請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91777完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭修偉 | zh_TW |
| dc.contributor.advisor | Hsiu-Wei Cheng | en |
| dc.contributor.author | 張語晏 | zh_TW |
| dc.contributor.author | Yu-Yen Chang | en |
| dc.date.accessioned | 2024-02-22T16:40:55Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-06 | - |
| dc.identifier.citation | [1] Sohan L Chawla. Materials selection for corrosion control. ASM international, 1993.
[2] Qin Pang, Hossein DorMohammadi, O Burkan Isgor, and Líney Árnadóttir. The effect of surface vacancies on the interactions of cl with a α-fe2o3 (0001) surface and the role of cl in depassivation. Corrosion Science, 154:61–69, 2019. [3] Yong Zhang, Yun Jun Zhou, Jun Pin Lin, Guo Liang Chen, and Peter K Liaw. Solid- solution phase formation rules for multi-component alloys. Advanced engineering materials, 10(6):534–538, 2008. [4] Dominik Dworschak, Ko-Kai Tseng, Jien-Wei Yeh, Hsiu-Wei Cheng, and Markus Valtiner. Bottom-up characterization of electrochemical passivity from simple binary alloys to high entropy alloys. Electrochimica Acta, 405:139804, 2022. [5] Kai-Chi Chuang, Yu-Yen Chang, Ching-Yu Chiang, Yun-Chung Liu, Hao-Hsuan Hung, Ko-Kai Tseng, Jien-Wei Yeh, and Hsiu-Wei Cheng. Corrosion of plasma sput- tering medium entropy alloy thin film: A multidisciplinary perspective. Corrosion Science, 216:111020, 2023. [6] M Resano, M Aramendía, E García-Ruiz, A Bazo, Eduardo Bolea-Fernandez, and Frank Vanhaecke. Living in a transient world: Icp-ms reinvented via time-resolved analysis for monitoring single events. Chemical Science, 13(16):4436–4473, 2022. [7] JG Parsons, MV Aldrich, and JL Gardea-Torresdey. Environmental and biologi- cal applications of extended x-ray absorption fine structure (exafs) and x-ray ab- sorption near edge structure (xanes) spectroscopies. Applied Spectroscopy Reviews, 37(2):187–222, 2002. [8] Digby D Macdonald and Mirna Urquidi-Macdonald. Theory of steady-state passive films. Journal of the Electrochemical Society, 137(8):2395, 1990. [9] Philippe Marcus and Vincent Maurice. The structure of passive films on metals and alloys. Passivity of Metals and Semiconductors; Ives, MB, Luo, JL, Rodda, JR, Eds, pages 30–64, 2001. [10] Hemalatha Parangusan, Jolly Bhadra, and Noora Al-Thani. A review of passivity breakdown on metal surfaces: Influence of chloride-and sulfide-ion concentrations, temperature, and ph. Emergent Materials, 4(5):1187–1203, 2021. [11] Razieh Karimihaghighi and Masoumeh Naghizadeh. Effect of alloying elements on aqueous corrosion of nickel-based alloys at high temperatures: A review. Materials and Corrosion, 2023. [12] JR Hayes, JJ Gray, AW Szmodis, and CA Orme. Influence of chromium and molyb- denum on the corrosion of nickel-based alloys. Corrosion, 62(06), 2006. [13] Gao Jie, Sun Yan, Wang Kangning, Song Qiang, and Wang Canming. Effect of fe content on microstructure and corrosion resistance of ni-based alloy formed by laser cladding. Surface and Coatings Technology, 446:128761, 2022. [14] Baozhuang Sun, Xiaomei Zuo, Xuequn Cheng, and Xiaogang Li. The role of chromium content in the long-term atmospheric corrosion process. npj Materials Degradation, 4(1):37, 2020. [15] Stephen D Cramer and Bernard S Covino. Corrosion: Fundamentals, testing and prevention, volume 13. ASM International, 2003. [16] YEH Jien-Wei. Recent progress in high entropy alloys. Annales de Chimie Science des Matériaux, 31(6):633–648, 2006. [17] Brian Cantor. Multicomponent and high entropy alloys. Entropy, 16(9):4749–4768, 2014. [18] Ming-Hung Tsai and Jien-Wei Yeh. High-entropy alloys: a critical review. Materials Research Letters, 2(3):107–123, 2014. [19] Yunzhu Shi, Bin Yang, and Peter K Liaw. Corrosion-resistant high-entropy alloys: A review. Metals, 7(2):43, 2017. [20] Mengdi Zhang, Lijun Zhang, Jiantao Fan, Pengfei Yu, and Gong Li. Novel co-free crfeninb0. 1tix high-entropy alloys with ultra high hardness and strength. Materials Science and Engineering: A, 764:138212, 2019. [21] Bingqian Jin, Nannan Zhang, Huishu Yu, Dexi Hao, and Yongliang Ma. Alxcocr- fenisi high entropy alloy coatings with high microhardness and improved wear re- sistance. Surface and Coatings Technology, 402:126328, 2020. [22] Wei Li, Ping Liu, and Peter K Liaw. Microstructures and properties of high-entropy alloy films and coatings: a review. Materials Research Letters, 6(4):199–229, 2018. [23] S Zhang, CL Wu, CH Zhang, M Guan, and JZ Tan. Laser surface alloying of fe- cocralni high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance. Optics & Laser Technology, 84:23–31, 2016. [24] Angela Y Gerard, Junsoo Han, Stephen J McDonnell, Kevin Ogle, Elizabeth J Kautz, Daniel K Schreiber, Pin Lu, James E Saal, Gerald S Frankel, and John R Scully. Aqueous passivation of multi-principal element alloy ni38fe20cr22mn10co10: Un- expected high cr enrichment within the passive film. Acta Materialia, 198:121–133, 2020. [25] Qingfeng Ye, Kai Feng, Zhuguo Li, Fenggui Lu, Ruifeng Li, Jian Huang, and Yix- iong Wu. Microstructure and corrosion properties of crmnfeconi high entropy alloy coating. Applied Surface Science, 396:1420–1426, 2017. [26] Xing-Wu Qiu and Chun-Ge Liu. Microstructure and properties of al2crfecocutinix high-entropy alloys prepared by laser cladding. Journal of Alloys and Compounds, 553:216–220, 2013. [27] Lei Huang, Xuejie Wang, Xingchuan Zhao, Changzheng Wang, and Yuansheng Yang. Analysis on the key role in corrosion behavior of cocrnialti-based high en- tropy alloy. Materials Chemistry and Physics, 259:124007, 2021. [28] Keon Ha Kim, Seung Hwan Lee, Nguyen Dang Nam, and Jung Gu Kim. Effect of cobalt on the corrosion resistance of low alloy steel in sulfuric acid solution. Corro- sion Science, 53(11):3576–3587, 2011. [29] Lifeng Hou, Massimo Raveggi, Xiao-Bo Chen, Wanqiang Xu, Kevin J Laws, Yinghui Wei, Michael Ferry, and Nick Birbilis. Investigating the passivity and dis-solution of a corrosion resistant mg-33at.% li alloy in aqueous chloride using online icp-ms. Journal of The Electrochemical Society, 163(6):C324, 2016. [30] Dominik Dworschak, Marina Bishara, Hsiu-Wei Cheng, and Markus Valtiner. Com- bining afm imaging and elementally resolved spectroelectrochemistry for under- standing stability and quality of passive films formed on alloy 600. Materials and Corrosion, 73(6):842–850, 2022. [31] Katie Lutton, Kateryna Gusieva, Noemie Ott, Nick Birbilis, and John R Scully. Un- derstanding multi-element alloy passivation in acidic solutions using operando meth- ods. Electrochemistry Communications, 80:44–47, 2017. [32] I Olefjord, B Brox, and U Jelvestam. Surface composition of stainless steels during anodic dissolution and passivation studied by esca. Journal of the Electrochemical Society, 132(12):2854, 1985. [33] Wendy Fredriksson, Sara Malmgren, Torbjörn Gustafsson, Mihaela Gorgoi, and Kristina Edström. Full depth profile of passive films on 316l stainless steel based on high resolution haxpes in combination with arxps. Applied Surface Science, 258(15):5790–5797, 2012. [34] Roland Steinberger, Juliane Walter, Theresia Greunz, J Duchoslav, Martin Arndt, Serguei Molodtsov, DC Meyer, and David Stifter. Xps study of the effects of long- term ar+ ion and ar cluster sputtering on the chemical degradation of hydrozincite and iron oxide. Corrosion Science, 99:66–75, 2015. [35] S Swann. Magnetron sputtering. Physics in technology, 19(2):67, 1988. [36] Feng Shi. Introductory chapter: basic theory of magnetron sputtering. In Magnetron Sputtering. IntechOpen, 2018. [37] Grzegorz Greczynski and Lars Hultman. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Progress in Materials Science, 107:100591, 2020. [38] Sebastian Siol, Jennifer Mann, John Newman, Takuya Miyayama, Katsumi Watan- abe, Patrik Schmutz, Claudia Cancellieri, and Lars PH Jeurgens. Concepts for chem-ical state analysis at constant probing depth by lab-based xps/haxpes combining soft and hard x-ray sources. Surface and Interface Analysis, 52(12):802–810, 2020. [39] Katsumi WATANABE, Hiromichi YAMAZUI, and Risayo INOUE. New application fields developed by hard x-ray photoelectron spectroscopy:“phi quantes". TECH- NICAL JOURNAL, page 34, 2017. [40] Takashi Yamamoto. Assignment of pre-edge peaks in k-edge x-ray absorption spec- tra of 3d transition metal compounds: electric dipole or quadrupole? X-Ray Spec- trometry: An International Journal, 37(6):572–584, 2008. [41] George H Major, Neal Fairley, Peter Sherwood, Matthew R Linford, Jeff Terry, Vin- cent Fernandez, and Kateryna Artyushkova. Practical guide for curve fitting in x- ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 38(6), 2020. [42] Mark C Biesinger, Brad P Payne, Andrew P Grosvenor, Leo WM Lau, Andrea R Gerson, and Roger St C Smart. Resolving surface chemical states in xps analysis of first row transition metals, oxides and hydroxides: Cr, mn, fe, co and ni. Applied Surface Science, 257(7):2717–2730, 2011. [43] Digby D Macdonald and Adan Sun. An electrochemical impedance spectroscopic study of the passive state on alloy-22. Electrochimica Acta, 51(8-9):1767–1779, 2006. [44] Robert M Powell, Robert W Puls, Sharon K Hightower, and David A Sabatini. Cou- pled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environmental Science & Technology, 29(8):1913–1922, 1995. [45] Sannakaisa Virtanen, Patrik Schmuki, Alison J Davenport, and Carissima M Vitus. Dissolution of thin iron oxide films used as models for iron passive films studied by in situ x-ray absorption near-edge spectroscopy. Journal of the Electrochemical Society, 144(1):198, 1997. [46] Martin Bojinov, Iva Betova, Gunilla Fabricius, Timo Laitinen, T Saario, et al. The stability of the passive state of iron–chromium alloys in sulphuric acid solution. Cor- rosion Science, 41(8):1557–1584, 1999. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91777 | - |
| dc.description.abstract | 近年來,多主元素合金薄膜的概念在合金設計領域中引起廣泛的興趣。特別是鉻成分在提升合金在電化學穩定性方面的作用,已在腐蝕科學研究中受到重視。然而,單純調整多主元素合金中鉻的比例,對於增強其抗腐蝕的效果有限。因此,深入理解鉻與其他合金元素的交互作用,對於進一步提升合金性能至關重要。本研究著重於以鎳鉻為基底的多主元素合金薄膜,探究其中功能元素的電化學相關性。研究涵蓋採用電漿濺鍍法製備的鎳鉻、鎳鈷鉻、鎳鉻鐵以及鎳鉻鈷鐵合金系統。我們在中性氯化鈉溶液中進行電化學實驗,並結合時間解析光學顯微鏡及感應耦合電漿質譜,來分析合金的電化學性能。此外,透過兩種 X 射線光電子能譜和 X 射線吸收光譜技術,研究表面殘留物和鈍化膜結構的變化。根據 X 射線光電子能譜和 X 射線吸收光譜的結果,我們發現在鎳鈷鉻和鎳鉻系統中,氫氧化鉻的生成會降低其抗腐蝕能力,可能導致鉻氧化態的提升,以及推測在較高氧化電位下的鉻離子溶解。通過感應耦合電漿質譜和 X 射線光電子能譜評估,我們進一步發現鐵似乎在增強三氧化二鉻鈍化膜穩定性方面起著關鍵作用。本研究通過各種分析方法揭示了腐蝕機制中元素間的交互作用,這不僅能深入理解對多主元素合金腐蝕中基本電化學過程,而且對開發新型提升抗腐蝕性的材料具有重要意義。 | zh_TW |
| dc.description.abstract | The concept of multi-principal element alloy (MPEA) thin films has gained interest in alloy design in recent years. Particularly the role of Cr composition for improving electrochemical passivity has garnered attention in corrosion science. However, tuning Cr composition alone in MPEAs can only push corrosion passivity to a certain extent. This makes understanding the cross-elemental interaction of Cr with other alloy compounds vital in order to further improve alloy performance. Therefore, this research mainly focuses on electrochemical correlation across functional elements in plasma sputtered NiCr-based MPEA thin films within NiCr, NiCoCr, NiCrFe, and NiCrCoFe systems. We employed in-situ electrochemical optical microscopy combined with ICPMS in neutral sodium chloride solution as well as ex-situ XPS, HAXPES and XAS to investigate the electrochemical performance of alloys as well as the remain products and passive film structure changes.
Based on XPS and XAS results, we find that the formation of Cr(OH)3 on Cr2O3 passive films weakens corrosion resistance in the NiCoCr and NiCr systems, potentially leading to increased oxidation states of Cr and ion dissolution at higher oxidation potentials. Using a multidisciplinary analytical approach to gauge into Fe dissolution, we further discover that the particular role Fe plays in supporting the stability of Cr2O3 in passive films. The comprehensive analysis methods outlined in this work sheds a light on elemental interactions involved in corrosion mechanisms, which allows not only in depth understanding of fundamental electrochemical processes involved in corrosion of MPEAs but will have implications in developing new and improved materials for corrosion resistance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:40:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:40:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi Denotation xv Chapter 1 Introduction 1 1.1 Passive Films in Corrosion Protection 1 1.1.1 The theory of passive films 1 1.1.2 The mechanism of passive film breakdown 3 1.1.3 The crucial role of Cr in passive films 5 1.2 Corrosion Resistance Study of MPEA Coatings 6 1.2.1 The concept of MPEAs 6 1.2.2 The impact of the addition element on corrosion behaviors 9 1.3 In-situ and Ex-situ Advanced Techniques in Corrosion Research 11 1.4 Highlights of This Work 13 Chapter 2 Experimental Section 15 2.1 Materials and Chemicals . . . . . . . . . . . . . . . . . . . . . . . .15 2.2 Substrate Preparation . . . . . . . . . . . . . . . . . . . . . . . . . .16 2.3 Thin Film Deposition . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.3.1 Magnetron sputtering deposition . . . . . . . . . . . . . . . . . . .17 2.3.2 Thin film deposition . . . . . . . . . . . . . . . . . . . . . . . . . .18 2.4 In-situ Electrochemical Measurement of Corrosion . . . . . . . . . .19 2.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . .20 2.4.2 Measurements of electrochemical experiments . . . . . . . . . . . .20 2.4.3 Measurement of ICPMS . . . . . . . . . . . . . . . . . . . . . . .22 2.5 Ex-situ Characterization of Thin Films . . . . . . . . . . . . . . . . .24 2.5.1 Measurement of dual XPS . . . . . . . . . . . . . . . . . . . . . .24 2.5.2 Measurement of synchrotron X-ray absorption spectroscopy . . . .26 2.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 2.6.1 Transmittance analysis . . . . . . . . . . . . . . . . . . . . . . . .29 2.6.2 Data analysis of ICPMS . . . . . . . . . . . . . . . . . . . . . . . .29 2.6.3 Data analysis of XPS . . . . . . . . . . . . . . . . . . . . . . . . .29 Chapter 3 Results and Discussion33 3.1 Transmittance Analysis for NiCr-Based MPEAs . . . . . . . . . . .33 3.2 Elemental Analysis for NiCr-Based MPEA Thin Films . . . . . . . .35 3.2.1 Time-resolved elemental analysis by ICPMS . . . . . . . . . . . . .35 3.2.2 Ex-situ XPS quantitative analysis . . . . . . . . . . . . . . . . . . .37 3.3 Investigation of Chemical States in Cr . . . . . . . . . . . . . . . .39 3.3.1 XPS analysis of chemical states changes in Cr after corrosion . . . .39 3.3.2 XANES insight in post-corrosion chemical states in Cr . . . . . . .42 3.3.3 Short summary of XPS study in Cr . . . . . . . . . . . . . . . . . .43 3.4 Understanding the Dissolution Mechanism of Cr . . . . . . . . . . .45 3.5 Interface Characterization in NiCoCr Thin Films via HAXPES . . . .46 3.6 The Role of Fe in Corrosion Resistance of MPEA Thin Films . . . .49 3.7 Four Hypothesized MPEA Systems in This Study . . . . . . . . . . .52 Chapter 4 Conclusions 55 References 57 Appendix A— Published Paper 65 | - |
| dc.language.iso | en | - |
| dc.subject | 多主元素合金 | zh_TW |
| dc.subject | 腐蝕 | zh_TW |
| dc.subject | X射線吸收光譜 | zh_TW |
| dc.subject | 時間解析電感耦合電漿體質譜法 | zh_TW |
| dc.subject | 硬X射線光電子能譜 | zh_TW |
| dc.subject | Hard X-ray photoelectron spectroscopy | en |
| dc.subject | Time-resolved inductively coupled plasma mass spectrometry | en |
| dc.subject | X-ray absorption spectroscopy | en |
| dc.subject | Multi-principal element alloys | en |
| dc.subject | Corrosion | en |
| dc.title | 多主元素合金薄膜之組成對其電化學穩定性之影響 | zh_TW |
| dc.title | Influence of Composition on Electrochemical Stability of Multi-Principal Element Alloy Thin Films | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 姜昌明;簡儀欣;陳重佑 | zh_TW |
| dc.contributor.oralexamcommittee | Chang-Ming Jiang;Yi-Hsin Chien;Chong-You Chen | en |
| dc.subject.keyword | 腐蝕,多主元素合金,硬X射線光電子能譜,時間解析電感耦合電漿體質譜法,X射線吸收光譜, | zh_TW |
| dc.subject.keyword | Corrosion,Multi-principal element alloys,Hard X-ray photoelectron spectroscopy,Time-resolved inductively coupled plasma mass spectrometry,X-ray absorption spectroscopy, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202400530 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 15.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
