Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91708
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳億乘 | zh_TW |
dc.contributor.advisor | Yi-Chen Chen | en |
dc.contributor.author | 俞載任 | zh_TW |
dc.contributor.author | Jae-Im Yoo | en |
dc.date.accessioned | 2024-02-22T16:20:37Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-02 | - |
dc.identifier.citation | Aaslyng, M. D., Bejerholm, C., Ertbjerg, P., Bertram, H. C., & Andersen, H. J. (2003). Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Quality and Preference, 14, 277-288.
Abubaker, A. O., Hebda, P. C., & Gunsolley, J. N. (1996). Effects of sex hormones on protein and collagen content of the temporomandibular joint disc of the rat. Journal of Oral and Maxillofacial Surgery, 54, 721-727. An, M. R., & Jang, H. S. (2018). Analysis of age-friendly HMR optional attributes and development requirements according to dietary lifestyle-Babyboomer target. Food Service Industry Journal 14, 2018.3, 169-186. Aroeira, C. N., Torres Filho, R. A., Fontes, P. R., Ramos, A. L., Castillo, C. J. C., Hopkins, D. L., & Ramos, E. M. (2020). Comparison of different methods for determining the extent of myofibrillar fragmentation of chilled and frozen/thawed beef across postmortem aging periods. Meat Science, 160, 107955. Arshad, M. S., Kwon, J. H., Imran, M., Sohaib, M., Aslam, A., Nawaz, I., ... & Javed, M. (2016). Plant and bacterial proteases: A key towards improving meat tenderization, a mini review. Cogent Food & Agriculture, 2, 1261780. Babu, B. R., Rastogi, N. K., & Raghavarao, K. S. M. S. (2008). Liquid–liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chemical Engineering and Processing: process intensification, 47, 83-89. Bakanowski, S. M. (1984). Endpoint temperature distributions in microwave and conventionally cooked pork. Food Technology, 38. Baldwin, D. E. (2012). Sous vide cooking: A review. International Journal of Gastronomy and Food Science, 1, 15-30. BC Centre for Disease Control (BCCDC). (2017). Guidelines for restaurant sous vide cooking in British Columbia. Beef Cattle Research Council, Canada. (2017). https://egyankosh.ac.in/bitstream/123456789/10636/1/Unit-7.pdf. (Accessed date: 2024/01/28). Bekhit, A. A., Hopkins, D. L., Geesink, G., Bekhit, A. A., & Franks, P. (2014). Exogenous proteases for meat tenderization. Critical reviews in food science and nutrition, 54, 1012-1031. Berhe, D. T., Engelsen, S. B., Hviid, M. S., & Lametsch, R. (2014). Raman spectroscopic study of effect of the cooking temperature and time on meat proteins. Food Research International, 66, 123-131. Bishnoi, S., Yadav, S., & Sheoran, N. (2017). Effect of tumbling on processing of muscle foods: A review. The Pharma Innovation, 6, 157. Bolumar, T., Enneking, M., Toepfl, S., & Heinz, V. (2013). New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review. Meat Science, 95, 931-939. Botinestean, C., Gomez, C., Nian, Y., Auty, M. A., Kerry, J. P., & Hamill, R. M. (2018). Possibilities for developing texture‐modified beef steaks suitable for older consumers using fruit‐derived proteolytic enzymes. Journal of Texture Studies, 49, 256-261. Botinestean, C., Hossain, M., Mullen, A. M., Kerry, J. P., & Hamill, R. M. (2021). The influence of the interaction of sous-vide cooking time and papain concentration on tenderness and technological characteristics of meat products. Meat Science, 177, 108491. Bunmee, T., Jaturasitha, S., Kreuzer, M., & Wicke, M. (2014). Can calcium chloride injection facilitate the ageing-derived improvement in the quality of meat from culled dairy cows?. Meat Science, 96, 1440-1445. Caine, W. R., Aalhus, J. L., Best, D. R., Dugan, M. E. R., & Jeremiah, L. E. (2003). Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Science, 64, 333-339. Chambers IV, E., & Bowers, J. R. (1993). Consumer perception of sensory qualities in muscle foods. Food Technology (Chicago), 47, 116-120. Cheng, Y., Jiang, X., Xue, Y., Qi, F., Dai, Z., Guan, D., & Kong, L. (2021). Effect of three different proteases on horsemeat tenderness during postmortem aging. Journal of Food Science and Technology, 58, 2528-2537. Cho, S. H. (2002). Sensory characteristics of meat products I, Korean Meat Journal. Cho, S. H., Kim, J. H., Kim, J. H., Seong, P. N., Park, B. Y., Kim, K. E., ... & Kim, D. H. (2007). Effect of socio-demographic factors on sensory properties of Korean Hanwoo bull beef by different cut and cooking methods. Journal of Animal Science and Technology, 49, 857-870. Chouljenko, A., Chotiko, A., Bonilla, F., Moncada, M., Reyes, V., & Sathivel, S. (2017). Effects of vacuum tumbling with chitosan nanoparticles on the quality characteristics of cryogenically frozen shrimp. LWT, 75, 114-123. De Graaf, C., De Jong, L. S., & Lambers, A. C. (1999). Palatability affects satiation but not satiety. Physiology & Behavior, 66, 681-688. Dzudie, T., & Okubanjo, A. (1999). Effects of rigor state and tumbling time on quality of goat hams. Journal of Food Engineering, 42, 103-107. Elbir, Z., & Oz, F. (2021). Determination of creatine, creatinine, free amino acid and heterocyclic aromatic amine contents of plain beef and chicken juices. Journal of Food Science and Technology, 58, 3293-3302. Farjami, T., Babaei, J., Nau, F., Dupont, D., & Madadlou, A. (2021). Effects of thermal, non-thermal and emulsification processes on the gastrointestinal digestibility of egg white proteins. Trends in Food Science & Technology, 107, 45-56. Fennema, O. R. (1996). Food chemistry. New York: Marcel Dekker, Inc. Fernández-Lucas, J., Castañeda, D., & Hormigo, D. (2017). New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technology, 68, 91-101. Feuz, D. M., Umberger, W. J., Calkins, C. R., & Sitz, B. (2004). US consumers' willingness to pay for flavor and tenderness in steaks as determined with an experimental auction. Journal of Agricultural and Resource Economics, 501-516. Gagaoua, M., Dib, A. L., Lakhdara, N., Lamri, M., Botineştean, C., & Lorenzo, J. M. (2021). Artificial meat tenderization using plant cysteine proteases. Current Opinion in Food Science, 38, 177-188. Gao, T., Li, J., Zhang, L., Jiang, Y., Ma, R., Song, L., ... & Zhou, G. (2015). Effect of different tumbling marination treatments on the quality characteristics of prepared pork chops. Asian-Australasian Journal of Animal Sciences, 28, 260. Gault, N. F. S. (1985). The relationship between water-holding capacity and cooked meat tenderness in some beef muscles as influenced by acidic conditions below the ultimate pH. Meat Science, 15, 15-30. Gerelt, B., Ikeuchi, Y., & Suzuki, A. (2000). Meat tenderization by proteolytic enzymes after osmotic dehydration. Meat Science, 56, 311-318. Ha, M., Bekhit, A. E. D. A., Carne, A., & Hopkins, D. L. (2012). Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry, 134, 95-105. Homaei, A. A., Sajedi, R. H., Sariri, R., Seyfzadeh, S., & Stevanato, R. (2010). Cysteine enhances activity and stability of immobilized papain. Amino Acids, 38, 937-942. Hoogland, C. T., de Boer, J., & Boersema, J. J. (2005). Transparency of the meat chain in the light of food culture and history. Appetite, 45, 15-23. Horioka, C. Y., Morgan, P. J., Niimi, Y., & Wan, G. (2018). Aging in Asia: Introduction to symposium. Review of Development Economics, 22, 879-884. Hui, Y. H. (Ed.). (2012). Handbook of meat and meat processing. CRC press. Indira Gandhi National Open University (IGNOU). (2015). https://www.beefresearch.ca/topics/nutritional-qualities-of-beef/. (Accessed date: 2024/01/28). Islam, M. N., & Molinar-Toribio, E. M. (2013). Development of a meat tenderizer based on papaya peel. J Revistade ID Techno (RIDTEC), 9, 24-29. Istrati, D., Vizireanu, C., Dima, F., & Dinica, R. (2012). Effect of marination with proteolytic enzymes on quality of beef muscle. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 13, 81. Ji, D. S., Kim, J. H., Yoon, D. K., Kim, J. H., Lee, H. J., Cho, W. Y., & Lee, C. H. (2019). Effect of different storage-temperature combinations on Longissimus dorsi quality upon sous-vide processing of frozen/thawed pork. Food Science of Animal Resources, 39, 240. Xu, J. H., Cao, H. J., C., Zhang, B., & Yao, H. (2020). The mechanistic effect of bromelain and papain on tenderization in jumbo squid (Dosidicus gigas) muscle. Food Research International, 131, 108991. Karki, R., Bremer, P., Silcock, P., & Oey, I. (2022). Effect of sous vide processing on quality parameters of beef short ribs and optimisation of sous vide time and temperature using third-order multiple regression. Food and Bioprocess Technology, 15, 1629-1646. Kim, J. H. (2021). Medical food and elderly-friendly food outlook. Korea institute of planning and evaluation for technology in food. Kim, S. H., Lee, Y. S. & Hur, S. Y. (2017). Senior-friendly Food Market and Its Vitalization. Korea Rural Economic Institute Basic Research Report, 1-319. Kittler, P. G., & Sucher, K. P. (1998). Food and culture in America: a nutrition handbook. Wadsworth Publishing Company, Inc.. Knipe, C. L. (2014). Processing Equipment: Tumblers and massagers. Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., & Kohno, K. (2004). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. The Plant Journal, 37, 370-378. Korea Institute for Animal Products Quality Evaluation (KAPE). (2023). Animal Products Grading Statistical Yearbook 2022. Korea Institute for Animal Products Quality Evaluation, 17, 171 Lee, H. S., Nam, Y. J., Kim, Y. E., Kim, J. C., Shin, Y., Lee, Y., & Heo, W. (2020). Policies and industrial technology trends for senior-friendly foods. Food Science and Industry, 53, 435-443. Lee, Y. J., Kim, C. J., Kim, J. H., Park, B. Y., Seong, P. N., Kang, G. H., ... & Cho, S. H. (2010). Comparison of fatty acid composition of Hanwoo beef by different quality grades and cuts. Food Science of Animal Resources, 30, 110-119. Lepetit, J. (1989). Deformation of collagenous, elastin and muscle fibres in raw meat in relation to anisotropy and length ratio. Meat Science, 26, 47-66. Lin, B. L., Song, T., & Sadayappan, S. (2011). Myofilaments: movers and rulers of the sarcomere. Comprehensive Physiology, 2, 675-692. Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., ... & Bugeon, J. (2016). How muscle structure and composition influence meat and flesh quality. The Scientific World Journal, 2016. Liu, F., Yin, J., Wang, J., & Xu, X. (2022). Food for the elderly based on sensory perception: A review. Current Research in Food Science. Liu, H., Hu, M., Wang, Q., Cheng, L., & Zhang, Z. (2018). Role of papain-like cysteine proteases in plant development. Frontiers in Plant Science, 9, 1717. Long, N. B. S., Gál, R., & Buňka, F. (2011). Use of phosphates in meat products. African Journal of Biotechnology, 10(86), 19874-19882. Mann, N. J. (2018). A brief history of meat in the human diet and current health implications. Meat Science, 144, 169-179. Matsuishi, M. (2022). Science and technology of meat and meat products in Japan—Pursuit of their palatability under the influence of Washoku, traditional Japanese cuisine. Meat Science, 192, 108919. Meat & Livestock