Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇zh_TW
dc.contributor.advisorHung-Yu Weien
dc.contributor.author林泓均zh_TW
dc.contributor.authorHung-Chun Linen
dc.date.accessioned2024-02-22T16:36:15Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-01-31-
dc.identifier.citation[1] 3GPP, “Architectural enhancements for 5G multicast-broadcast services ,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 23.247, 04 2023, version 17.6.0.
[2] ——, “5G ; NR; Radio Resource Control (RRC); Protocol specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.331, 07 2022, version 17.1.0.
[3] A. T. Koc, S. C. Jha, R. Vannithamby, and M. Torlak, “Device power saving and latency optimization in LTE-A networks through DRX configuration,” IEEE Transactions on Wireless Communications, vol. 13, no. 5, pp. 2614–2625, 2014.
[4] S. Fowler, R. S. Bhamber, and A. Mellouk, “Analysis of adjustable and fixed DRX mechanism for power saving in LTE/LTE-Advanced,” in 2012 IEEE International Conference on Communications (ICC), 2012, pp. 1964–1969.
[5] H.-W. Ferng and T.-H. Wang, “Exploring flexibility of DRX in LTE/LTE-A: Design of dynamic and adjustable DRX,” IEEE Transactions on Mobile Computing, vol. 17, no. 1, pp. 99–112, 2018.
[6] S. H. A. Shah, S. Aditya, and S. Rangan, “Power-efficient beam tracking during connected mode DRX in mmWave and sub-THz systems,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1711–1724, 2021.
[7] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.
[8] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 26.346, 08 2022, version 17.0.0.
[9] ——, “Study on mission critical services over 5G multicast broadcast system,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 23.774, 03 2020, version 17.0.0.
[10] ——, “5G multicast-broadcast services; User service architecture,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 26.502, 04 2023, version 17.4.0.
[11] M. Luby, “Lt codes,” in The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., 2002, pp. 271–280.
[12] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551–2567, 2006.
[13] L. Minder, A. Shokrollahi, M. Watson, M. Luby, and T. Stockhammer, “RaptorQ Forward Error Correction Scheme for Object Delivery,” RFC 6330, Aug. 2011. [Online]. Available: https://www.rfc-editor.org/info/rfc6330
[14] A. Shokrollahi and M. Luby, “Raptor codes,” Foundations and Trends® in Communications and Information Theory, vol. 6, no. 3–4, pp. 213–322, 2011. [Online]. Available: http://dx.doi.org/10.1561/0100000060
[15] R. D. Yates, E. Najm, E. Soljanin, and J. Zhong, “Timely updates over an erasure channel,” in 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017, pp. 316–320.
[16] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2731–2735.
[17] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.
[18] J. Östman, R. Devassy, G. Durisi, and E. Uysal, “Peak-age violation guarantees for the transmission of short packets over fading channels,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2019, pp. 109–114.
[19] V. Tripathi, R. Talak, and E. Modiano, “Information freshness in multi-hop wireless networks,” IEEE/ACM Transactions on Networking, 2022.
[20] R. D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess channels,” in 2017 IEEE International Symposium on Information Theory (ISIT), 2017, pp. 331–335.
[21] M. Zhang, A. Arafa, J. Huang, and H. V. Poor, “Pricing fresh data,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1211–1225, 2021.
[22] S. Zhang, J. Li, H. Luo, J. Gao, L. Zhao, and X. Sherman Shen, “Low-latency and fresh content provision in information-centric vehicular networks,” IEEE Transactions on Mobile Computing, vol. 21, no. 5, pp. 1723–1738, 2022.
[23] Y.-H. Chiang, H. Lin, Y. Ji, and W. Liao, “Freshness-aware energy saving in cellular systems with cooperative information updates,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.
[24] M. Moltafet, M. Leinonen, M. Codreanu, and N. Pappas, “Power minimization for age of information constrained dynamic control in wireless sensor networks,” IEEE Transactions on Communications, vol. 70, no. 1, pp. 419–432, 2022.
[25] Y. Wang and W. Chen, “Adaptive power and rate control for real-time status updating over fading channels,” IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp. 3095–3106, 2021.
[26] Y. Gu, H. Chen, Y. Zhou, Y. Li, and B. Vucetic, “Timely status update in internet of things monitoring systems: An age-energy tradeoff,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5324–5335, 2019.
[27] J. Gong, X. Chen, and X. Ma, “Energy-age tradeoff in status update communication systems with retransmission,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.
[28] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Scheduling policies for minimizing age of information in broadcast wireless networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2637–2650, 2018.
[29] Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for minimizing age of information in wireless broadcast networks with random arrivals,” IEEE Transactions on Mobile Computing, vol. 19, no. 12, pp. 2903–2915, 2020.
[30] I. Kadota and E. Modiano, “Minimizing the age of information in wireless networks with stochastic arrivals,” IEEE Transactions on Mobile Computing, vol. 20, no. 3, pp. 1173–1185, 2021.
[31] E. T. Ceran, D. Gündüz, and A. György, “A reinforcement learning approach to age of information in multi-user networks with HARQ,” IEEE Journal on Selected Areas in Communications, vol. 39, pp. 1412–1426, 2021.
[32] Z. Tang, N. Yang, P. Sadeghi, and X. Zhou, “Age of information in downlink systems: Broadcast or unicast transmission?” IEEE Journal on Selected Areas in Communications, vol. 41, no. 7, pp. 2057–2070, 2023.
[33] J. Zhong, E. Soljanin, and R. D. Yates, “Status updates through multicast networks,” in 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2017, pp. 463–469.
[34] J. Zhong, R. D. Yates, and E. Soljanin, “Multicast with prioritized delivery: How fresh is your data?” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2018, pp. 1–5.
[35] B. Buyukates, A. Soysal, and S. Ulukus, “Age of information in multihop multicast networks,” Journal of Communications and Networks, vol. 21, no. 3, pp. 256–267, 2019.
[36] Y. Chen, H. Tang, and J. Wang, “Optimizing age of information in multicast unilateral networks,” in 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2020, pp. 1–4.
[37] J. Li, Y. Zhou, and H. Chen, “Age of information for multicast transmission with fixed and random deadlines in iot systems,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8178–8191, 2020.
[38] Y.-P. Hsu, “Efficient broadcast for timely updates in mobile networks,” IEEE Communications Letters, vol. 25, no. 6, pp. 1969–1973, 2021.
[39] S. Nath, J. Wu, and J. Yang, “Optimum energy efficiency and age-of-information tradeoff in multicast scheduling,” in 2018 IEEE International Conference on Communications (ICC). IEEE, 2018, pp. 1–6.
[40] M. Xie, J. Gong, and X. Ma, “Age-energy tradeoff of short packet based transmissions in multicast networks with ARQ,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020, pp. 1–5.
[41] H. Wei and N. Deng, “On the age of information in wireless networks using rateless codes,” IEEE Access, vol. 8, pp. 173 147–173 157, 2020.
[42] S. Meng, S. Wu, A. Li, J. Jiao, N. Zhang, and Q. Zhang, “Analysis and optimization of spinal codes over the bsc: from the aoi perspective,” in 2021 IEEE International Conference on Communications Workshops (ICC Workshops), 2021, pp. 1–6.
[43] B. Wang, S. Feng, and J. Yang, “When to preempt? age of information minimization under link capacity constraint,” Journal of Communications and Networks, vol. 21, no. 3, pp. 220–232, 2019.
[44] Y. Wang, S. Wu, J. Jiao, W. Wu, Y. Wang, and Q. Zhang, “Age-optimal transmission policy with HARQ for freshness-critical vehicular status updates in space–air–ground-integrated networks,” IEEE Internet of Things Journal, vol. 9, no. 8, pp. 5719–5729, 2022.
[45] B. Zhou and W. Saad, “Minimum age of information in the internet of things with non-uniform status packet sizes,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 1933–1947, 2020.
[46] X. Xie, H. Wang, L. Yu, and M. Weng, “Online algorithms for optimizing age of information in the iot systems with multi-slot status delivery,” IEEE Wireless Communications Letters, vol. 10, no. 5, pp. 971–975, 2021.
[47] S. Feng and J. Yang, “Age-optimal transmission of rateless codes in an erasure channel,” in 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6.
[48] L. Sharma, B. Kumar, and S.-L. Wu, “Performance analysis and adaptive DRX scheme for dual connectivity,” IEEE Internet of Things Journal, vol. 6, pp. 10 289–10 304, 2019.
[49] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with packet management,” 2014 IEEE International Symposium on Information Theory, pp. 1583–1587, 2014.
[50] ——, “On the age of information in status update systems with packet management,” IEEE Transactions on Information Theory, vol. 62, no. 4, pp. 1897–1910, 2016.
[51] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed. USA: John Wiley & Sons, Inc., 1994.
[52] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed. Athena Scientific, 2007, vol. 2.
[53] W. B. Powell, Approximate Dynamic Programming: Solving the curses of dimensionality. John Wiley & Sons, 2007, vol. 703.
[54] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Optimal sampling and scheduling for timely status updates in multi-source networks,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 4019–4034, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91761-
dc.description.abstract在下一代無線網絡迅疾發展之際,確保數據新鮮度已成為一項關鍵挑戰。本文提出了針對使用資訊年齡(AoI)作為主要指標以提升先進網絡中數據新鮮度的深入分析。我們的研究分為兩個不同但同等重要之網路模型:通過不連續接收(DRX)機制的節能系統和基於無碼率編碼的多播網絡,每一領域對下一代無線技術的功能和效率皆至關重要。

此研究之第一部分,我們深入探討了作為下一代無線網絡用戶設備(UE)節能策略的DRX機制。我們嚴謹地分析了這些機制對資訊年齡的影響,探討了DRX如何平衡能源效率與即時訊息更新的需求。當電力資源有限但對最新訊息的需求高時,此一平衡尤為關鍵。我們的分析包括了對時間平均資訊年齡(TAoI)和峰值平均資訊年齡(PAoI)的影響,求解不同DRX參數所能得到的封閉解,並進一步找出在功耗限制下優化這些參數以最小化資訊年齡之最優策略。

此外,本研究亦擴展至下一代無線應用中新興的無碼率編碼多播啟用感測器網絡領域,例如5G的多播廣播服務(MBS)。此處,我們專注於無碼率編碼策略在多播設置中對資訊年齡的影響,特別是在多樣化的通道條件下。我們將問題轉化為馬可夫決策過程(MDP),以找到最優和具有低複雜度之次優策略,並提出了基於無碼率編碼的無線多播系統的首個最小資訊年齡演算法。我們將提出的最優和次優策略與其他基線策略進行比較,結果顯示我們的策略在資訊年齡方面一致優於其他策略。

通過並置此二相異之研究領域,我們的論文凸顯了在下一代無線網絡中管理資訊年齡的多面性。本文提供了一個全面的視角,展示了如何藉由策略的進步達到於DRX系統和多播網絡維持高數據新鮮度的目標,並為不同網絡場景中資訊年齡的動態提供了更深入的理解。
zh_TW
dc.description.abstractIn the rapidly evolving landscape of next-generation wireless networks, ensuring data freshness has emerged as a critical challenge. This thesis presents an in-depth analysis employing Age of Information (AoI) as the principal metric to enhance data freshness in these advanced networks. Our study is divided into two distinct yet equally vital network models: energy-saving systems by the Discontinuous Reception (DRX) mechanism and rateless coding-based multicast networks, each pivotal for the functionality and efficiency of next-generation wireless technologies.

In the first part of our investigation, we delve into the DRX mechanism implemented as an energy-saving strategy in user equipment (UE) for next-generation wireless networks. We rigorously analyze the impact of the mechanisms on AoI, exploring how DRX can balance the trade-off between energy efficiency and the need for timely information updates. This is particularly crucial when power resources are limited, yet the demand for up-to-date information is high. Our analysis includes the impact on both time-average AoI (TAoI) and peak-average AoI (PAoI), obtaining closed-form solutions with various DRX parameters and optimizing DRX parameters to minimize the AoI with a constraint power consumption.

Additionally, the study extends to the realm of rateless coding in multicast-enabled sensor networks, an emerging area in next-generation wireless applications. For instance, the 5G multicast broadcast service (MBS). Here, we focus on how rateless coding strategies impact the AoI in a multicast setting, particularly under diverse channel conditions. We transform the problem into a Markov Decision Process (MDP) to locate optimal and low-complexity suboptimal policies and present the first age-minimum scheme for rateless code-based wireless multicast systems. The proposed optimal and suboptimal policies are compared with other baseline strategies, and it has shown that our strategies consistently outperform the others in terms of AoI.

By juxtaposing these two distinct research areas, our thesis highlights the multifaceted nature of AoI management in next-generation wireless networks. It presents a holistic view, showing how improvements in strategies can contribute to the goal of maintaining high data freshness in both DRX systems and multicast networks, and provides a deeper understanding of the dynamics of AoI in different network scenarios.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:36:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:36:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract v
Chapter 1. Introduction 1
Chapter 2. Background 7
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 5G MBS architecture and feedback mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3. Age of Information for Power-Saving Devices with DRX Mechanism 13
3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Status update system with DRX mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 DRX states transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Sleep ratio and Average age with DRX mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Sleep ratio 𝛾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Overview of average AoI calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Effective arrival rate 𝜆𝑒 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 E[𝐷𝑘−1 ] and PAoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 E[𝑌 2𝑘 ] and TAoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 AoI-minimized DRX service policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Optimizing PAoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Optimizing TAoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Chapter 4. Age of Information in Rateless Coding-Based Multicast-Enabled Sensor Networks 35
4.1 System model and problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Wireless multicast status update system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Mathematical formulation of system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 Age of Information transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Markov decision process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Optimal policy and structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 State space reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Bellman equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Solution of the optimal policy with structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Low Complexity suboptimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Decomposition of Bellman equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Decentralized structure-aware low-complexity RVIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Chapter 5. Simulation Results 57
5.1 Age of Information with DRX mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 PAoI and TAoI comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.3 Average AoI and sleep ratio performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.4 Discussion of delay performance with AoI-minimized policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.5 Analysis of sleep ratio thresholds under varying rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Age of Information in multicast system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Observations from the actions obtained by the optimal and suboptimal policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3 Simulations for time-average AoI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Chapter 6. Conclusions 75
Bibliography 77
Appendix A: Proof of Theorem 2 85
Appendix B: Proof of Lemma 2 87
Appendix C: Proof of Lemma 3 91
Appendix D: Proof of Theorem 3 93
Appendix E: Proof of Proposition 4 95
-
dc.language.isoen-
dc.subject下世代無線網路zh_TW
dc.subject第五世代通訊(5G)zh_TW
dc.subject資料新鮮度zh_TW
dc.subject資訊年齡(AoI)zh_TW
dc.subject節能zh_TW
dc.subject不連續接收(DRX)zh_TW
dc.subject多播zh_TW
dc.subject無碼率編碼zh_TW
dc.subject馬可夫決策過程(MDP)zh_TW
dc.subjectmulticasten
dc.subjectNext-generation Wireless networken
dc.subjectDiscontinuous Reception (DRX)en
dc.subject5Gen
dc.subjectData freshnessen
dc.subjectAge of Information (AoI)en
dc.subjectenergy-savingen
dc.subjectMarkov Decision Process (MDP)en
dc.subjectrateless codeen
dc.title以資訊年齡為指標之下世代無線網絡資料新鮮度:專注於節能及多播系統zh_TW
dc.titleData Freshness in Next-Generation Wireless Networks Using Age of Information: A focus on energy-saving and multicast systemen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee馮輝文;王奕翔;許裕彬zh_TW
dc.contributor.oralexamcommitteeHuei-Wen Ferng;I-Hsiang Wang;Yu-Pin Hsuen
dc.subject.keyword下世代無線網路,第五世代通訊(5G),資料新鮮度,資訊年齡(AoI),節能,不連續接收(DRX),多播,無碼率編碼,馬可夫決策過程(MDP),zh_TW
dc.subject.keywordNext-generation Wireless network,5G,Data freshness,Age of Information (AoI),energy-saving,Discontinuous Reception (DRX),multicast,rateless code,Markov Decision Process (MDP),en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202400006-
dc.rights.note未授權-
dc.date.accepted2024-02-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved