supporting medical decision-making using evidence-based medicine and artificial intelligence. Procedia Computer Science, 176:1703–1712, 2020.
Patrizia Leone, Valli De Re, Angelo Vacca, Franco Dammacco, and Vito Racanelli. Cancer treatment and the kir–hla system: an overview. Clinical and experimental medicine, 17:419–429, 2017.
Katarina Ludajic, Yesilda Balavarca, Heike Bickeboeller, Agathe Rosenmayr, I Fae, Gottfried FFischer, Michal Kouba, David Pohlreich, Peter Kalhs, and Hildegard T Greinix. Kir genes and kir ligands affect occurrence of acute gvhd after unrelated, 12/12 hla matched, hematopoietic stem cell transplantation. Bone marrow transplantation, 44(2):97–103, 2009.
Batool Mutar Mahdi. A glow of hla typing in organ transplantation. Clinical and translational medicine, 2:1–5, 2013.
Wesley M Marin, Ravi Dandekar, Danillo G Augusto, Tasneem Yusufali, Bianca Heyn,Jan Hofmann, Vinzenz Lange, Jürgen Sauter, Paul J Norman, and Jill A Hollenbach. High-throughput interpretation of killer-cell immunoglobulin-like receptor short-read sequencing data with ping. PLoS computational biology, 17(8):e1008904, 2021.
Steven GE Marsh, Peter Parham, Bo Dupont, Daniel E Geraghty, John Trowsdale, Derek Middleton, Carlos Vilches, Mary Carrington, Campbell Witt, Lisbeth A Guethlein, et al. Killer-cell immunoglobulin-like receptor (kir) nomenclature report, 2002. Immunogenetics, 55:220–226, 2003.
Steven GE Marsh, ED Albert, WF Bodmer, RE Bontrop, B Dupont, HA Erlich, M Fernández-Viña, DE Geraghty, R Holdsworth, CK Hurley, et al. Nomenclature for factors of the hla system, 2010. Tissue antigens, 75(4):291, 2010.
Annalise M Martin, Elizabeth M Freitas, Campbell S Witt, and Frank T Christiansen. The genomic organization and evolution of the natural killer immunoglobulin-like receptor(kir) gene cluster. Immunogenetics, 51:268–280, 2000.
YM Mosaad. Clinical role of human leukocyte antigen in health and disease. Scandinavian journal of immunology, 82(4):283–306, 2015.
Naoki Nariai, Kaname Kojima, Sakae Saito, Takahiro Mimori, Yukuto Sato, Yosuke Kawai, Yumi Yamaguchi-Kabata, Jun Yasuda, and Masao Nagasaki. Hla-vbseq: accurate hla typing at full resolution from whole-genome sequencing data. In BMC genomics, volume 16, pages 1–6. Springer, 2015.
Inger S Nijhof, Jeroen J Lammerts van Bueren, Berris van Kessel, Pascale Andre, Yannis Morel, Henk M Lokhorst, Niels WCJ van de Donk, Paul WHI Parren, and Tuna Mutis. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-kir antibody iph2102 and lenalidomide. Haematologica, 100(2):263, 2015.
Paul J Norman, Laurent Abi-Rached, Ketevan Gendzekhadze, Daniel Korbel, Michael Gleimer, Don Rowley, Dan Bruno, Christine VF Carrington, Dasdayanee Chandanayingyong, Yih-Hsin Chang, et al. Unusual selection on the kir3dl1/s1 natural killer cell receptor in africans. Nature genetics, 39(9):1092–1099, 2007.
Paul J Norman, Jill A Hollenbach, Neda Nemat-Gorgani, Wesley M Marin, Steven J Norberg, Elham Ashouri, Jyothi Jayaraman, Emily E Wroblewski, John Trowsdale, Raja Rajalingam, et al. Defining kir and hla class i genotypes at highest resolution via highthroughput sequencing. The American Journal of Human Genetics, 99(2):375–391, 2016.
OpenAI. ChatGPT (Mar 14 version). Online, 2023. URL https://chat.openai.com/chat. Large language model.
Raja Rajalingam. The impact of hla class i-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection. Frontiers in immunology, 7:585, 2016.
James Robinson, Jason A Halliwell, Hamish McWilliam, Rodrigo Lopez, and Steven GEMarsh. Ipd—the immuno polymorphism database. Nucleic acids research, 41(D1):D1234–D1240, 2012.
David Roe, Cynthia Vierra-Green, Chul-Woo Pyo, Kevin Eng, Richard Hall, Rui Kuang, Stephen Spellman, Swati Ranade, DE Geraghty, and Martin Maiers. Revealing complete complex kir haplotypes phased by long-read sequencing technology. Genes & Immunity, 18(3):127–134, 2017.
Saori Sakaue, Kazuyoshi Hosomichi, Jun Hirata, Hirofumi Nakaoka, Keiko Yamazaki, Makoto Yawata, Nobuyo Yawata, Tatsuhiko Naito, Junji Umeno, Takaaki Kawaguchi,et al. Decoding the diversity of killer immunoglobulin-like receptors by deep sequencing and a high-resolution imputation method. Cell Genomics, 2(3), 2022.
Bertil Schmidt and Andreas Hildebrandt. Next-generation sequencing: big data meets high performance computing. Drug discovery today, 22(4):712–717, 2017.
Richard M Single, Maureen P Martin, Xiaojiang Gao, Diogo Meyer, Meredith Yeager, Judith R Kidd, Kenneth K Kidd, and Mary Carrington. Global diversity and evidence for coevolution of kir and hla. Nature genetics, 39(9):1114–1119, 2007.
Li Song, Gali Bai, X Shirley Liu, Bo Li, and Heng Li. T1k: efficient and accurate kir and hla genotyping with next-generation sequencing data. bioRxiv, pages 2022–10, 2022.
JL Touraine, H Betuel, C Pouteil-Noble, and C Royo. Hla class ii antigens: structure, function, and expression in immunodeficiencies, autoimmune diseases, and allograft rejection. Advances in nephrology from the Necker Hospital, 18:325–334, 1989.
John Trowsdale. Genomic structure and function in the mhc. Trends in Genetics, 9(4):117–122, 1993.
Carlos Vilches and Peter Parham. Kir: diverse, rapidly evolving receptors of innate and adaptive immunity. Annual review of immunology, 20(1):217–251, 2002.
Chin-Man Wang, Sheng-Hung Wang, Yeong-Jian Jan Wu, Jing-Chi Lin, Jianming Wu, and Ji-Yih Chen. Human leukocyte antigen c* 12: 02: 02 and killer immunoglobulin-like receptor 2dl5 are distinctly associated with ankylosing spondylitis in the taiwanese. International journal of molecular sciences, 18(8):1775, 2017.
G-Q Wu, Y-M Zhao, X-Y Lai, K-L Yang, F-M Zhu, W Zhang, W Wang, Y Luo, Y-M Tan, Y-J Wang, et al. Distribution of killer-cell immunoglobulin-like receptor genes in eastern mainland chinese han and taiwanese han populations. Tissue antigens, 74(6):499–507, 2009.
Xiuhua Yang, Yahui Yang, Yiru Yuan, Lin Liu, Tao Meng, et al. The roles of uterine natural killer (nk) cells and kir/hla-c combination in the development of preeclampsia:a systematic review. BioMed research international, 2020, 2020.
J-H Yen, C-H Lin, W-C Tsai, C-C Wu, T-T Ou, C-J Hu, and H-W Liu. Killer cell immunoglobulin-like receptor gene’s repertoire in rheumatoid arthritis. Scandinavian journal of rheumatology, 35(2):124–127, 2006.
Rolf M Zinkernagel and Peter C Doherty. Restriction of in vitro t cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature, 248(5450):701–702, 1974.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91822-
dc.description.abstract人類基因組中的殺手細胞類免疫球蛋白受體(KIR)基因很重要,但研究起來因為基因的複雜性所以具有挑戰性。 這些基因透過與人類白血球抗原 (HLA) 相互作用來影響自然殺手 (NK) 細胞的活性。 這種相互作用調節免疫反應並影響各種健康狀況,例如自體免疫疾病和器官移植結果。 然而,KIR基因的遺傳結構複雜,且受遺傳因素影響個體間拷貝數(CN)差異較大,使得KIR分型變得複雜。 台灣族群特有的個體層級 KIR-HLA 組合資料缺乏歷史資料,影響了我們的研究方向。

我們的研究利用了各種工具,即 HLA-VBseq、HISAT-genotype、T1K、DRAGEN、Qztype、graphKIR 和 capKIR,來解釋來自各種來源的KIR 和 HLA 基因資料,例如、合成資料、 panel、 全基因體定序(WGS) 、人類泛基因組參考聯盟 (HPRC)資料庫、台灣人體生物資料庫 (TWB),以及結合爬蟲收集的資料進行分析。 由於每種工具的性能因資料集而異,因此對其功能進行了仔細評估。在 HLA 方面,T1K 和 HISAT-genotype 基因分型因其卓越的準確性和全面的分型功能而成為 HLA 分型性能較好的工具。 在 KIR 方面,graphKIR 最適合 WGS 資料類型,capKIR 適合 panel 資料類型。

使用 graphKIR 工具,我們詳細了解了台灣族群中 KIR 基因變異和不同單倍型的分佈。 對 TWB 的 1,492 個樣本的分析揭示了固有的遺傳異質性,其特徵是 A 單倍型的頻率異常高,其中 AA 單倍型是最常見的(49.7%),BB(4.62%),BX(45.7%)。

隨後,我們利用等位基因頻率網路資料庫(AFND)對台灣幾個亞人群的 KIR 基因頻率進行了全面評估。 我們觀察到特定基因的差異,是有關於人口差異和研究方法差異引起的變異的問題,展示了樣本人群內 KIR 基因的複雜動態。例如,我們看 AFND 數據,會發現一些顯著的頻率差異。以 K96 資料庫中的 KIR2DL1 為例。這個基因在台灣 KIR(K96)亞族群中只出現在約 65.6% 的情況下,這一比例顯著低於其他資料庫。這種差異可能源於每個研究中樣本收案或 PCR-SSP primer 設計的差異。這些因素突顯了基因頻率差異如何為我們提供有關 KIR 基因動態性質的重要性。

為了加深我們對 KIR-HLA 交互作用對多種疾病易感性的潛在影響的了解,我們對 TWB 的參與者資料進行了一項關聯性研究。 我們的研究揭示了 KIR-HLA(T1K) 組合與多種表型的關聯,並透過邏輯迴歸分析進一步驗證。 儘管存在年齡和性別等潛在限制因素,但我們的觀察有助於了解 KIR 基因和 KIR-HLA 交互作用對台灣免疫相關疾病易感性的影響。
zh_TW
dc.description.abstractThe human genome''s Killer-cell Immunoglobulin-like Receptor (KIR) genes are significant yet challenging to study due to their gene complexity. These genes modulate the activity of natural killer (NK) cells through interactions with Human Leukocyte Antigens (HLA), impacting various health conditions like autoimmune diseases and organ transplantation outcomes. KIR gene complexity arises from their varied copy number (CN) amongst individuals due to genetic factors, complicating KIR typing. Due to a lack of KIR-HLA-related data for the Taiwanese population, we see an opportunity to focus our research in this direction.

Our research utilized various tools, namely HLA-VBseq, HISAT-genotype, T1K, DRAGEN, Qztype, graphKIR, and capKIR, to interpret KIR and HLA gene data from diverse sources. These sources included synthetic data, panel, whole-genome sequencing (WGS), the Human Pangenome Reference Consortium (HPRC), Taiwan Biobank (TWB) data sets, and data collected through web crawling for analysis. Since every tool''s performance shifts according to the data set employed, we meticulously evaluated their capabilities. T1K and HISAT-genotyping emerged as high-performing tools for HLA due to their superior precision and comprehensive genotyping features. Regarding KIR, graphKIR is most suited for WGS data types, while capKIR is befitting panel data types.

Using graphKIR, we have gained a clear and detailed picture of the variation in KIR genes and the distribution of different haplotypes within the Taiwanese population. Our analysis of 1,492 samples from TWB revealed a significant diversity in the genetic makeup. Specifically, the AA haplotype was most common, seen in 49.7% of the population, followed by BB and BX haplotypes at 4.6% and 45.7%, respectively.


Subsequently, we conducted an exhaustive assessment of KIR gene frequencies within several Taiwanese subpopulations using the Allele Frequency Net Database (AFND). We observed the differential occurrence of specific genes that raised questions about variants due to population differences and methodological disparities, illustrating complex dynamics of KIR genes within sampled populations. For instance, if we look at the AFND data, we find some notable frequency discrepancies. Take the KIR gene 2DL1 in the K96 database as an example. This gene shows up in only about 65.6% of the Taiwanese KIR(K96) subpopulation, a percentage significantly lower than in other databases. This discrepancy could stem from differences in the enrollment of samples or variations in the design of PCR-SSP primers used in each study. These factors accentuate how gene frequency divergence can provide important insights into the dynamic nature of KIR genes.


To deepen our understanding of the potential influence of KIR-HLA interactions on susceptibility to multiple diseases, we conducted an association study on participant data from TWB. Our research uncovered associations of KIR-HLA(T1K) combinations with numerous phenotypes, further confirmed by logistic regression analysis. Despite prevailing potential limiting factors like age and gender, our observations contribute significantly to comprehending the influence of KIR genes and KIR-HLA(T1K) interactions on susceptibility to immune-related diseases in Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:52:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:52:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Denotation xv
Chapter 1 Introduction 1
1.1 KIR 1
1.1.1 Nomenclature 1
1.1.2 Molecular structure and functions 3
1.1.3 Haplotypes 5
1.2 HLA 7
1.2.1 Nomenclature 7
1.2.2Molecular structure and functions 9
1.2.3 Clinical role of HLA in health and disease 10
1.3 The combination between KIR and HLA 11
Chapter 2 Research Aims and Design 15
Chapter 3 Materials and Methods 17
3.1Available datasets 17
3.2Databases 17
3.2.1 AFND 17
3.2.2 IPD-HLA and IPD-KIR 18
3.2.3 TWB 20
3.3KIR Software 21
3.3.1 PING2 21
3.3.2 capKIR 22
3.3.3 graphKIR 23
3.4HLA Software 24
3.4.1 HISAT-genotype 24
3.4.2 VBSeq 25
3.4.3 T1K 27
3.4.4 DRAGEN 28
3.5 Web Crawler 29
3.6 Linux Server Hardware Configuration 30
Chapter 4 Results 33
4.1 Benchmarking HLA genotype by HPRC short read WGS dataset 33
4.2 Designing WGS-based KIR genotyping protocal 40
4.3 KIR copy number typing in TWB 42
4.4 Taiwanese KIR gene frequency information in Allele Frequency Net Database (AFND) 51
4.5 Analyzing KIR-HLA pair frequencies 57
4.6 Studying the association of KIR-HLA(T1K) pairs with multiple phenotypes using Association Studies 61
Chapter 5 Discussion 67
5.1 Discussion 67
5.1.1 Challenges with AFND Web Crawler Data Collection 67
5.1.2 Limitations and Strategies in Genotyping Tools 67
5.1.3 Influence of Age and Gender on Genotype-Phenotype Associations
in Taiwanese Population 68
Considerations and Challenges in Phenotypic Analysis and Genomic Interpretation 69
Chapter 6 Conclusion 71
References 75
-
dc.language.isoen-
dc.title臺灣族群個人之人類白血球抗原與殺手細胞類免疫球蛋白受體基因體組成分析zh_TW
dc.titleAnalysis of Personal Human Leukocyte Antigen (HLA) and Killer-cell Immunoglobulin-like Receptor (KIR) Genomic Profiles in the Taiwanese Populationen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳沛隆;楊雅倩;陳倩瑜;許家郎zh_TW
dc.contributor.oralexamcommitteePei-Lung Chen;Ya-Chine Yang;Chien-Yu Chen;Chia-Lang Hsuen
dc.subject.keyword殺手細胞類免疫球蛋白受體,KIR 基因型鑑定,全基因體定序,生物資訊,KIR-HLA 組合,邏輯氏回歸,zh_TW
dc.subject.keywordkiller-cell immunoglobulin-like receptors,KIR genotype typing,whole genome sequencing,bioinformatics,KIR-HLA combinations,logistic regression,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202400244-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-29-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf9.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved