請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91750完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌 | zh_TW |
| dc.contributor.advisor | Po-Huang Liang | en |
| dc.contributor.author | 盧愷玲 | zh_TW |
| dc.contributor.author | Hoi-Ling Vienn Lo | en |
| dc.date.accessioned | 2024-02-22T16:33:02Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-02 | - |
| dc.identifier.citation | Bayati, A., R. Kumar, V. Francis and P. S. McPherson (2021). "SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis." J Biol Chem 296: 100306.
Bojadzic, D., O. Alcazar, J. Chen, S.-T. Chuang, J. M. Condor Capcha, L. A. Shehadeh and P. Buchwald (2021). "Small-molecule inhibitors of the coronavirus spike: ACE2 protein–protein interaction as blockers of viral attachment and entry for SARS-CoV-2." ACS infectious diseases 7(6): 1519-1534. Butler, D. (2012). "Clusters of coronavirus cases put scientists on alert." Nature 492(7428): 166-167. Cao, Y., A. Yisimayi, F. Jian, W. Song, T. Xiao, L. Wang, S. Du, J. Wang, Q. Li and X. Chen (2022). "BA. 2.12. 1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection." Nature 608(7923): 593-602. Coronaviridae Study Group of the International Committee on Taxonomy of, V. (2020). "The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2." Nat Microbiol 5(4): 536-544. Gralinski, L. E. and V. D. Menachery (2020). "Return of the Coronavirus: 2019-nCoV." Viruses 12(2). Hansen, J., A. Baum, K. E. Pascal, V. Russo, S. Giordano, E. Wloga, B. O. Fulton, Y. Yan, K. Koon and K. Patel (2020). "Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail." Science 369(6506): 1010-1014. Hoffmann, M., H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N.-H. Wu and A. Nitsche (2020). "SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor." cell 181(2): 271-280. e278. Hu, B., H. Guo, P. Zhou and Z. L. Shi (2021). "Characteristics of SARS-CoV-2 and COVID-19." Nat Rev Microbiol 19(3): 141-154. Huang, C., Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu and X. Gu (2020). "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China." The lancet 395(10223): 497-506. Jackson, C. B., M. Farzan, B. Chen and H. Choe (2022). "Mechanisms of SARS-CoV-2 entry into cells." Nature reviews Molecular cell biology 23(1): 3-20. Ksiazek, T. G., D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer and W. Lim (2003). "A novel coronavirus associated with severe acute respiratory syndrome." New England journal of medicine 348(20): 1953-1966. Kuo, C.-J., T.-L. Chao, H.-C. Kao, Y.-M. Tsai, Y.-K. Liu, L. H.-C. Wang, M.-C. Hsieh, S.-Y. Chang and P.-H. Liang (2021). "Kinetic characterization and inhibitor screening for the proteases leading to identification of drugs against SARS-CoV-2." Antimicrobial Agents and chemotherapy 65(4): 10.1128/aac. 02577-02520. Lan, J., J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang and L. Zhang (2020). "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor." nature 581(7807): 215-220. Li, W., C. Zhang, J. Sui, J. H. Kuhn, M. J. Moore, S. Luo, S. K. Wong, I. C. Huang, K. Xu and N. Vasilieva (2005). "Receptor and viral determinants of SARS‐coronavirus adaptation to human ACE2." The EMBO journal 24(8): 1634-1643. Nami, B., A. Ghanaeian, K. Ghanaeian and N. Nami (2020). "The effect of ACE2 inhibitor MLN-4760 on the interaction of SARS-CoV-2 spike protein with human ACE2: a molecular dynamics study." Palla, S. R., C.-W. Li, T.-L. Chao, H.-L. V. Lo, J.-J. Liu, M. Y.-C. Pan, Y.-T. Chiu, W.-C. Lin, C.-W. Hu and C.-M. Yang (2023). "Synthesis, evaluation, and mechanism of 1-(4-(arylethylenylcarbonyl) phenyl)-4-carboxy-2-pyrrolidinones as potent reversible SARS-CoV-2 entry inhibitors." Antiviral Research 219: 105735. Peiris, J., S. Lai, L. Poon, Y. Guan, L. Yam, W. Lim, J. Nicholls, W. Yee, W. Yan and M. Cheung (2003). "Coronavirus as a possible cause of severe acute respiratory syndrome." The Lancet 361(9366): 1319-1325. Pinto, D., Y.-J. Park, M. Beltramello, A. C. Walls, M. A. Tortorici, S. Bianchi, S. Jaconi, K. Culap, F. Zatta and A. De Marco (2020). "Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody." Nature 583(7815): 290-295. Robbiani, D. F., C. Gaebler, F. Muecksch, J. C. Lorenzi, Z. Wang, A. Cho, M. Agudelo, C. O. Barnes, A. Gazumyan and S. Finkin (2020). "Convergent antibody responses to SARS-CoV-2 in convalescent individuals." Nature 584(7821): 437-442. Shang, J., Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach and F. Li (2020). "Cell entry mechanisms of SARS-CoV-2." Proc Natl Acad Sci U S A 117(21): 11727-11734. Sharma, G., L. F. Song and K. M. Merz (2022). "Effect of an Inhibitor on the ACE2-Receptor-Binding Domain of SARS-CoV-2." Journal of Chemical Information and Modeling 62(24): 6574-6585. Shin, Y. H., K. Jeong, J. Lee, H. J. Lee, J. Yim, J. Kim, S. Kim and S. B. Park (2022). "Inhibition of ACE2‐Spike Interaction by an ACE2 Binder Suppresses SARS‐CoV‐2 Entry." Angewandte Chemie 134(11): e202115695. Tong, P., A. Gautam, I. W. Windsor, M. Travers, Y. Chen, N. Garcia, N. B. Whiteman, L. G. McKay, N. Storm and L. E. Malsick (2021). "Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike." Cell 184(19): 4969-4980. e4915. Yuan, M., N. C. Wu, X. Zhu, C.-C. D. Lee, R. T. So, H. Lv, C. K. Mok and I. A. Wilson (2020). "A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV." Science 368(6491): 630-633. Zaki, A. M., S. Van Boheemen, T. M. Bestebroer, A. D. Osterhaus and R. A. Fouchier (2012). "Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia." New England Journal of Medicine 367(19): 1814-1820. Zhao, M.-M., W.-L. Yang, F.-Y. Yang, L. Zhang, W.-J. Huang, W. Hou, C.-F. Fan, R.-H. Jin, Y.-M. Feng and Y.-C. Wang (2021). "Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development." Signal transduction and targeted therapy 6(1): 134. Zhu, N., D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi and R. Lu (2020). "A novel coronavirus from patients with pneumonia in China, 2019." New England journal of medicine 382(8): 727-733. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91750 | - |
| dc.description.abstract | 在2019年,嚴重急性呼吸系統綜合症-冠狀病毒-2(SARS-CoV-2)引起了繼2003年SARS事件後,另一場全球性的疾病大流行(COVID-19),並奪走了很多人的性命。病毒表面的刺突蛋白通過其受體結合域(RBD)與人血管緊張素轉換酶2(ACE2)結合之後,造成宿主感染。破壞RBD和ACE2的相互作用可以阻止病毒的進入,來達致預防感染的效果,這是抗COVID-19的有用策略。在此論文中,我使用受桿狀病毒感染的昆蟲細胞表達含有N-端8個His標籤的重組Delta及 Omicron BA.5 RBD和ACE2,並利用Ni-NTA親和層析柱純化。接下來,利用BIAcore實驗鑑定出它們的相互作用,確定了delta及omicron BA.5 RBD:ACE2 KD 分別為 81.28 及 18.83 nM,結果顯示它們具有非常緊密的結合。在蛋白質-蛋白質相互作用抑制劑如合成化合物或天然產物的存在下,RBD:ACE2複合物會被解離。而熱位移測定實驗進一步確定了RBD是抑制劑的直接靶標。由於針對RBD的治療性抗體價格昂貴,我們發現的RBD:ACE2小分子抑制劑可以作為開發抗COVID-19藥物的起點。 | zh_TW |
| dc.description.abstract | In 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) led to another global pandemic, known as COVID-19, following the 2003 SARS outbreak, claiming numerous lives. For infection, the Spike protein on the surface of virus needs to bind with the human angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD). Disrupting the interaction of RBD and ACE2 could prevent the infection and represents a useful strategy for anti-COVID-19. In this thesis, baculovirus-infected insect cells were used to express the recombinant delta and omicron BA.5 RBD and ACE2 containing N-terminal His-tag and purified with Ni-NTA affinity column. Their interaction was characterized using BIAcore experiments to determine delta and omicron BA.5 RBD:ACE2 dissociation constants KD of 81.28 and 18.83 nM, respectively, a very tight binding. In the presence of protein-protein interaction inhibitors such as synthesized compounds or natural products, the complex was dissociated. The thermal shift experiments further identified the direct target of the inhibitors to be RBD. Since therapeutic antibodies against RBD are expensive, our discovery of small-molecule inhibitors of RBD:ACE2 could serve as a starting point for developing anti-COVID-19 drugs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:33:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:33:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 v
中文摘要 vi Abstract vii Abbreviations viii 1. Introduction 1 2. Materials and Methods 5 2.1. Materials 5 2.2. Expression of the recombinant SARS-CoV-2 RBD 5 2.3. Expression of the recombinant human ACE2 6 2.4. Purification of the RBD and ACE2 7 2.5. KD of RBD : ACE2 measured using Biacore 8 2.6. Binding assay 9 2.7. Thermal shift assay 10 2.8. Molecular docking 11 3. Results 12 3.1. Purification and characterization of the recombinant RBD and ACE2 12 3.2. Test of the functionality of RBD:ACE2 using surface plasmon resonance analysis 13 3.3. Test of the pyrrolidinone for inhibiting RBD:ACE2 interaction 13 3.4. Distinguishing the target of RBD:ACE2 inhibitors by Thermal shift experiments 14 3.5. Binding modes of the pyrrolidinone inhibitors with RBD 15 3.6. Evaluation of some FDA-approved drugs that shown their inhibitory effects on RBD:ACE2 interaction to inhibit SARS-CoV-2 entry previously 16 3.7. Test of the tea polyphenols and related natural products for inhibiting RBD:ACE2 17 3.8. Binding modes of the tea polyphenols with RBD 18 3.9. Test of the selected natural products for inhibiting RBD:ACE2 18 4. Discussion 19 5. Tables 23 Table 1. Inhibitory effects of compounds 2i against RBD:ACE2 and SARS-CoV-2 23 Table 2. Inhibitory effects of FDA-approved drug against RBD:ACE2 and SARS-CoV-2 24 Table 3. Inhibitory effects of natural products against RBD:ACE2 and SARS-CoV-2 25 6. Figures 27 Figure 1. The pathways for SARS-CoV-2 entry into cells 27 Figure 2. Expression of the recombinant SARS-CoV-2 RBD 28 Figure 3. Purification of the recombinant SARS-CoV-2 delta RBD 30 Figure 4. Purification of the recombinant SARS-CoV-2 omicron BA.5 RBD 31 Figure 5. Purification of the recombinant human ACE2 32 Figure 6. The KD of RBD:ACE2 measured using BIAcore 33 Figure 7. Inhibition of RBD:ACE2 by the synthesized inhibitor 81 measured by ELISA assay 34 Figure 8. Thermal shift experiments to measure the binding partner of 2f (81) 35 Figure 9. Modeled binding modes of the synthesized pyrrolidinone inhibitor 81 on RBD of the delta-strain Spike protein (PDB: 7w92) 36 Figure 10. The chemical structures of some selected flavonoids, flavanols, and polyphenols 37 Figure 11. The measurements of IC50 for the tea polyphenols and the related natural products against delta RBD:ACE2 interaction 38 Figure 12. Modeled binding mode of a selected natural product on RBD of the delta-strain Spike protein (PDB: 7w92) 40 Figure 13. The chemical structures of some selected unsaturated phenols, steroids with or without sugar moieties, etc. 41 7. Reference 42 | - |
| dc.language.iso | en | - |
| dc.subject | Spike受體結合域 | zh_TW |
| dc.subject | 嚴重急性呼吸系統綜合症-冠狀病毒-2 | zh_TW |
| dc.subject | 人血管緊張素轉換酶2 | zh_TW |
| dc.subject | 天然物 | zh_TW |
| dc.subject | ACE2 | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | Natural product | en |
| dc.subject | RBD | en |
| dc.title | SARS-CoV-2 Spike受體結合域與人血管緊張素轉換酶2的相互作用和抑制 | zh_TW |
| dc.title | Interaction and inhibition of SARS-CoV-2 Spike’s receptor binding domain and human angiotensin-converting enzyme 2 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭致榮;王慧菁 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Jung Kuo;Hui-Ching Wang | en |
| dc.subject.keyword | 嚴重急性呼吸系統綜合症-冠狀病毒-2,Spike受體結合域,人血管緊張素轉換酶2,天然物, | zh_TW |
| dc.subject.keyword | SARS-CoV-2,RBD,ACE2,Natural product, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202400333 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-05 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 1.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
