Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91721
Title: 以兩種不同方法製作微發光二極體色彩轉換層之可行性研究
Feasibility Study of Fabricating Micro Light-Emitting Diode Color Conversion Layer with Two Different Methods
Authors: 黃志維
Chih-Wei Huang
Advisor: 蘇國棟
Guo-Dung J. Su
Keyword: 量子點,色彩轉換層,黑色矩陣,超微細噴印,矽穿孔,微型發光二極體,光學串擾,光轉換效率,
quantum dot,color conversion layer,black matrix,super inkjet printing,through-silicon via,micro light-emitting diode,optical crosstalk,light conversion efficiency,
Publication Year : 2024
Degree: 碩士
Abstract:   在人工智慧時代的推動下,智慧穿戴裝置對於省電、高效能及高解析度顯示器的需求日益增長。微型LED技術因應這些需求,展現出其長壽命、高亮度和低功耗的優勢。本論文介紹了兩種製作高解析度微型發光二極體色彩轉換層的方法,並探討其可行性。第一種方法是利用量子點光阻(QDPR)作為色彩轉換材料,並結合由黑色含碳粒光阻形成的黑色矩陣(Black Matrix)結構。這種方法的優點在於提升了良率,但由於需要在光阻中加入高濃度量子點,會影響其光敏劑的交聯反應,同時高溫製程對量子點的耐熱性也是一大挑戰。
  第二種方法則採用超微細噴印(Super Inkjet Printing)技術,將微米級液滴的量子點墨水滴入至色彩轉換層結構中。這方法解決了第一種方法中的部分缺點,但在微米尺寸印刷的精準度和效率方面仍面臨挑戰。此外,我們使用矽穿孔(TSV)結構製作黑色矩陣,能提高色彩轉換層的厚度,並且有效降低光學串擾(Crosstalk),從而提升光轉換效率。
  我們模擬的結果顯示量子點薄膜的厚度對光吸收和轉換效率有重要影響,而黑色矩陣材料的吸收度和反射率則是改善光學串擾的關鍵。
In the era of artificial intelligence, the demand for power-efficient, high-performance, and high-resolution displays in smart wearable devices is growing rapidly. Micro-LED technology, known for its longevity, high brightness, and low power consumption, addresses these needs effectively. This thesis presents two methodologies for fabricating high-resolution Micro-LED color conversion layers and explores their feasibility. The first method employs Quantum Dot Photoresist (QDPR) as the color conversion material and combines it with a Black Matrix (BM) structure formed by a black carbon-containing photoresist. This approach enhances yield but challenges the crosslinking reaction of the photoresist due to the high concentration of quantum dots required, and the quantum dots'' thermal stability during high-temperature processes poses significant challenges.
The second method utilizes Super Inkjet (SIJ) Printing technology to deposit micrometer-sized droplets of quantum dot ink into the color conversion layer. This technique overcomes some limitations of the first method but still faces challenges in the precision and efficiency of micrometer-scale printing. Furthermore, the incorporation of Through-Silicon Vias (TSV) in the development of the BM structure significantly augments the thickness of the color conversion layer, effectively reducing optical crosstalk and thereby improving the light conversion efficiency.
Our simulation results indicate that the thickness of the quantum dot thin film significantly impacts light absorption and conversion efficiency. The optical absorption and reflectivity of the BM material are crucial in mitigating optical crosstalk
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91721
DOI: 10.6342/NTU202400467
Fulltext Rights: 未授權
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
  Restricted Access
7.67 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved