Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91736
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋zh_TW
dc.contributor.advisorJian-Jang Huangen
dc.contributor.author林岱頡zh_TW
dc.contributor.authorDai-Jie Linen
dc.date.accessioned2024-02-22T16:29:04Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2023-
dc.date.submitted2023-08-14-
dc.identifier.citation[1] F. A. Marino, N. Faralli, D. K. Ferry, S. M. Goodnick, and M. Saraniti, "Figures of merit in high-frequency and high-power GaN HEMTs," J. Phys.: Conf. Ser., vol. 193, pp. 012040, Nov. 2009.
[2] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Lett., vol. 10, No. 10, pp. 455-457, 1989.
[3] R.F. Davis and M. S. Shur, "GaN-Based Materials and Devices: Selected Topics in Electronics and Systems Volume 33", M. S. Shur Ed., ed: WORLD SCIENTIFIC, May 2004.
[4] E. A. Jones, F. Wang, and D. Costinett, "Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges," IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, No. 3, pp. 707-719, Sep 2016.
[5] L. F. S. Alves, R. C. M. Gomes, P. Lefranc, R. D. A. Pegado, P. O. Jeannin, B. A. Luciano and F. V. Rocha, "SIC power devices in power electronics: An overview," in 2017 Brazilian Power Electronics Conference (COBEP), pp. 1-8., Nov. 2017.
[6] J. Ballestín-Fuertes, J. Muñoz-Cruzado-Alba, J. F. Sanz-Osorio, and E. Laporta-Puyal, "Role of Wide Bandgap Materials in Power Electronics for Smart Grids Applications." Electronics, vol 10, No. 6, pp. 677, Mar. 2021.
[7] T. P. Chow, I. Omura, M. Higashiwaki, H. Kawarada, and V. Pala, "Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors," IEEE Trans. Electron Devices, vol. 64, No. 3, pp. 856-873, Mar. 2017.
[8] F. A. Ponce and D. P. Bour, "Nitride-based semiconductors for blue and green light-emitting devices," Nature, vol. 386, pp. 351-359, Mar. 1997.
[9] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, "GaN yellow-light emitting diodes," J. Lumin., vol. 6, pp. 54-60, Jan.1973.
[10] T. Ikoma and H. Watanabe, "Gallium Arsenide and Related Compounds 1989: Proceedings of the 16th International Symposium on Gallium Arsenide and Related Compounds", New York: Institute of Physics, 1990.
[11] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Appl. Phys. Lett., vol. 64, pp. 1687-1689, Mar. 1994.
[12] M. A. Khan, J. M. Van Hove, J. N. Kuznia, and D. T. Olson, "High electron mobility GaN/AlxGa1−xN heterostructures grown by low‐pressure metalorganic chemical vapor deposition," Appl. Phys. Lett., vol. 58, pp. 2408-2410, May 1991.
[13] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction," Appl. Phys. Lett., vol. 63, pp. 1214-1215, Aug. 1993.
[14] M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, "Metal semiconductor field effect transistor based on single crystal GaN," Appl. Phys. Lett., vol. 62, pp. 1786-1787, Apr.1993.
[15] A. Lidow, M. de Rooij, J. Strydom, D. Reusch and J. Glaser, "GaN Technology Overview," in GaN Transistors for Efficient Power Conversion, ed: WILEY, 2019, pp. 1-23.
[16] T. Mimura, "The early history of the high electron mobility transistor (HEMT)," IEEE Trans. Microw. Theory Tech., vol. 50, No. 3, pp. 780-782, 2002.
[17] T. Mimura, N. Yokoyama, H. Kusakawa, K. Suyama, and M. Fukuta, "MP-A4 GaAs MOSFET for low-power high-speed logic applications," IEEE Trans. Electron Devices, vol. 26, No. 11, pp. 1828-1828, 1979.
[18] A. I. Emon, H. Mustafeez ul, A. B. Mirza, J. Kaplun, S. S. Vala, and F. Luo, "A Review of High-Speed GaN Power Modules: State of the Art, Challenges, and Solutions," IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, No. 3, pp. 2707-2729, June 2023.
[19] B. J. Baliga, "Introduction," in Wide Bandgap Semiconductor Power Devices, B. J. Baliga, Ed., Ed: Woodhead Publishing, 2019, pp. 1-19.
[20] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R Dimitrov, A. Mitchell and M. Stutzman, "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," J. Appl. Phys., vol. 87, pp. 334-344, Jan. 2000.
[21] O. Ambacher, "Growth and applications of Group III-nitrides," J. Phys. D, vol. 31, No. 20, pp. 2653, Oct. 1998.
[22] D. A. Neumayer and J. G. Ekerdt, "Growth of Group III Nitrides. A Review of Precursors and Techniques," Chem. Mater., vol. 8, pp. 9-25, Jan. 1996.
[23] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, "III–nitrides: Growth, characterization, and properties," J. Appl. Phys., vol. 87, pp. 965-1006, Feb. 2000.
[24] S. Keller and S. P. DenBaars, "Metalorganic chemical vapor deposition of group III nitrides—a discussion of critical issues," J. Cryst. Growth, vol. 248, pp. 479-486, Feb. 2003.
[25] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "GaN: Processing, defects, and devices," J. Appl. Phys., vol. 86, No. 1, pp. 1-78, July 1999.
[26] P. M. Asbeck, "Electronic properties of III-nitride materials and basics of III-nitride FETs," in Semiconductors and Semimetals. vol. 102, R. Chu and K. Shinohara, Eds., Ed: Elsevier, 2019, pp. 1-40.
[27] F. Roccaforte, P. Fiorenza, R. Lo Nigro, F. Giannazzo, and G. Greco, "Physics and technology of gallium nitride materials for power electronics," Riv. Nuovo Cimento, vol. 41, No. 12, pp. 625-681, Dec. 2018.
[28] A. S. A. Fletcher and D. Nirmal, "A survey of Gallium Nitride HEMT for RF and high power applications," Superlattices Microstruct., vol. 109, pp. 519-537, Sep. 2017.
[29] X. G. He, D. G. Zhao, and D. S. Jiang, "Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression," Chin. Phys. B ., vol. 24, No.6, pp. 067301, Apr. 2015.
[30] E. A. Jones, F. Wang, and B. Ozpineci, "Application-based review of GaN HFETs," in 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, pp. 24-29, Nov. 2014.
[31] G. Sorrentino, M. Melito, A. Patti, G. Parrino, and A. Raciti, "GaN HEMT devices: Experimental results on normally-on, normally-off and cascode configuration," in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 816-821, Nov. 2013,.
[32] S. Elangovan, S. Cheng, and E. Y. Chang, "Reliability Characterization of Gallium Nitride MIS-HEMT Based Cascode Devices for Power Electronic Applications." Energies, vol. 13, No. 10, pp. 2628, May 2020.
[33] R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes and K. Boutros, "1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic on-Resistance," IEEE Electron Device Lett., vol. 32, No. 5, pp. 632-634, May 2011.
[34] C. Yong, Z. Yugang, K. J. Chen, and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," IEEE Electron Device Lett., vol. 26, No. 7, pp. 435-437, July 2005.
[35] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, "Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications," IEEE Trans. Electron Devices, vol. 53, No. 2, pp. 356-362, Feb. 2006.
[36] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S. Shur and H. Park, "Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors," Appl. Phys. Lett., vol. 68, No. 4, pp. 514-516, Jan. 1996.
[37] S. Huang, X. Wang, X. Liu, Y. Wang, J. Fan, S. Yang, H. Yin, K. Wei, W. Wang and H. Gao, "Monolithic integration of E/D-mode GaN MIS-HEMTs on ultrathin-barrier AlGaN/GaN heterostructure on Si substrates," Appl. Phys. Expresss, vol. 12, No. 2, pp. 024001, Jan. 2019.
[38] T. Oka and T. Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications," IEEE Electron Device Lett., vol. 29, No. 7, pp. 668-670, July 2008.
[39] Q. Hu, S. Li, T. Li, X. Wang, X. Li, and Y. Wu, "Channel Engineering of Normally-OFF AlGaN/GaN MOS-HEMTs by Atomic Layer Etching and High- κ Dielectric," IEEE Electron Device Lett., vol. 39, No. 9, pp. 1377-1380, Sep. 2018.
[40] Y. He, H. Gao, C. Wang, Y. Zhao, X. Lu, C. Zhang, X. Zheng, L. Guo, X. Ma and Y. Hao., "Comparative Study Between Partially and Fully Recessed-Gate Enhancement-Mode AlGaN/GaN MIS HEMT on the Breakdown Mechanism," Phys. Status Solidi A, vol. 216, pp. 1900115, Aug. 2019.
[41] M. Su, C. Chen, and S. Rajan, "Prospects for the application of GaN power devices in hybrid electric vehicle drive systems," Semicond Sci Technol, vol. 28, No. 7, pp. 074012, June 2013.
[42] L. Y. Su, F. Lee, and J. J. Huang, "Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer," IEEE Trans. Electron Devices, vol. 61, No. 2, pp. 460-465, Feb. 2014.
[43] O. Hilt, E. Bahat-Treidel, E. Cho, S. Singwald, and J. Würfl, "Impact of buffer composition on the dynamic on-state resistance of high-voltage AlGaN/GaN HFETs," in 2012 24th International Symposium on Power Semiconductor Devices and ICs, pp. 345-348, June 2012.
[44] X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M. S. Shur. "Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate", Electron. Lett., vol 36, No. 8, pp. 753-754, Apr. 2000.
[45] G. Greco, F. Iucolano, and F. Roccaforte, "Review of technology for normally-off HEMTs with p-GaN gate," Mater. Sci. Semicond, vol. 78, pp. 96-106, May 2018.
[46] I. Daumiller, D. Theron, C. Gaquiere, A. Vescan, R. Dietrich, A. Wieszt, H. Leier, R. Vetury, U. K. Mishra, I. P. Smorchkova, S. Keller, C. Nguyen and E. Kohn, "Current instabilities in GaN-based devices," IEEE Electron Device Lett., vol. 22, pp. 62-64, Feb. 2001.
[47] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, P. Doewon, H. B. Dietrich, D. D. Koleske, A. E. Wickenden and R. L. Henry, "Trapping effects and microwave power performance in AlGaN/GaN HEMTs," IEEE Trans. Electron Devices, vol. 48, No. 3, pp. 465-471, Mar. 2001.
[48] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Trans. Electron Devices, vol. 48, pp. 560-566, Mar. 2001.
[49] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, "The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs," IEEE Electron Device Lett., vol. 21, No. 6, pp. 268-270, June 2000.
[50] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, and M. Yamaguchi, "Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High-Voltage GaN-HEMTs With Optimized Field-Plate Structure," IEEE Trans. Electron Devices, vol. 54, No. 8, pp. 1825-1830, Aug. 2007.
[51] C. Wang, S. Ho, and J. J. Huang, "Suppression of Current Collapse in Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors," IEEE Electron Device Lett., vol. 37, No. 4, pp. 74-76, Mar. 2016.
[52] W. Long, H. Ou, J. Kuo, and K. K. Chin, "Dual-material gate (DMG) field effect transistor," IEEE Trans. Electron Devices, vol. 46, No. 5, pp. 865-870, May 1999.
[53] A. K. Visvkarma, R. Laishram, S. Kapoor, D. S. Rawal, S. Vinayak, and M. Saxena, "Improvement in DC and pulse characteristics of AlGaN/GaN HEMT by employing dual metal gate structure," Semicond Sci Technol, vol. 34, No. 10, pp. 105013, Sep. 2019.
[54] J. H. Jung, M. S. Cho, W. D. Jang, S. H. Lee, J. Jang, J. H. Bae, Y. J. Yoon and I. M. Kang, "Fabrication of AlGaN/GaN MISHEMT with dual-metal gate electrode and its performances," Appl. Phys. A, vol. 126, No. 274, pp. 274, Mar. 2020.
[55] M. W. Ha, S. C. Lee, J. C. Her, K. S. Seo, and M. K. Han, "AlGaN/GaN High-Electron-Mobility Transistor Employing an Additional Gate for High-Voltage Switching Applications," J. Appl. Phys., vol. 44, No. 9R, pp. 6385-6388, Sep. 2005.
[56] T. Gao, R. Xu, K. Zhang, Y. Kong, J. Zhou, C. Kong, X. Dong, T. Chen and Y. Hao, "Dual-gate AlGaN/GaN MIS-HEMTs using Si3N4 as the gate dielectric," Semicond Sci Technol, vol. 30, No. 11, pp. 115010, Oct. 2015.
[57] W. Chen, K. Y. Wong, and K. J. Chen, "Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters," in 2008 IEEE International Electron Devices Meeting, pp. 1-4, Dec. 2008.
[58] B. R. Park, J. G. Lee, and H. Y. Cha, "Normally-Off AlGaN/GaN-on-Si Power Switching Device with Embedded Schottky Barrier Diode," Appl. Phys. Express, vol. 6, No. 3, p. 031001, Feb. 2013.
[59] B. R. Park, J. Y. Lee, J. G. Lee, D. M. Lee, M. K. Kim, and H. Y. Cha, "Schottky barrier diode embedded AlGaN/GaN switching transistor," Semicond Sci Technol, vol. 28, No. 12, pp. 125003, Oct. 2013.
[60] R. Reiner, P. Waltereit, B. Weiss, M. Wespel, R. Quay, M. Schlechtweg, M. Mikulla and O. Ambacher, "Integrated reverse-diodes for GaN-HEMT structures," in 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), pp. 45-48, May 2015.
[61] T. Wang, J. Ma, and E. Matioli, "1100 V AlGaN/GaN MOSHEMTs With Integrated Tri-Anode Freewheeling Diodes," IEEE Electron Device Lett., vol. 39, No. 7, pp. 1038-1041, May 2018.
[62] K. S. Sriramadasu and Y.-M. Hsin, "Normally-Off p-GaN Gate AlGaN/GaN Transistor with a New Schottky Second Gate," ECS J Solid State Sci Technol, vol. 11, No. 10, pp. 105004, Oct. 2022.
[63] B. Sun, "Does GaN Have a Body Diode? - Understanding the Third Quadrant Operation of GaN," Texas Instruments, Inc., Feb. 2019.
[64] K. Tanaka, T. Morita, H. Umeda, S. Kaneko, M. Kuroda, A. Ikoshi, et al., "Suppression of current collapse by hole injection from drain in a normally-off GaN-based hybrid-drain-embedded gate injection transistor," Appl. Phys. Lett., vol. 107, p. 163502, Oct. 2015.
[65] K. Nishiguchi, J. T. Asubar, and T. Hashizume, "Evaluation of off-bias-stress induced surface charging at AlGaN/GaN surface using a dual-gate transistor structure," J. Appl. Phys, vol. 53, No. 7, pp. 070301, May 2014.
[66] M. Tajima and T. Hashizume, "Impact of Gate and Passivation Structures on Current Collapse of AlGaN/GaN High-Electron-Mobility Transistors under Off-State-Bias Stress," J. Appl. Phys, vol. 50, No. 6R, pp. 061001, June 2011.
[67] R. Yamaguchi, Y. Suzuki, J. T. Asubar, H. Tokuda, and M. Kuzuhara, "Reduced current collapse in multi-fingered AlGaN/GaN MOS-HEMTs with dual field plate," in 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), pp. 92-93, June 2017.
[68] W. Li, Z. Zhang, K. Fu, G. Yu, X. Zhang, S. Sun, L. Song, R. Hao, Y. Fan and Y. Cai, "Design and simulation of a novel E-mode GaN MIS-HEMT based on a cascode connection for suppression of electric field under gate and improvement of reliability," J. Semicond., vol. 38, No. 7, pp. 074001, July 2017.
[69] L. Bi, X. Kang, X. Wang, H. Yin, J. Fan, K. Wei, Y. Zheng, S. Huang and X. Liu, "Monolithic Integrated Normally OFF GaN Power Device With Antiparallel Lateral Schottky Barrier Controlled Schottky Rectifier," IEEE Trans. Electron Devices, vol. 68, pp. 1778-1783, Feb. 2021.
[70] W. Li, Z. Zhang, K. Fu, G. Yu, X. Zhang, S. Sun, L. Song, R. Hao, Y. Fan and Y. Cai, "Design and simulation of a novel E-mode GaN MIS-HEMT based on a cascode connection for suppression of electric field under gate and improvement of reliability," J. Semicond., vol. 38, No. 7, pp. 074001, July 2017.
[71] M. W. Ha, S. C. Lee, J. C. Her, K. S. Seo, and M. K. Han, "AlGaN/GaN High-Electron-Mobility Transistor Employing an Additional Gate for High-Voltage Switching Applications," J. Appl. Phys., vol. 44, No, 9R, pp. 6385, Sep. 2005.
[72] S. C. Lee, M. W. Ha, J. C. Her, S. S. Kim, J. Y. Lim, K. S. Seo and M. K. Han, "High breakdown voltage GaN Schottky barrier diode employing floating metal rings on AlGaN/GaN hetero-junction," in Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs, pp. 247-250, May 2005.
[73] S. C. Lee, J. C. Her, S. S. Kim, M. W. Ha, K. S. Seo, Y. I. Choi and M. K. Han, "A new vertical GaN Schottky barrier diode with floating metal ring for high breakdown voltage," in 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs, pp. 319-322, May 2004.
[74] J. Lei, J. Wei, G. Tang, Q. Qian, Z. Zhang, M. Hua, Z. Zheng and K. J. Chen, "Reverse-Conducting Normally-OFF Double-Channel AlGaN/GaN Power Transistor With Interdigital Built-in Schottky Barrier Diode," IEEE Trans. Electron Devices, vol. 66, No. 5, pp. 2106-2112,Mar. 2019.
[75] J. Klein, "Synchronous buck MOSFET loss calculations with Excel model," ON Semiconductor Corporation, Nov. 21 2014.
[76] R. Zhu, H. Jiang, C. W. Tang, and K. M. Lau, "Effects of p-GaN Body Doping Concentration on the ON-State Performance of Vertical GaN Trench MOSFETs," IEEE Electron Device Lett., vol. 42, No. 7, pp. 970-973, July 2021.
[77] Y. He, Q. He, M. Mi, C. Wang, Y. Hao, M. Zhang, L. Yang and X. Ma, "Fully recessed-gate normally-off AlGaN/GaN high electron mobility transistors with high breakdown electric field," in 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), pp. 203-207, June 2019.
[78] S. K. Yang, S. Mazumder, Z. G. Wu, and Y. H. Wang, "Performance Enhancement in N2 Plasma Modified AlGaN/AlN/GaN MOS-HEMT Using HfAlOX Gate Dielectric with Γ-Shaped Gate Engineering.", Materials, vol 14, No.6, pp. 1534, Mar. 2021.
[79] H. K. Ahn, Z. S. Kim, S. B. Bae, H. C. Kim, D. M. Kang, S. I. Kim, J .M. Lee, B. G. Min, H. S. Yoon, J. W. Lim, Y. H. Kwon, E. S. Nam, H. M. Park, H. S. Kim and J. H. Lee, "Normally-off dual gate AlGaN/GaN MISFET with selective area-recessed floating gate," Solid State Electron, vol. 95, pp. 42-45, May 2014.
[80] Y. Zhao, C. Wang, X. Zheng, X. Ma, Y. He, K. Liu, A. Li, Y. Peng, C. Zhang, and Y. Hao, "Effects of recess depths on performance of AlGaN/GaN power MIS-HEMTs on the Si substrates and threshold voltage model of different recess depths for the using HfO2 gate insulator," Solid State Electron, vol. 163, p. 107649, Jan. 2020.
[81] L. Y. Su, F. Lee, and J. J. Huang, "Enhancement-Mode GaN-Based High-Electron Mobility Transistors on the Si Substrate With a P-Type GaN Cap Layer", IEEE Trans. Electron Devices, vol. 61, No. 2, pp. 460-465, 2014.
[82] D. J. Lin, J. Y. Yang, C. K. Chang, and J. J. Huang, "Study of Current Collapse Behaviors of Dual-Gate AlGaN/GaN HEMTs on Si," IEEE J. Electron Devices Soc., vol. 10, pp. 59-64, Dec. 2022.
[83] H. Djelti, M. Feham, M. Kameche, and A. Ouslimani, "On the advantages of GaAs dual-gate MESFET's in comparison to Single-gate MESFET's," in 2006 2nd International Conference on Information & Communication Technologies, pp. 2562-2566, Oct. 2006.
[84] B. Lu, O. I. Saadat, and T. Palacios, "High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor," IEEE Electron Device Lett., vol. 31, No. 9, pp. 990-992, Sep. 2010.
[85] S. Jiang, K. B. Lee, I. Guiney, P. F. Miaja, Z. H. Zaidi, H. Qian, et al., "All-GaN-Integrated Cascode Heterojunction Field Effect Transistors," IEEE Trans. Power Electron., vol. 32, No. 11, pp. 8743-8750, Feb. 2017.
[86] S. Jiang, K. B. Lee, Z. H. Zaidi, M. J. Uren, M. Kuball, and P. A. Houston, "Field Plate Designs in All-GaN Cascode Heterojunction Field-Effect Transistors," IEEE Electron Device Lett., vol. 66, No. 4, pp. 1688-1693, Apr. 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91736-
dc.description.abstract本論文主要著重於開發具雙閘極結構之空乏型及增強型氮化鎵高電子遷移率電晶體及探究元件可靠性相關之議題,包含元件在高汲極電壓操作下的電流坍塌現象及在反向導通時的元件行為,意即當元件操作在反向導通時的表現。基於氮化鎵高電子遷移率電晶體的高崩潰電壓及高電子遷移率之特性,使得氮化鎵高電子遷移率電晶體具有相當的潛力取代現今矽基材高頻高效率之電源轉換器功率元件,及應用於發展高頻高效率電源轉換器。
當元件在高電壓的高速切換下,元件表面的缺陷態會導致飽和電流的下降並伴隨通道導通電阻的上升。在此部分,我們提出具雙閘極之空乏型氮化鎵高電子遷移率電晶體,以解決及抑制動態電阻的增加。動態電阻的上升起因於在元件高速開關下,通道載子的散失且回復不及。為了瞭解元件的動態表現,進行短脈衝的壓力測試可以萃取元件在快速開關下的特性。元件操作可以藉由施加適當的偏壓在輔助閘極上,進而補償在元件關閉時,通道中損失的電子以減緩元件動態電阻的上升。作為參考基準的單閘極元件,在最低及最高的壓力測試條件下,歸一化的電阻分別為2.78及8.32。然而,對於雙閘極的元件,在輔助閘極電壓為0伏特及汲極電壓為100伏特時,歸一化的電阻為1.87,是所有測試條件中最低的。基於雙閘極的元件結構,動態表現的改善可以歸因於輔助電極感應了額外電子進而補充因快速切換下在通道中損失的載子。
對於許多的功率電子應用電路,如同直流變壓器及逆變器,元件在第三象限的操作表現就顯得至關重要。在第三象限的操作下,元件需要具有較低的反向汲極-源極電壓以降低導通損耗。然而,一般的氮化鎵高電子遷移率電晶體在第三象限的操作下,會擁有較高的壓降進而導致較高的功率耗損。為了改善這個現象,我們提出增強型且具雙閘極結構的元件,以增強元件反向導通的能力。元件透過靠近源極的閘極進行操作,並在靠近汲極的輔助閘極施加一固定偏壓,在這樣的元件結構及操作條件下,元件可以擁有極低的反向導通電壓,最低可以達到 -0.16伏特,除此之外,與單閘極元件相比,反向導通的功耗降低了百分之八十九。反向導通能力的增強可以歸因於在此架構下,元件在汲極電極及輔助閘極間提供了一個電流續流路徑。該路徑有助於有效地消除因元件操作在第三象限下所儲存的電荷,從而顯著降低反向導通的損耗。
zh_TW
dc.description.abstractThis dissertation focuses on developing the depletion-mode (D-mode) and enhancement-mode (E-mode) gallium nitride (GaN) high-electron-mobility-transistors (HEMTs) with a dual-gate structure and investigating the reliability issues, such as current collapse phenomena under a high drain voltage operation and the behavior in the reverse conduction mode, i.e., third quadrant operation. Due to the advantages of high breakdown voltage (VBR) and high electron mobility, GaN HEMTs can potentially replace Si-based power devices for high-frequency, high-efficiency, and switching mode power supplies.
Surface traps in GaN HEMTs are known to cause an increase in channel on-resistance (Ron) and a decrease of saturation current. The phenomenon becomes more severe when the transistors are operated during high-frequency and high-voltage switching. In this part, D-mode devices are proposed with a dual-gate structure to address and suppress the increase of dynamic on-resistance. The increase of the dynamic Ron arises from the trapping of electrons resulting in the loss of electrons in the channel. To benchmark the performance of the proposed dual-gate HEMT structure, the stress tests using short pulses to extract their dynamic electrical properties are conducted. The channel carrier losses can be compensated by applying a proper fixed voltage to the auxiliary gate in order to overcome the channel carrier loss when the main gate is switched off. The normalized Ron of the single-gate HEMT at the least and at the most stressed condition is 2.78 and 8.32, respectively. Whereas, for the dual-gate HEMT structure the lowest normalized Ron is 1.87 that indicates a significant mitigation of current collapse under an appropriate bias of 0 V applied to the auxiliary gate electrode on the left and the drain voltage of 100 V. The physical mechanism responsible for this improvement is attributed to the charge distribution in the channel, which is due to the additional electrons induced by the auxiliary gate.
For various power applications, such as synchronous DC-DC converters and inverters, the operation in the third quadrant is crucial. The device operation in the third quadrant necessitates a low drain-source voltage (VDS)-drop to minimize the conduction losses. Unfortunately, conventional GaN HEMTs exhibit a higher voltage drop when the gate is off, leading to a higher power loss. To overcome this challenge, the proposed E-mode dual-gate HEMT design aims to enhance the reverse conduction ability. The proposed device is modulated by the main gate electrode located adjacent to the source, and a fixed bias is applied to the auxiliary gate electrode near the drain contact. Through this arrangement, we achieved a remarkably low reverse conduction voltage, reaching as low as -0.16 V with an impressive 89.03% reduction in reverse conduction power loss as compared to the single-gate HEMT. The improvement can be attributed to the establishment of a freewheeling path between the drain electrode and the auxiliary gate. This path facilitates the efficient dissipation of stored charges, resulting in the notable reduction of reverse conduction losses.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:29:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:29:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 v
ABSTRACT vii
CONTENTS ix
LIST OF FIGURES xii
LIST OF TABLES xvii
Chapter 1 INTRODUCTION 1
1.1 Wide Bandgap Semiconductors Overview 1
1.2 GaN High Electron Mobility Transistors 5
1.2.1 Limitation of Si Power Devices 5
1.2.2 GaN Applications Overview 5
1.2.3 Formation of Two-Dimension-Electron Gas (2DEG) 9
1.2.4 AlGaN/GaN HEMTs 12
1.3 Motivation 17
1.4 Dissertation Structure 20
Chapter 2 Study of Current Collapse Behaviors of Dual-Gate AlGaN/GaN HEMTs on Si 21
2.1 Introduction 21
2.2 Literature Reviews 22
2.2.1 GaN HEMTs with Field-Plate Structure 22
2.2.2 Hybrid-Drain-Embedded Gate-Injection-Transistor (HD-GIT) 24
2.3 Device Fabrication and Characterization 25
2.3.1 Process Flow 25
2.3.2 Measurement Setup 26
2.4 DC Characteristics 29
2.4.1 Transfer and Output Characteristics 29
2.4.2 Breakdown Characteristics 32
2.5 Pulse Measurements 33
2.5.1 Drain Lag Measurements 33
2.5.2 Gate Lag Measurement 38
2.6 Mechanism 43
2.7 Summary 47
Chapter 3 Normally-off AlGaN/GaN HEMTs with a Low Reverse Conduction Turn-on Voltage 48
3.1 Introduction 48
3.2 Literature Reviews 49
3.2.1 Gate-Injection-Transistor (GIT) with Integrated Si Schottky Barrier Diode (SBD) 49
3.2.2 GaN Power Device with Antiparallel Lateral Schottky Barrier Controlled Schottky Rectifier (LSBS) 50
3.3 Device Fabrication and Characterization 52
3.3.1 Process Flow 52
3.3.2 Measurement Setup 55
3.4 DC Characteristics 57
3.4.1 Transfer and Output Characteristics 57
3.4.2 Breakdown Characteristics 58
3.5 Reverse Conduction Characteristics 60
3.6 Conduction Power Loss 62
3.7 Mechanism 64
3.8 Summary 66
Chapter 4 Concluding Remarks and Future Perspectives 67
4.1 Concluding Remarks 67
4.2 Future Perspectives 69
ACRONYMS 72
REFERENCES 75
Publication List 84
-
dc.language.isoen-
dc.subject氮化鎵zh_TW
dc.subject高載子遷移率電晶體zh_TW
dc.subject雙閘極結構zh_TW
dc.subject電流坍塌現象zh_TW
dc.subject反向導通zh_TW
dc.subjectreverse conductionen
dc.subjectGaNen
dc.subjectHEMTen
dc.subjectdual-gate (DG) structureen
dc.subjectcurrent collapseen
dc.title具雙閘極結構之空乏型及增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體之電性分析zh_TW
dc.titleElectrical characteristics of depletion-mode and enhancement-mode AlGaN/GaN HEMTs with a dual-gate structureen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊志忠;吳肇欣;賴韋志;郭浩中;洪瑞華zh_TW
dc.contributor.oralexamcommitteeChih-Chung Yang;Chao-Hsin Wu;Wei-Chi Lai;Hao-Chung Kuo;Ray-Hua Horngen
dc.subject.keyword氮化鎵,高載子遷移率電晶體,雙閘極結構,電流坍塌現象,反向導通,zh_TW
dc.subject.keywordGaN,HEMT,dual-gate (DG) structure,current collapse,reverse conduction,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202304176-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2028-08-14-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2028-08-14
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved