請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91813
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳敏慧 | zh_TW |
dc.contributor.advisor | Min-Huey Chen | en |
dc.contributor.author | 裴善立 | zh_TW |
dc.contributor.author | Shan-Li Pei | en |
dc.date.accessioned | 2024-02-22T16:50:32Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-23 | - |
dc.identifier.citation | 1. Brinkley B. Microtubule organizing centers. Annu Rev Cell Biol 1985;1:145-72.
2. Rodrigues-Martins A, Riparbelli M, Callaini G, Glover DM, Bettencourt-Dias M. From centriole biogenesis to cellular function: centrioles are essential for cell division at critical developmental stages. Cell Cycle 2008;7:11-6. 3. Avidor-Reiss T, Carr A, Fishman EL. The sperm centrioles. Mol Cell Endocrinol 2020;518:110987. 4. Bornens M. The centrosome in cells and organisms. Science 2012;335:422-6. 5. Dirksen ER. Centriole and basal body formation during ciliogenesis revisited. Biol Cell 1991;72:31-8. 6. LeGuennec M, Klena N, Aeschlimann G, Hamel V, Guichard P. Overview of the centriole architecture. Curr Opin Struct Biol 2021;66:58-65. 7. Mironov AA, Dimov ID, Beznoussenko GV. Role of intracellular transport in the centriole-dependent formation of golgi ribbon. Results Probl Cell Differ 2019;67:49-79. 8. Elric J, Etienne-Manneville S. Centrosome positioning in polarized cells: common themes and variations. Exp Cell Res 2014;328:240-8. 9. De Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG. Centrosome localization determines neuronal polarity. Nature 2005;436:704-8. 10. Rios RM, Bornens M. The Golgi apparatus at the cell centre. Curr Opin Cell Biol 2003;15:60-6. 11. Feldman JL, Priess JR. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr Biol 2012;22:575-82. 12. Angus KL, Griffiths GM. Cell polarisation and the immunological synapse. Curr Opin Cell Biol 2013;25:85-91. 13. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 2006;443:462-5. 14. Gotlieb AI, May LM, Subrahmanyan L, Kalnins VI. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol 1981;91:589-94. 15. Yvon A-MC, Walker JW, Danowski B, Fagerstrom C, Khodjakov A, Wadsworth P. Centrosome reorientation in wound-edge cells is cell type specific. Mol Biol Cell 2002;13:1871-80. 16. Akhmanova A, Stehbens SJ, Yap AS. Touch, grasp, deliver and control: functional cross‐talk between microtubules and cell adhesions. Traffic 2009;10:268-74. 17. Etienne-Manneville S. Microtubules in cell migration. Annu Rev Cell Dev Biol 2013;29:471-99. 18. Thivichon-Prince B, Couble M, Giamarchi A, Delmas P, Franco B, Romio L, et al. Primary cilia of odontoblasts: possible role in molar morphogenesis. J Dent Res 2009;88:910-5. 19. Magloire H, Couble ML, Romeas A, Bleicher F. Odontoblast primary cilia: facts and hypotheses. Cell Biol Int 2004;28:93-9. 20. Liu B, Chen S, Cheng D, Jing W, Helms J. Primary cilia integrate hedgehog and Wnt signaling during tooth development. J Dent Res 2014;93:475-82. 21. Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 2010;137:3221-31. 22. Ohazama A, Haycraft CJ, Seppala M, Blackburn J, Ghafoor S, Cobourne M, et al. Primary cilia regulate Shh activity in the control of molar tooth number. Development 2009;136:897-903. 23. Dzafic E, Strzyz PJ, Wilsch-Bräuninger M, Norden C. Centriole amplification in zebrafish affects proliferation and survival but not differentiation of neural progenitor cells. Cell Rep 2015;13:168-82. 24. Garcez PP, Diaz-Alonso J, Crespo-Enriquez I, Castro D, Bell D, Guillemot F. Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of Ascl1. Nat Commun 2015;6:1-14. 25. Insolera R, Bazzi H, Shao W, Anderson KV, Shi S-H. Cortical neurogenesis in the absence of centrioles. Nat Neurosci 2014;17:1528-35. 26. Ravindran E , Jühlen R, Vieira-Vieira CH, Ha T, Salzberg Y, Boris Fichtman B, et al. Expanding the phenotype of NUP85 mutations beyond nephrotic syndrome to primary autosomal recessive microcephaly and Seckel syndrome spectrum disorders Hum Mol Genet 2021;30:2068-81. 27. Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 2005;76:717-28. 28. Bober MB, Jackson AP. Microcephalic osteodysplastic primordial dwarfism, type II: a clinical review. Curr Osteoporos Rep 2017;15:61-9. 29. Castellano-Pellicena I, Morrison CG, Bell M, O’Connor C, Tobin DJ. Melanin distribution in human skin: Influence of cytoskeletal, polarity, and centrosome-related machinery of stratum basale keratinocytes. Int J Mol Sci 2021;22:3143. 30. Sathasivam K, Woodman B, Mahal A, Bertaux F, Wanker EE, Shima DT, et al. Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington''s disease (HD) transgenic mice and HD patients. Hum Mol Genet 2001;10:2425-35. 31. Iovino F, Lentini L, Amato A, Di Leonardo A. RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer 2006;5:38. 32. Morleo M, Franco B. OFD Type I syndrome: lessons learned from a rare ciliopathy. Biochem Soc Trans 2020;48:1929-39. 33. Franco B, Thauvin-Robinet C. Update on oral-facial-digital syndromes (OFDS). Cilia 2016;5:1-11. 34. Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, Ekici AB, et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 2008;319:816-9. 35. Zaki MS, Heller R, Thoenes M, Nürnberg G, Stern‐Schneider G, Nürnberg P, et al. PEX6 is expressed in photoreceptor cilia and mutated in deafblindness with enamel dysplasia and microcephaly. Hum mutat 2016;37:170-4. 36. Lin Y-N, Lee Y-S, Li S-K, Tang TK. Loss of CPAP in developing mouse brain and its functional implication in human primary microcephaly. J Cell Sci 2020;133:jcs243592. 37. Delaval B, Doxsey SJ. Pericentrin in cellular function and disease. J Cell Biol 2010;188:181-90. 38. O''Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome. Nat Genet 2003;33:497-501. 39. Alderton GK, Joenje H, Varon R, Børglum AD, Jeggo PA, O''Driscoll M. Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum Mol Genet 2004;13:3127-38. 40. Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell 2004;15:3642-57. 41. Pujana MA, Han J-DJ, Starita LM, Stevens KN, Tewari M, Ahn JS, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 2007;39:1338-49. 42. Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 2005;6:928-40. 43. Binarová P, Cenklová V, Hause B, Kubátová E, Lysák M, Doležel J, et al. Nuclear γ-tubulin during acentriolar plant mitosis. Plant Cell 2000;12:433-42. 44. Valenzuela A, Meservey L, Nguyen H, Fu M-M. Golgi outposts nucleate microtubules in cells with specialized shapes. Trends Cell Biol 2020;30:792-804. 45. Wiese C, Zheng Y. Microtubule nucleation: γ-tubulin and beyond. J Cell Sci 2006;119:4143-53. 46. Karlsson R, Dráber P. Profilin—A master coordinator of actin and microtubule organization in mammalian cells. J Cell Physiol 2021;236:7256-65. 47. Maounis NF, Dráberová E, Mahera H, Chorti M, Caracciolo V, Sulimenko T, et al. Overexpression of γ-tubulin in non-small cell lung cancer. Histol Histopathol 2012;27:1183-94. 48. Katsetos CD, Reddy G, Dráberová E, Šmejkalová B, Del Valle L, Ashraf Q, et al. Altered cellular distribution and subcellular sorting of γ-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J Neuropathol Exp Neurol 2006;65:465-77. 49. Caracciolo V, D''agostino L, Dráberová E, Sládková V, Crozier‐Fitzgerald C, Agamanolis DP, et al. Differential expression and cellular distribution of γ‐tubulin and βIII‐tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol 2010;223:519-29. 50. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2015;9:1205-16. 51. Leprince JG, Zeitlin BD, Tolar M, Peters OA. Interactions between immune system and mesenchymal stem cells in dental pulp and periapical tissues. Int Endod J 2012;45:689-701. 52. Salehi H, Al-Arag S, Middendorp E, Gergely C, Cuisinier F, Orti V. Dental pulp stem cells used to deliver the anticancer drug paclitaxel. Stem Cell Res Ther 2018;9:1-10. 53. Rafiee F, Pourteymourfard-Tabrizi Z, Mahmoudian-Sani M-R, Mehri-Ghahfarrokhi A, Soltani A, Hashemzadeh-Chaleshtori M, et al. Differentiation of dental pulp stem cells into neuron-like cells. Int J Neurosci 2020;130:107-16. 54. Song M, Jue SS, Cho YA, Kim EC. Comparison of the effects of human dental pulp stem cells and human bone marrow‐derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 2015;93:973-83. 55. Askari N, Yaghoobi MM, Shamsara M, Esmaeili-Mahani S. Human dental pulp stem cells differentiate into oligodendrocyte progenitors using the expression of Olig2 transcription factor. Cells Tissues Organs 2015;200:93-103. 56. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 2014;9:e109305. 57. Luo L, He Y, Wang X, Key B, Lee BH, Li H, et al. Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int 2018;2018. 58. Alsaeedi HA, Koh AE-H, Lam C, Abd Rashid MB, Harun MHN, Saleh MFBM, et al. Dental pulp stem cells therapy overcome photoreceptor cell death and protects the retina in a rat model of sodium iodate-induced retinal degeneration. J Photochem Photobiol B 2019;198:111561. 59. Senthilkumar S, Venugopal C, Parveen S, Shobha K, Rai KS, Kutty BM, et al. Remarkable migration propensity of dental pulp stem cells towards neurodegenerative milieu: an in vitro analysis. Neurotoxicology 2020;81:89-100. 60. Álvarez-Vásquez JL, Castañeda-Alvarado CP. Dental pulp fibroblast: a star cell. J Endod 2022;48:1005-19. 61. Hsu S-h, Huang G-S, Feng F. Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes. Biomaterials 2012;33:2642-55. 62. Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G, Tunçay EÖ, Kiremitçi AS, Gümüşderelioğlu M. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 2017;69:617-30. 63. Tsutsui TW. Dental pulp stem cells: advances to applications. Stem Cells Cloning 2020;13:33-42. 64. Shiba H, Fujita T, Doi N, Nakamura S, Nakanishi K, Takemoto T, et al. Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture. J Cell Physiol 1998;174:194-205. 65. Monterubbianesi R, Bencun M, Pagella P, Woloszyk A, Orsini G, Mitsiadis TA. A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci Rep 2019;9:1761. 66. Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Curr Top Dev Biol 2015;115:157-86. 67. Kollar E, Lumsden A. Tooth morphogenesis: the role of the innervation during induction and pattern formation. J Biol Buccale 1979;7:49-60. 68. Lumsden AGS, Buchanan J. An experimental study of timing and topography of early tooth development in the mouse embryo with an analysis of the role of innervation. Arch Oral Biol 1986;31:301-11. 69. Sarkar L, Sharpe PT. Expression of Wnt signalling pathway genes during tooth development. Mech Dev 1999;85:197-200. 70. Kim R, Yu T, Li J, Prochazka J, Sharir A, Green JB, et al. Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development 2021;148:dev199685. 71. Mitsiadis TA, Pagella P. The Versatile Roles of Nerve Growth Factor in Neuronal Attraction, Odontoblast Differentiation, and Mineral Deposition in Human Teeth. Adv Exp Med Biol 2021;1331:65-75. 72. Nosrat CA, Fried K, Ebendal T, Olson L. Ngf, Bdnf, Nt3, Nt4 and Gdnf in Tooth Development. Eur J Oral Sci 1998;106:94-9. 73. Vergarajauregui S, Becker R, Steffen U, Sharkova M, Esser T, Petzold J, et al. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. elife 2020;9:e61669. 74. Rosselló CA, Lindström L, Glindre J, Eklund G, Alvarado-Kristensson M. Gamma-tubulin coordinates nuclear envelope assembly around chromatin. Heliyon 2016;2:e00166. 75. Nanguneri S, Flottmann B, Herrmannsdörfer F, Thomas K, Heilemann M. Single‐molecule super‐resolution imaging by tryptophan‐quenching‐induced photoswitching of phalloidin‐fluorophore conjugates. Microsc Res Tech 2014;77:510-6. 76. Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A, Kroll A, et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 2015;348:1155-60. 77. Calero-Cuenca FJ, Janota CS, Gomes ER. Dealing with the nucleus during cell migration. Curr Opin Cell Biol 2018;50:35-41. 78. Kutscheidt S, Zhu R, Antoku S, Luxton GG, Stagljar I, Fackler OT, et al. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat Cell Biol 2014;16:708-15. 79. Jayo A, Malboubi M, Antoku S, Chang W, Ortiz-Zapater E, Groen C, et al. Fascin regulates nuclear movement and deformation in migrating cells. Dev Cell 2016;38:371-83. 80. Cramer LP. Forming the cell rear first: breaking cell symmetry to trigger directed cell migration. Nat Cell Biol 2010;12:628-32. 81. Schiraldi C, Stellavato A, D''Agostino A, Tirino V, d''Aquino R, Woloszyk A, et al. Fighting for territories: time-lapse analysis of dental pulp and dental follicle stem cells in co-culture reveals specific migratory capabilities. Eur Cell Mater 2012;24:426-40. 82. Chung S, Sudo R, Mack PJ, Wan C-R, Vickerman V, Kamm RD. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 2009;9:269-75. 83. Luo D, Hu S, Tang C, Liu G. Mesenchymal stem cells promote cell invasion and migration and autophagy‐induced epithelial‐mesenchymal transition in A549 lung adenocarcinoma cells. Cell Biochem Funct 2018;36:88-94. 84. Moriyama T, Ohuchida K, Mizumoto K, Cui L, Ikenaga N, Sato N, et al. Enhanced cell migration and invasion of CD133+ pancreatic cancer cells cocultured with pancreatic stromal cells. Cancer 2010;116:3357-68. 85. Haridas P, Penington CJ, McGovern JA, McElwain DS, Simpson MJ. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion. J Theor Biol 2017;423:13-25. 86. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells 2017;35:61-7. 87. Cheng H-W, Hsiao C-T, Chen Y-Q, Huang C-M, Chan S-I, Chiou A, et al. Centrosome guides spatial activation of Rac to control cell polarization and directed cell migration. Life sci Alliance 2019;2:e201800135. 88. Kodani A, Kenny C, Lai A, Gonzalez DM, Stronge E, Sejourne GM, et al. Posterior Neocortex-Specific Regulation of Neuronal Migration by CEP85L Identifies Maternal Centriole-Dependent Activation of CDK5. Neuron 2020;106:245-55. 89. Nigg EA, Schnerch D, Ganier O. Impact of Centrosome Aberrations on Chromosome Segregation and Tissue Architecture in Cancer. Cold Spring Harb Symp Quant Biol 2017:82:137-44. 90. Fang C-z, Yang Y-j, Wang Q-h, Yao Y, Zhang X-y, He X-h. Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats. PLoS One 2013;8:e66748. 91. Bray A, Cevallos R, Gazarian K, Lamas M. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience 2014;280:142-55. 92. Pagella P, Neto E, Jimenez-Rojo L, Lamghari M, Mitsiadis TA. Microfluidics co-culture systems for studying tooth innervation. Front Physiol 2014;5:326. 93. Hisamoto M, Mami M, Junko N-K, Iwanaga T, Yokoyama A. Developmental changes in primary cilia in the mouse tooth germ and oral cavity. Biomed Res 2016;37:207-14. 94. Yuan X, Cao X, Yang S. IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development. Cell Death Dis 2019;10:1-11. 95. Venkatesh D. Primary cilia. J Oral Maxillofac Pathol 2017;2:8-10. 96. Abou Alaiwi WA, Lo ST, Nauli SM. Primary cilia: highly sophisticated biological sensors. Sensors 2009;9:7003-20. 97. Kero D, Novakovic J, Vukojevic K, Petricevic J, Kalibovic Govorko D, Biocina-Lukenda D, et al. Expression of Ki-67, Oct-4, gamma-tubulin and alpha-tubulin in human tooth development. Arch Oral Biol 2014;59:1119-29. 98. Sasano Y. Dynamic behavior of ciliated centrioles in rat incisor ameloblasts during cell differentiation. Arch Histol Jpn 1986;49:437-48. 99. Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol Rev 2017;97:939-93. 100. Kallenbach E. The fine structure of Tomes'' process of rat incisor ameloblasts and its relationship to the elaboration of enamel. Tissue Cell 1973;5:501-24. 101. Smith C. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Medicine 1998;9:128-61. 102. Katchburian E, Holt S. Studies on the development of ameloblasts: I. Fine structure. J Cell Sci 1972;11:415-47. 103. Kudo T, Kawasaki M, Kawasaki K, Meguro F, Nihara J, Honda I, et al. Ift88 regulates enamel formation via involving Shh signaling. Oral Diseases 2023;29:1622-31. 104. Takamori K, Hosokawa R, Xu X, Deng X, Bringas Jr P, Chai Y. Epithelial fibroblast growth factor receptor 1 regulates enamel formation. J Dent Res 2008;87:238-43. 105. Fan L, Deng S, Sui X, Liu M, Cheng S, Wang Y, et al. Constitutive activation of β-catenin in ameloblasts leads to incisor enamel hypomineralization. J Mol Histol 2018;49:499-507. 106. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 2000;127:4775-85. 107. Gritli-Linde A, Bei M, Maas R, Zhang XM, Linde A, McMahon AP. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 2002;129:5323-37 108. Bei M. Molecular genetics of ameloblast cell lineage. J Exp Zool B Mol Dev Evol 2009;312:437-44. 109. Fukumoto S, Yamada A, Nonaka K, Yamada Y. Essential roles of ameloblastin in maintaining ameloblast differentiation and enamel formation. Cells Tissues Organs 2006;181:189-95. 110. Tang C-JC, Fu R-H, Wu K-S, Hsu W-B, Tang TK. CPAP is a cell-cycle regulated protein that controls centriole length. Nat Cell Biol 2009;11:825-31. 111. Schmidt TI, Kleylein-Sohn J, Westendorf J, Le Clech M, Lavoie SB, Stierhof Y-D, et al. Control of centriole length by CPAP and CP110. Current Biology 2009;19:1005-11. 112. Ghosh S, Garg M, Gupta S, Choudhary M, Chandra M. Microcephalic osteodyplastic primordial dwarfism type II: case report with unique oral findings and a new mutation in the pericentrin gene. Oral Surg Oral Med Oral Pathol Oral Radiol 2020;129:e204-11. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91813 | - |
dc.description.abstract | 牙齒的生長和神經發育在再生醫學中被視為極為重要的議題。牙齒的生長取決於琺瑯質和牙本質之間的相互作用,進而形塑牙齒的結構。而神經發育則會影響許多涉及牙齒損傷及修復的議題。在早期的牙齒胚胎階段,神經與牙齒的發育過程會透過不同的訊號路徑相互連接,例如Wnt和Hedgehog等訊號路徑。而細胞內的胞器---中心粒,參與了許多細胞分化和影響細胞方向移動的過程。當中心粒相關基因突變,導致中心粒發生異常時,會產生神經性的系統疾病像是亨丁頓舞蹈症(Huntington''s Disease)和原發性小頭畸形症(Primary microcephaly),也可能有會口腔結構異常像是第一型口腔顏面手指症候群(Oral-facial-digital syndrome type1)、缺牙、牙釉質發育不全等情形發生。我們的假設是牙齒的生經生長和牙髓幹細胞在發育過程中受神經的吸引而遷移,中心粒在此過程中影響細胞,另外在牙齒的生長發育過程中牙釉質的形成也和中心粒有關。因此我們的研究將分成兩個部分來討論,第一個部分探討中心粒對牙齒神經生長和遷移的影響,第二個部分則著重在牙齒發育的過程中,中心粒在造釉母細胞(ameloblast)的作用和變化。
本次研究透過小鼠神經組織和人類牙髓幹細胞的共培養來觀察幹細胞受神經吸引的影響造成細胞遷移的過程,將中心粒在免疫螢光染色後,利用共聚焦顯微鏡觀察它們的位置。同時為瞭解去除中心粒對細胞的影響,故而添加中心粒抑制劑(Centrinone)來觀察細胞活性的變化。另外為了研究中心粒在牙齒生長過程的變化,將C57BL/6的健康小鼠臼齒進行組織切片染色和免疫螢光染色,觀察出生後1、3、5、7、9天的組織和細胞內的中心粒變化。其中特別比較了第九天健康小鼠臼齒和中心粒相關蛋白缺失的小鼠其組織和細胞內的中心粒變化。 從研究結果可以發現,隨著神經組織和牙髓幹細胞之間距離的減少,牙髓幹細胞的中心粒靠近神經組織的比例也會越來越多。而與神經組織共培養的距離越近,也會增加牙髓幹細胞向神經組織的遷移速度。相較之下,單獨培養或和纖維母細胞共同培養的牙髓幹細胞則會表現出較弱的遷移能力,顯示神經組織是會對牙髓幹細胞有吸引的影響。另外添加中心粒抑制劑也會影響細胞的遷移和中心粒的聚合過程,不過一旦沖洗掉中心粒抑制劑後,中心粒的聚合和細胞遷移的能力都會恢復正常。而在觀察不同天數的小鼠臼齒組織中,造釉母細胞和琺瑯質(enamel)在出生後一到九天發生了顯著變化。造釉母細胞中的中心粒表現出動態的位移變化,從細胞核靠向琺瑯質的邊緣。同時也發現牙釉質的厚度和中心粒的數量有正向的關聯性。而在正常小鼠和中心粒異常的小鼠比較中可以發現,中心粒相關蛋白缺失的老鼠其牙釉質的厚度、造釉母細胞的長度以及中心粒的分佈存在明顯差異,顯示CPAP缺陷對牙齒發育的影響。 中心粒在影響細胞運動和極化有兩種可能的情況,一種是中心粒位於細胞中心,但是細胞核卻是向後移動,像是NIH3T3細胞。另一種則是細胞和中心粒都會向前移動,像是牙髓幹細胞。因此牙髓幹細胞對神經組織的吸引力可能有助於牙胚對神經的引導生長,從而幫助牙髓幹細胞分化為神經。但具體機制還需要進一步的體內和體外研究來證實。而有關牙齒的生長發育過程,從研究中證實了成釉細胞內的中心粒對分泌期的琺瑯質生成有正面的影響。反之,中心粒相關蛋白缺失的時候會造成中心粒的破壞,進而影響造釉母細胞的形態和功能,這樣的發展與在原發性小頭畸形患者中觀察到的牙釉質發育不全相類似。不過仍須進一步的研究來闡明分子機制以及與造牙本質細胞(odontoblast)中心粒的潛在相互作用。總括而言,從中心粒的角度來了解牙齒和神經的生長發育對於臨床醫療工作,尤其是修復牙齒損傷和促進神經再生,具有重要的啟示。期望未來的研究能繼續深入探討中心粒的分子機制,為更有效臨床治療方法的開發奠定基礎。 | zh_TW |
dc.description.abstract | The growth and neural development of teeth are regarded as crucial topics in regenerative medicine. Tooth growth is influenced by the interaction between enamel and dentin, shaping the overall tooth structure. Concurrently, neural development plays a significant role in addressing issues related to tooth damage and repair. During the early stages of tooth embryogenesis, the processes of neural and tooth development are intricately connected through various signaling pathways, such as Wnt and Hedgehog.
The organelle within cells, known as the centriole, participates in numerous cellular differentiations and processes that influence cell directional movement. Mutations in centriole-associated genes leading to abnormal centriole function are implicated in neurological disorders such as Huntington''s Disease and Primary Microcephaly, as well as oral structural abnormalities like Oral-facial-digital syndrome type 1, missing teeth, and enamel hypoplasia. Our hypothesis is that innervation of tooth is correlated with the neural attraction of dental pulp stem cells and centrioles play important role during the cell migration process. In addition, the development of enamel during tooth growth is also correlated with centrioles. This study is divided into two main parts to investigate these phenomena. The first part explores the impact of centrioles on neural growth and migration of dental pulp stem cells (DPSCs). The second part focuses on the role and changes of centrioles in ameloblasts during tooth development. Through co-culturing mouse neural tissue and human dental pulp stem cells, we observed the cellular migration process during neural atteaction. Immunofluorescence staining of centrioles, followed by observation with confocal microscopy, allowed us to understand their positions. To assess the influence of centrioles'' removal, a centriole inhibitor (Centrinone) was added, and changes in cell activity were monitored. Additionally, examining the tissue sections of healthy C57BL/6 mouse molars at various postnatal days (1, 3, 5, 7, 9) provided insights into centriole changes during tooth growth. A comparative analysis of healthy and CPAP/p53 double knockout mice on the ninth day highlighted differences in enamel thickness, ameloblast elongation, and centriole distribution, illustrating the impact of CPAP deficiency on tooth development. Results revealed that as the distance between neural tissue and DPSCs decreased, more DPSCs exhibited centrioles near neural tissue, correlating with increased migration towards neural tissue. Co-culturing with neural tissue enhanced DPSCs'' migration, while DPSCs cultured alone or with fibroblasts showed weaker migration. The addition of Centrinone affected cell migration and centriole aggregation, with recovery upon Centrinone removal. Observing tissue changes in mouse molars at different postnatal days indicated significant alterations in ameloblasts and enamel. Dynamic shifts in centriole localization within ameloblasts, moving from the cell nuclei towards enamel, were observed. Positive correlations between enamel thickness and centriole quantity were noted. Comparative analysis of normal and CPAP/p53 double knockout mice highlighted substantial differences in enamel thickness, ameloblast elongation, and centriole distribution, emphasizing the impact of CPAP deficiency on tooth development. In conclusion, gaining insights into the growth and neural development of teeth from the perspective of centrioles holds significant implications for clinical healthcare, particularly in repairing tooth damage and promoting neural regeneration. Further research is needed to delve into the molecular mechanisms of centrioles, laying the foundation for the development of more effective clinical treatment methods. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:50:32Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:50:32Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS viii LIST OF FIGURES xii ABBRVIATIONS xiii CHAPTER 1. INTRODUCTION 1 1.1 Centrioles 1 1.1.1 The functions of centrioles 1 1.1.2 Impact of centrioles on directionality 3 1.1.3 Centrioles in teeth 4 1.1.4 Diseases associated with centriole abnormalities 5 1.1.5 Markers of centrioles 7 1.2 Dental pulp stem cells 8 1.2.1 Applications of dental pulp stem cells 8 1.2.2 Impact of dental pulp stem cells on neural regeneration 10 1.2.3 Association between dental pulp stem cells and fibroblasts 11 1.3 Tooth growth and development 12 1.3.1 Interaction of enamel and dentin growth 12 1.3.2 Neurodevelopment in tooth 13 CHAPTER 2. MOTIVATION AND SPECIFIC AIMS 15 CHAPTER 3. EXPERIMENTAL FLOWCHARTS 17 CHAPTER 4. MATERIALS AND METHODS 19 4.1 Materials 19 4.2 Methods 21 4.2.1 Animal tissue processing procedure 21 4.2.1.1 Brain tissue preparation 21 4.2.1.2 Molar tissue preparation 22 4.2.2 Cell culture 22 4.2.2.1 Cell line culture 22 4.2.2.2 Dental pulp stem cells culture 23 4.2.3 Tissue slide staining 24 4.2.3.1 Hematoxylin and eosin staining of tissue 24 4.2.3.2 Immunofluorescent staining of tissue 24 4.2.4 Cell immunofluorescent staining 25 4.2.5 High-resolution imaging setup 26 4.2.6 Neural attraction model 27 4.2.7 MTT assay 28 4.2.8 Centrinone-mediated inhibition test 28 4.2.9 Comparison of centrioles in ameloblasts 29 4.2.10 Statistical analysis 29 CHAPTER 5. RESULTS 31 5.1 Association between centrioles and neural induction in DPSCs 31 5.1.1 Expression of centrioles in DPSCs under co-culture environment 31 5.1.2 Variations in cell migration distances under different environments 33 5.1.3 The effects of different concentrations of centrinone on cells 34 5.2 The impact of centrioles on tooth growth and development 36 5.2.1 Notable changes in ameloblasts and enamel during growth 36 5.2.2 Temporal dynamics of centriole localization in ameloblasts revealed by fluorescent staining 37 5.2.3 Correlation between enamel and centrioles in ameloblasts 38 5.2.4 Comparative analysis of ameloblasts and centrioles in normal and CPAP/p53 double knockout mouse molar 39 CHAPTER 6. DISCUSSION 41 6.1 Impact of centrioles on cell movement 41 6.2 Effects of centriole knockdown on differences and diseases 42 6.3 Dental pulp stem cells'' influence on nerve tissue development 44 6.4 Impact of centriole-producing primary cilia on the oral cavity 45 6.5 Insights into the role of the ciliated centriole in tooth formation 45 6.6 CPAP regulation of centriole elongation and implications for neurological development 48 CHAPTER 7. CONCLUSION 50 CHAPTER 8. FIGURES AND TABLES 51 CHAPTER 9. APPENDIXES 70 CHAPTER 10. REFERENCES 73 | - |
dc.language.iso | zh_TW | - |
dc.title | 中心粒在牙齒生長發育及牙髓幹細胞的神經引導中所扮演的角色 | zh_TW |
dc.title | Roles of Centrioles in Tooth Development and Neural Attraction of Dental Pulp Stem Cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 劉正芬;王詩凱;姚宗珍;王彥雄 | zh_TW |
dc.contributor.oralexamcommittee | Jeng-Fen Liu;Shih-Kai Wang;Chung-Chen Yao;Yan-Hsiung Wang | en |
dc.subject.keyword | 中心粒,牙髓幹細胞,神經遷移,造釉母細胞,琺瑯質,牙齒發育,中心粒抑制劑,小頭畸形症, | zh_TW |
dc.subject.keyword | centriole,dental pulp stem cells,neural migration,centrinone,ameloblast,enamel,tooth development,primary microcephaly, | en |
dc.relation.page | 89 | - |
dc.identifier.doi | 10.6342/NTU202304497 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-01-23 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床牙醫學研究所 | - |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 45.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。