請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91769完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭舒婷 | zh_TW |
| dc.contributor.advisor | Su-Ting Cheng | en |
| dc.contributor.author | 陳又嘉 | zh_TW |
| dc.contributor.author | You-Jia Chen | en |
| dc.date.accessioned | 2024-02-22T16:38:38Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-04 | - |
| dc.identifier.citation | 水利署。2017。淡水河水系河川情勢調查。
白梅玲、李培芬與端木茂甯。2006。氣候變遷對台灣淡水魚多樣性之衝擊評估。全球變遷通訊雜誌,49,23-37。 江鴻猷、曾喜育、邱清安與曾彥學。2014。樣本數量對最大熵物種分布模式(MaxEnt)準確度之影響:以臺灣水青岡為例。林業研究季刊,36(2),101-114。 李永安。2007。大漢溪上游河川魚類棲地適合度曲線之研究。國立中央大學土木工程研究所碩士論文。 李光敦。2005。水文學。五南圖書出版股份有限公司。 呂明倫、黃靜宜、陳志輝與宋一鑫。2019。應用物種分布模式推估台灣東方蜜蜂之授粉服務。臺灣林業科學,34(1),29-41。 吳旻燕、許蓓怡與張世倉。2010。清水溪台灣特有種明潭吻鰕虎(Rhinogobius candidianus)攝食生態。台灣生物多樣性研究,12(4),367-380。 呂映昇與孫建平。2010。魚類於生命週期的不同階段棲地使用與物理棲地因子之量化關係。農業工程學報,56(1),40-51。 李美慧。2013。都市化河川水質時空變化-以基隆河為例。環境與世界,27,77-95。 余燕妮。2006。台灣河川特有魚種之分區適合度曲線研訂。國立中央大學土木工程研究所碩士論文。 周伯愷。2011。臺北水源特定區集水區治理策略之研究。國立台北科技大學土木與防災研究所碩士論文。 林大利。2016。愛知生物多樣性目標與生物多樣性指標。自然保育季刊,93,4-17。 林冠州。2017。應用非點源汙染模式SWAT 模擬翡翠水庫上游集水區流量及氮素之輸出與移動。國立臺灣師範大學地理學系碩士論文。 林業及自然保育署。2004。台灣淡水魚及昆蟲資源永續利用與保育研究(3)。 林業及自然保育署。2008。森林溪流魚類保育工作資料分析與效能評估。 林業及自然保育署。2011。台灣地區淡水域湖泊、野塘及溪流魚類資源現況調查及保育研究規劃(2)。 施上粟、胡通哲、陳有祺、張尊國與方偉達。2012。以修正河川狀況指標法評估桂山壩操作方式改善後之河川復育效益。臺灣水利,60(3),1-10。 侯文祥、陳以容、許棖曜與劉軒榮。2010。翡翠水庫魚類相變化與水質關係探討(2)。農業工程學報,56(3),74-84。 侯文祥、許棖曜、王晨光與陳以容。2009。翡翠水庫魚類相變化與水質關係探討(1)。農業工程學報,55(1),18-26。 梁世雄、曹先紹與陳俊宏。2000。台灣現有魚道結構及魚、蝦、蟹利用狀況評估。自然保育季刊,31,47-53。 陳宛均、張安瑜與吳采諭。2018。從開放資料到保育應用 ─ 以臺灣陸域脊椎動物生物多樣性熱點為例。台灣生物多樣性研究,20(2),95-139。 張明雄、呂光洋與張巍薩。1989。臺灣纓口鰍之生物學研究。師大生物學報,24,41-63。 莊明德、陳賜賢與李德旺。2009。北勢溪防砂壩魚道之功能評估與試驗研究。水保技術,4(4),210-221。 張美瑜。2008。利用耳石元素指紋圖研究仔稚魚在河口間的擴散模式—以鰕虎與鯛科為例。國立臺灣大學漁業科學研究所博士論文。 許桂菁、蔡昆展、邵廣昭、王建平與林弘都。2005。大眼華鯿親緣地理與族群遺傳結構之研究。生物學報,40(2),58-67。 陳鈺雯。2005。逕流曲線值應用於農業非點源污染模式之探討。國立中興大學水土保持學系碩士論文。 莊聖儀。2007。台灣初級淡水魚分布與棲地環境因子之關聯性。國立臺灣大學漁業科學研究所碩士論文。 陳睿騏。2022。以嵌套結構檢視都市綠地對群集生態的影響。國立臺灣大學森林環境暨資源學系碩士論文。 黃生、陳兆美、許素玲與呂勝由。1995。瀕絕物種烏來杜鵑的族群內遺傳變異研究。師大生物學報,30(2),63-68。 程柏榕。2016。翡翠水庫中上游魚類相與累積降雨及水質影響之研究。國立臺灣大學漁業科學研究所碩士論文。 黃鼎翔、李沛沂與孫建平。2012。不同空間尺度的棲息地河段地文因子與魚類豐度之關係探討。農業工程學報,58(1),47-55。 曾晴賢。2002。台灣河川洄游生物的習性。科學發展,352,4-11。 楊正雄、曾子榮、林瑞興、曾晴賢與廖德裕。2017。2017臺灣淡水魚類紅皮書名錄。行政院農業委員會特有生物研究保育中心。 葉治廷。2021。東亞地區台灣吻鰕虎(Rhinogobius formosanus)之生活史及族群遺傳。國立臺灣大學海洋研究所碩士論文。 褚思穎、謝平城與林俐玲。2008。逕流係數與逕流曲線值及坡度關係之研究。水土保持學報,40(3),305-314。 楊智超。2018。以衛星遙測技術評估台灣主要河川日本鰻棲地品質現況。國立臺灣大學漁業科學研究所碩士論文。 盧道杰。2008。封溪護漁(魚)資料庫建立及政策法規的回顧與檢討。行政院農業部林業及自然保育署。 鍾明璋。2023。翡翠水庫食蛇龜野生動物保護區之食蛇龜(Cuora flavomarginata)族群特性與變動趨勢。屏東科技大學野生動物保育研究所碩士論文。 鍾振德、洪西洲與簡慶德。2016。台灣油杉人工授粉對種子生產效應與葉綠體DNA遺傳。台灣林業科學,37(3),181-197。 鍾閔光與林俐玲。2015。土壤水文評估模式之介紹。水土保持學報,47(4),1539–1550。 Abrahart, R.J., See, L.M., Solomatine, D. (2008). Practical Hydroinformatics, Springer. Berlin. Aghakouchak A. & Habib, E. (2010). Application of a Conceptual Hydrologic Model in Teaching Hydrologic Processes. Int. J. Engng Ed, 26(4), 963–973. Andrew, M. E., & Fox, E. (2020). Modelling species distributions in dynamic landscapes: The importance of the temporal dimension. Journal of Biogeography, 47(7), 1510-1529. Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2013). SWAT 2012 input/output documentation. Texas Water Resources Institute. Arnold, J. G., Moriasi, D. N. , Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, D., van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508. Bateman, B. L., Pidgeon, A. M., Radeloff, V. C., Flather, C. H., VanDerWal, J., Akçakaya, H. R., Thogmartin, W. E., Albright, T. P., Vavrus, S. J., & Heglund, P. J. (2016). Potential breeding distributions of US birds predicted with both short‐term variability and long‐term average climate data. Ecological Applications, 26(8), 2720-2731. Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. (2002). Evaluating resource selection functions. Ecological Modelling, 157, 281-300. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 26(2), 211-243. Buisson, L., Blanc, L., & Grenouillet, G. (2008). Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecology of Freshwater Fish, 17(2), 244-257. Chen, Y. H. R, Tseng, H. W., Hsu., K. C., Chen, S. Y., Ke, C. C. & Chiang, L. C. (2023). Evaluation of hydrological responses to climate change for a data-scarce mountainous watershed in Taiwan. Journal of Water and Climate Change, 14(5), 1447. Chiang, L. C., Liao, C. J., Lu, C. M. & Wang, Y. C. (2021). Applicability of modified SWAT model (SWAT‑Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environ Monit Assess, 193(8), 520. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1), 37-46. Dauwalter, D. C., & Rahel, F. J. (2008). Distribution modelling to guide stream fish conservation: an example using the mountain sucker in the Black Hills National Forest, USA. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(7), 1263-1276. Elith, J., H. Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., ... & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677-697. Fielding, A. H., Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38-49 Franklin, J. (2010). Mapping species distributions: spatial inference and prediction. Cambridge University Press. Grossman, G. D., & Ratajczak Jr, R. E. (1998). Long‐term patterns of microhabitat use by fish in a southern Appalachian stream from 1983 to 1992: effects of hydrologic period, season and fish length. Ecology of Freshwater Fish, 7(3), 108-131. Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., . . . Wintle, B. A. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3), 276-292. Guisan, A., & Zimmermann, E. N. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186. Han, M., Fukushima, M., Kameyama, S., Fukushima, T., & Matsushita, B. (2008). How do dams affect freshwater fish distributions in Japan? Statistical analysis of native and nonnative species with various life histories. Ecological Research, 23(4), 735-743. Hardin, G. (1960). The competitive exclusion principle: an idea that took a century to be born has implications in ecology, economics, and genetics. science, 131(3409), 1292-1297. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the royal statistical society. series c (applied statistics), 28(1), 100-108. Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30(6), 751-777. Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological‐niche factor analysis how to compute habitat‐suitability maps without absence data. Ecology, 83(7), 2027-2036. Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 142-152. Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-42 Ke´ry, M. 2000. Ecology of small populations. Dissertation. University of Zu¨ rich, Zu¨ rich, Switzerland. Kendall, M. G., Stuart, A. (1977). The advanced theory of statistics. Griffin. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174. Leathwick, J. R., Elith, J., Chadderton, W. L., Rowe, D., & Hastie, T. (2008). Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. Journal of Biogeography, 35(8), 1481-1497. Lin, C. J., Lin, H. D., Wang, J. P., Chao, S. C. & Chiang, T. Y. (2010). Phylogeography of Hemibarbus labeo (Cyprinidae): secondary contact of ancient lineages of mtDNA. Zoologica Scripta, 39(1), 23–35. Liu, C., White, M. & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778-789. MacArthur, R. H. (1957). On the relative abundance of bird species. Proceedings of the National Academy of Sciences, 43(3), 293-295. Matthews, W. J., Hough, D. J., & Robison, H. W. (1992). Similarities in fish distribution and water quality patterns in streams of Arkansas: congruence of multivariate analyses. Copeia, 296-305. McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276-282. Nepal, S., Flügel, W. A., & Shrestha, A. B. (2014). Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecological Processes, 3(1), 1-16. Oberdorff, T., Pont, D., Hugueny, B., & Chessel, D. (2001). A probabilistic model characterizing fish assemblages of French rivers_a framework for environmental assessment. Freshwater Biology, 46, 399-415. Olden, J. D., & Jackson, D. A. (2002). A comparison of statistical approaches for modelling fish species distributions. Freshwater biology, 47(10), 1976-1995. Pearce, J., & Lindenmayer, D. (1998). Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern Australia. Restoration ecology, 6(3), 238-243. Pearce, J. L., & Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43(3), 405-412. Pearson R. G. & Dawson T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology & Biogeography, 12, 361–371. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. Radinger, J., Essl, F., Holker, F., Horky, P., Slavik, O., & Wolter, C. (2017). The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers. Glob Chang Biol, 23(11), 4970-4986. Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One, 8(8), e71218. Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Stalnaker, C. B., Bovee, K. D., & Waddle, T. J. (1996). Importance of the temporal aspects of habitat hydraulics to fish population studies. Regulated Rivers: Research & Management, 12(2‐3), 145-153. Suen, J.-P., & Herricks, E. E. (2009). Developing fish community based ecohydrological indicators for water resources management in Taiwan. Hydrobiologia, 625(1), 223-234. Tsai, W. P., Huang, S. P., Cheng, S. T., Shao, K. T., & Chang, F. J. (2017). A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map. Sci Total Environ, 579, 474-483. Tsunagawa, T., Arai, T. (2008). Flexible migration of Japanese freshwater gobies Rhinogobius spp. as revealed by otolith Sr:Ca ratios. Journal of Fish Biology, 73, 2421–2433. Wang, T. Y., Liao, T. Y. & Tzeng, C. S. (2007). Phylogeography of the Taiwanese Endemic Hillstream Loaches, Hemimyzon formosanus and H. taitungensis (Cypriniformes: Balitoridae). Zoological Studies, 46(6), 547-560. Ward, G., Hastie, T., Barry, S., Elith, J., & Leathwick, J. R. (2009). Presence-only data and the em algorithm. Biometrics, 65(2), 554-563. Westgate, M. J., Likens, G. E., & Lindenmayer, D. B. (2013). Adaptive management of biological systems: a review. Biological Conservation, 158, 128-139. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91769 | - |
| dc.description.abstract | 淡水生態系統多樣而複雜,位於新店溪中上游之北勢溪與南勢溪集水區具有豐富之生物多樣性,數十種淡水魚類棲居其中,各自選擇適宜之棲息環境,佔據特定河段、展現局部遷移行為或是降海洄游等特性,皆為本區常見之生態行為。然而,魚類族群生存受到棲地損失、棲地破碎化、外來入侵種、環境劣化等威脅,因此釐清淡水魚類族群在現有環境條件下的生存狀況是落實生態保育不可或缺的工作。
本研究整合穩態與動態環境因子,考量地文、氣象、水文三類因子,利用SWAT(Soil and Water Assessment Tool)模式模擬河川流量,並透過生態棲位因素分析(Ecological Niche Factor Analysis, ENFA)建立魚類分布模型,以棲地適宜性指數、分布範圍、分布樣態等面向探討魚類物種分布的時空動態變化,並建立視覺化地圖,呈現魚類於北勢溪與南勢溪集水區之適宜河段,最後利用上述分布特徵指標,以K-means進行分群,針對不同類群的魚種提供具體的保育建議。 研究結果顯示,ENFA模式模擬19個目標物種,多數模式表現達到0.6以上,而不同魚種在棲地適宜性指數、分布範圍、分布樣態等面向上多展現不同的動態類型,K-means分群結果則將19種魚類以其分布特徵分為三種類型。第一種類型包含纓口臺鰍、臺灣白甲魚、臺灣石𩼧、臺灣鬚鱲、唇䱻、粗首馬口鱲、中華花鰍、長脂瘋鱨、明潭吻鰕虎、香魚等,棲地適宜性指數高,分布範圍較廣,分布樣態相似性高,適合以維持現況與監測作為保育策略;第二種類型包含大眼華鯿、短吻小鰾鮈、圓吻鯝、日本鰻鱺,棲地適宜性指數低,分布範圍居中,分布樣態相似性亦中等,但分布範圍週期性低,適合以棲地維護為保育策略;第三種類型則包含臺灣間爬岩鰍、䱗、臺灣吻鰕虎、極樂吻鰕虎、吉利非鯽,棲地適宜性指數中等,分布範圍小,分布樣態相似性低,而分布範圍週期性高,適合以促進河川連結性作為保育策略。 本研究顯示此模型架構可應用於淡水魚類之分布動態,根據其棲地喜好與生態行為以及多魚種分布之重要河段位置,依據需求進行天然河道狀態維護、增加河川連通性、封溪護魚、族群監測等措施之配置與調整,融合適應性經營管理等治理方式,提供棲地保育策略之參考。 | zh_TW |
| dc.description.abstract | The freshwater ecosystem is diverse and complex. Located at the upper reaches of Xindian River, the watershed of Beishi and Nanshi River has rich biodiversity, with dozens of freshwater fish residing there. They each select suitable habitat environments, occupy specific river segments, exhibit localized migration behaviors, or engage in downstream migrations, all of which are common ecological behaviors in this area. However, the survival of fish population is threatened by habitat loss, habitat fragmentation, invasive species, environmental degradation, and etc. Therefore, clarifying the survival status of freshwater fish under existing environmental conditions is indispensable for the implementation of ecological conservation.
This study integrates static and dynamic environmental factors across three key domains: geographical, meteorological, and hydrologic aspects. It applies the SWAT (Soil and Water Assessment Tool) model to simulate river flow, and establishes a comprehensive fish distribution model through Ecological Niche Factor Analysis (ENFA), delineating different spatiotemporal dynamics of fish species distribution based on habitat suitability index, distribution extent, and pattern. Through the development of visualization maps, this study identifies suitable river segments for freshwater fish in the Beishi and Nanshi River. At the end, utilizing the aforementioned distribution characteristic indicators, K-means clustering is applied to categorize different fish species groups and provide specific conservation recommendations. The research findings reveal that the species-specific ENFA model successfully simulated 19 target fish species, with a majority of the models achieving a model performance score in the Continuous Boyce Index of 0.6 or higher. These models demonstrate diverse dynamic characteristics of fish species, encompassing habitat suitability, distribution extent, and distribution pattern. The application of K-means clustering categorized the 19 fish species into three types with different distribution characteristics. The first type comprises species such as river loach (Formosania lacustre), Taiwan shovel-jaw carp (Onychostoma barbatulum), Taiwan striped barb (Acrossocheilus paradoxus), Formosan stripe dace (Candidia barbata), barbel steed (Hemibarbus labeo), thickhead chub (Opsariichthys pachycephalus), Siberian spiny loach (Cobitis sinensis), bagrid catfish (Tachysurus adiposalis), goby (Rhinogobius candidianus), and ayu sweetfish (Plecoglossus altivelis). These species exhibit a high suitability index, wide distribution extent, and a notable similarity in distribution pattern. Consequently, they are deemed suitable for conservation strategies that emphasize maintaining the current state and implementing monitoring measure. In contrast, the second type encompasses species such as large-eye Chinese bream (Sinibrama macrops), short-nose gudgeon (Microphysogobio brevirostris), round snout (Distoechodon tumirostris), and Japanese eel (Anguilla japonica). These species possess a low suitability index, a moderate distribution extent, and a moderate similarity in distribution pattern. However, their distribution extent demonstrates low periodicity, rendering them suitable candidates for conservation strategies focused on habitat maintenance. The third type consists Formosan river loach (Hemimyzon formosanus), sharpbelly (Hemiculter leucisculus), goby (Rhinogobius formosanus), barcheek goby (Rhinogobius similis), and redbelly tilapia (Coptodon zillii). These species have a moderate habitat suitability index, a small distribution extent, and a low similarity in distribution pattern. Nevertheless, their distribution extent displays high periodicity, making them well-suited for conservation strategies centered around promoting river connectivity. This study demonstrates the applicability of the model framework to the distribution dynamics of freshwater fish. Depending on specific needs of habitat preferences, ecological behaviors, and the importance of river segments, conservation strategy can be developed or adjusted the allocation of measures, including maintaining natural river environment, enhancing river connectivity, protecting fish species through stream closure and monitoring, and providing references for integrate adaptive management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:38:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:38:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 摘要 IV ABSTRACT VI 目次 IX 圖次 XII 表次 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 第二章、文獻回顧 4 2.1 物種分布模式 4 2.2 魚類物種分布研究 6 2.3 物種分布模式種類 8 2.4 物種分布模式時空變異性 11 第三章 材料與方法 12 3.1 研究流程 12 3.2 魚類物種分布模式之建立 13 3.2.1 SWAT流量模擬 13 3.2.2 魚類物種分布模式之建立 16 3.2.3 環境因子之選用與模式取用軸數選取 20 3.2.4 模式表現評估 23 3.2.6 物種出現閾值與模式驗證表現 24 3.3 魚類物種分布模式之應用 25 3.3.1 研究區域概述 25 3.3.2 資料概述、前處理與目標物種挑選 27 3.4 物種分布時空變異分析 30 3.4.1 物種分布範圍與樣態 30 3.4.2 物種分布之分群 32 3.4.3 繪製物種分布地圖 33 第四章 結果 34 4.1 SWAT流量模擬成果 34 4.2 ENFA物種分布模擬成果 41 4.2.1 環境因子重要性與動態環境因子選取結果 41 4.2.2 ENFA模式表現 42 4.2.3 物種分布範圍變化 44 4.2.4 物種分布樣態相似性 49 4.2.5 物種分布範圍週期性 50 4.2.6 物種分布之分群 53 第五章 討論 54 5.1 第一種類型魚類分布狀況與保育 54 5.1.1 爬鰍科與鱨科 55 5.1.2 鯉科 56 5.1.3 鰕虎科 58 5.1.4 外來種 58 5.2 第二種類型魚類分布狀況與保育 59 5.2.1 鯉科 59 5.2.2 日本鰻鱺 61 5.3 第三種類型魚類分布狀況與保育 62 5.3.1 爬鰍 62 5.3.2 鰕虎科 63 5.3.3 鯉科 64 5.3.4 外來種 64 5.3 棲地保育建議 65 5.4 模式限制 67 第六章 結論 69 第七章 引用文獻 71 附錄一:棲地適宜性指數地圖 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 淡水生態系 | zh_TW |
| dc.subject | 整合模型方法 | zh_TW |
| dc.subject | 魚類物種分布模式 | zh_TW |
| dc.subject | 生態棲位因素分析 | zh_TW |
| dc.subject | 動態環境因子 | zh_TW |
| dc.subject | 保育 | zh_TW |
| dc.subject | Fish species distribution model | en |
| dc.subject | Freshwater ecosystem | en |
| dc.subject | Conservation | en |
| dc.subject | Dynamic environmental factors | en |
| dc.subject | Ecological Niche Factor Analysis | en |
| dc.subject | Integrated modeling approach | en |
| dc.title | 以整合生態模型方法評估淡水魚類分布之時空變化 | zh_TW |
| dc.title | An Integrated Ecosystem Modeling Approach to Assess Spatio-temporal Changes of Freshwater Fish Distribution | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉奇璋;葉明峰;江莉琦 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Chang Liu;Ming-Fon Yeh;Li-Chi Chiang | en |
| dc.subject.keyword | 淡水生態系,整合模型方法,魚類物種分布模式,生態棲位因素分析,動態環境因子,保育, | zh_TW |
| dc.subject.keyword | Freshwater ecosystem,Integrated modeling approach,Fish species distribution model,Ecological Niche Factor Analysis,Dynamic environmental factors,Conservation, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202400395 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 7.65 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