Australia, Australia. (2020). https://www.mla.com.au/prices-markets/market-news/2020/consumption-growth-in-asia-to-fuel-meat-consumption/. (Accessed date: 2024/01/28). Miller, R. K. (2014), Chemical and Physical Characteristics of Meat: Palatability. Encyclopedia of Meat Sciences, 1, 252-261. Miller, R. K. (2023). The eating quality of meat: V Sensory evaluation of meat. In Lawrie's Meat Science, Woodhead Publishing, 509-548. Mitsuhashi, N., Mizuno, M., Miyagawa, A., & Kato, J. (1988). Inhibitory effect of fatty acids on the binding of androgen receptor and R1881. Endocrinologia Japonica, 35, 93-96. Modzelewska-Kapituła, M., Kwiatkowska, A., Jankowska, B., & Dąbrowska, E. (2015). Water holding capacity and collagen profile of bovine m. infraspinatus during postmortem ageing. Meat Science, 100, 209-216. Mohan, R., Sivakumar, V., Rangasamy, T., & Muralidharan, C. (2016). Optimisation of bromelain enzyme extraction from pineapple (Ananas comosus) and application in process industry. American Journal of Biochemistry and Biotechnology, 12, 188-195. Mokrzycki, W. S., & Tatol, M. (2011). Colour difference∆ E-A survey. Mach. Graph. Vis, 20, 383-411. Monin, G. (1998). Recent methods for predicting quality of whole meat. Meat Science, 49, S231-S243. Morellon-Sterling, R., El-Siar, H., Tavano, O. L., Berenguer-Murcia, Á., & Fernández-Lafuente, R. (2020). Ficin: A protease extract with relevance in biotechnology and biocatalysis. International Journal of Biological Macromolecules, 162, 394-404. Morrow, S. J., Garmyn, A. J., Hardcastle, N. C., Brooks, J. C., & Miller, M. F. (2019). The effects of enhancement strategies of beef flanks on composition and consumer palatability characteristics. Meat and Muscle Biology, 3. Nadzirah, K. Z., Zainal, S., Noriham, A., & Normah, I. (2016). Application of bromelain powder produced from pineapple crowns in tenderising beef round cuts. International Food Research Journal, 23, 1590. Nam, K. C., Jo, C., & Lee, M. (2010). Meat products and consumption culture in the East. Meat Science, 86, 95-102. Oh, M., Kim, E. K., Jeon, B. T., Tang, Y., Kim, M. S., Seong, H. J., & Moon, S. H. (2016). Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut. Meat Science, 119, 16-21. Oka, A., Iwaki, F., Dohgo, T., Ohtagaki, S., Noda, M., Shiozaki, T., ... & Ozaki, M. (2002). Genetic effects on fatty acid composition of carcass fat of Japanese Black Wagyu steers. Journal of Animal Science, 80, 1005-1011. Ouali, A. (1990). Meat tenderization: Possible causes and mechanisms. A review. Journal of Muscle Foods, 1, 129-165. Park, J., Song, S., Cheng, H., Im, C., Jung, E. Y., Moon, S. S., ... & Kim, G. D. (2022). Comparison of meat quality and muscle fiber characteristics between porcine skeletal muscles with different architectures. Food Science of Animal Resources, 42, 874. Pearce, K. L., Rosenvold, K., Andersen, H. J., & Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes: A review. Meat Science, 89, 111-124. Pematilleke, N., Kaur, M., Adhikari, B., & Torley, P. J. (2022). Relationship between instrumental and sensory texture profile of beef semitendinosus muscles with different textures. Journal of Texture Studies, 53, 232-241. Pereira, P. M. D. C. C., & Vicente, A. F. D. R. B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat science, 93, 586-592. Pietrasik, Z., & Janz, J. A. M. (2009). Influence of freezing and thawing on the hydration characteristics, quality, and consumer acceptance of whole muscle beef injected with solutions of salt and phosphate. Meat Science, 81, 523-532. Rawdkuen, S., Jaimakreu, M., & Benjakul, S. (2013). Physicochemical properties and tenderness of meat samples using proteolytic extract from Calotropis procera latex. Food Chemistry, 136, 909-916. Razali, R., Kumar, V., & Budiman, C. (2023). Tenderness and physicochemical characteristics of meat treated by recombinant bromelain of MD2 pineapple from a codon-optimized synthetic gene. Emirates Journal of Food and Agriculture. Santé-Lhoutellier, V., Astruc, T., Marinova, P., Greve, E., & Gatellier, P. (2008). Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. Journal of Agricultural and Food Chemistry, 56, 1488-1494. Sayd, T., Dufour, C., Chambon, C., Buffière, C., Remond, D., & Santé-Lhoutellier, V. (2018). Combined in vivo and in silico approaches for predicting the release of bioactive peptides from meat digestion. Food Chemistry, 249, 111-118. Schellekens, M. (1996). New research issues in sous-vide cooking. Trends in Food Science & Technology, 7, 256-262. Silva, F. A., Ferreira, V. C., Madruga, M. S., & Estévez, M. (2016). Effect of the cooking method (grilling, roasting, frying and sous-vide) on the oxidation of thiols, tryptophan, alkaline amino acids and protein cross-linking in jerky chicken. Journal of Food Science and Technology, 53, 3137-3146. Silver Fern Farm, New Zealand. (2023). https://newzealmeats.com/Beef-Shoulder-Clod.html.(Accessed date: 2024/01/28). Smith, J., & Hong-Shum, L. (2011). Food Additives Data Book. John Wiley & Sons. Sturdivant, C. A., Lunt, D. K., Smith, G. C., & Smith, S. B. (1992). Fatty acid composition of subcutaneous and intramuscular adipose tissues and M. longissimus dorsi of Wagyu cattle. Meat Science, 32, 449-458. Tkacz, K., Modzelewska-Kapituła, M., Więk, A., & Nogalski, Z. (2020). The applicability of total color difference ΔE for determining the blooming time in longissimus lumborum and semimembranosus muscles from Holstein-Friesian bulls at different ageing times. Applied Sciences, 10, 8215. Tornberg, E. V. A. (2005). Effects of heat on meat proteins: Implications on structure and quality of meat products. Meat Science, 70, 493-508. Tuell, J. R., Yu, Q. & Kim, Y. H. (2021), Can Tumbling without Brine Improve Tenderness and Proteolysis of Beef Loin Muscles?. Meat and Muscle Biology, 45, 1–11. U.S. Department of Agriculture, U.S.A. (2019). https://fdc.nal.usda.gov/fdc-app.html#/ (Accessed date: 2024/01/28). U.S. Meat Export Federation, U.S.A. (2013). https://www.usa-beef.org/beef-shoulder-clod/. (Accessed date: 2024/01/28). Valenzuela, C., López de Romaña, D., Olivares, M., Morales, M. S., & Pizarro, F. (2009). Total iron and heme iron content and their distribution in beef meat and viscera. Biological Trace Element Research, 132, 103-111. Von Seggern, D. D., Calkins, C. R., Johnson, D. D., Brickler, J. E., & Gwartney, B. L. (2005). Muscle profiling: Characterizing the muscles of the beef chuck and round. Meat Science, 71, 39-51. Waldman, R. C., Suess, G. G., & Brungardt, V. H. (1968). Fatty acids of certain bovine tissue and their association with growth, carcass and palatability traits. Journal of Animal Science, 27, 632-635. Wen, S., Zhou, G., Song, S., Xu, X., Voglmeir, J., Liu, L., ... & Li, C. (2015). Discrimination of in vitro and in vivo digestion products of meat proteins from pork, beef, chicken, and fish. Proteomics, 15, 3688-3698. Westerling, D. B., & Hedrick, H. B. (1979). Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. Journal of Animal Science, 48, 1343-1348. Weston, A. R., Rogers, R. W., & Althen, T. G. (2002). The role of collagen in meat tenderness. The Professional Animal Scientist, 18, 107-111. Williams, P. (2007). Nutritional composition of red meat. Nutrition & Dietetics, 64, 113-119. Xu, J. H., Cao, H. J., C., Zhang, B., & Yao, H. (2020). The mechanistic effect of bromelain and papain on tenderization in jumbo squid (Dosidicus gigas) muscle. Food Research International, 131, 108991. Zhang, S., Zhang, L., Wang, S., & Zhou, Y. (2019). Comparison of plant-origin proteases and ginger extract on quality properties of beef rump steaks. Food Science and Technology Research, 25, 529-538. Zhang, W., Naveena, B. M., Jo, C., Sakata, R., Zhou, G., Banerjee, R., & Nishiumi, T. (2017). Technological demands of meat processing: An Asian perspective. Meat Science, 132, 35-44. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91708 | - |
dc.description.abstract | 肉是一個優良的蛋白質來源,長久以來一直被人們食用,隨著東亞經濟迅速增長,肉的消費量急劇上升。其中,嫩度對於消費者和烹飪者是一個至關重要的因素。牛肩肉雖營養豐富,然其口感堅韌、烹調後較乾澀,故價格較其他部位肉便宜且多使用於加工上。真空滾打和植物蛋白酶是嫩化肉類的安全有效方法。舒肥法為一低溫長時間烹飪法,不僅改善了嫩度、延長了保存期限,同時提高了食品安全性。儘管真空滾打和植物蛋白酶處理以及舒肥法已經被廣泛研究,然,將真空滾打或植物蛋白酶搭配舒肥處理之研究較為缺乏。故本試驗旨在探討真空滾打和植物蛋白酶對舒肥牛肩肉的協同效應,製備了六組牛肩肉:(1) 控制組牛肩肉 (C)、(2) 經過5分鐘真空滾打的牛肩肉 (CVT)、(3) 加入木瓜蛋白酶的牛肩肉 (P)、(4) 加入木瓜蛋白酶搭配真空滾打的牛肩肉 (PVT)、(5) 加入鳳梨蛋白酶的牛肩肉 (B)、以及(6) 加入鳳梨蛋白酶搭配真空滾打的牛肩肉 (BVT)。首先,比較不同酵素處理的結果,觀察到了嫩度改善、保水性降低和肌原纖維碎片,這與先前的研究結果一致 (p<0.05)。此外,還觀察到L*值(亮度)的額外增加 (p<0.05)。在鳳梨蛋白酶的處理下,硬度明顯降低,比木瓜蛋白酶 (p<0.05)更明顯,而彈性、黏性和咀嚼性也呈現相似趨勢。與木瓜蛋白酶相比,鳳梨蛋白酶的彈性更高 (p<0.05)。此外,鳳梨蛋白酶在肌原纖維斷裂指數(MFI)方面也表現最高,在SDS-PAGE中亦顯示了肌肉重鏈(Myosin heavy chain, MHC)和肌動蛋白的減少。在蒸煮損失方面,與控制組相比,鳳梨蛋白酶的蒸煮損失較大 (p<0.05),但與木瓜蛋白酶相比,差異不顯著 (p>0.05)。然而,在可擠壓水分(Expressible Moisture, EM)方面,鳳梨蛋白酶和鳳梨蛋白酶+真空滾打的處理組之值較其他組高。脂質氧化結果方面,真空滾打處理導致較高的硫代巴比妥酸反應物(TBARS)值 (p<0.05)。綜上所述,舒肥前的酵素處理對整體質地產生了正面影響,但對保水性產生了負面影響,導致比未經酵素處理的組別更多的水分損失。鳳梨蛋白酶可能是一種酵素,適用於改善牛肩肉等堅硬部位的物理性質。然而,舒肥前的短暫真空滾動似乎不被推薦,因為它對肉質的不良影響,例如增加的TBARS值和可擠壓水分。 | zh_TW |
dc.description.abstract | Meat is a great protein resource and it has been consumed over a long period. Meat consumption has dramatically risen in East Asia due to rapid economic growth. Tenderness is a crucial factor in meat consumption and in East Asian cuisine. Beef clod is a nutrient dense meat cut, but it is one of the cheapest meat cuts due to its tough texture. Improving the texture of these beef clods can be an excellent way of meat intake in East Asia, where the population is getting old rapidly. Vacuum tumbling and plant protease are safe and effective methods for tenderizing meat. Another culinary technique is sous vide, which involves cooking at low temperatures for a long time. This technique does not only improve tenderness but also extend the storage period and enhances food safety. Although vacuum tumbling and plant protease treatments and sous vide have been studied broadly, the benefits of previous two cooking methods under sous vide has not discussed based on our knowledge. To investigate the synergistic effects of tumbling and plant protease on sous vide-cooked beef clod, six groups of beef clod were prepared: (1) Control Beef clod (C), (2) Beef clod with 5 minutes of vacuum tumbling (CVT), (3) Beef clod with papain tenderizing (P), (4) Beef clod with papain and vacuum tumbling (PVT), (5) Beef clod with bromelain tenderizing (B), and (6) Beef clod with bromelain and vacuum tumbling (BVT). First, for the results of comparing the enzyme treatment, tenderness improvement, water holding capacity decrease, and myofibril fragment were observed as in the previous research results (p<0.05). In addition, in this study, an extra increase for L* value (Lightness) was seen (p<0.05). In the case of bromelain, the hardness significantly decreased compared to papain (p<0.05), and the similar trend was also shown in cohesiveness, gumminess, and chewiness. Meanwhile, bromelain resulted in higher springiness than papain (p<0.05). Additionally, bromelain also showed the highest value in myofibrillar fragmentation index (MFI) which also echoes that diminished bands of myosin heavy chain (MHC) and actin were illustrated in SDS-PAGE. In the case of cooking loss, bromelain had higher cooking loss compared to control group (p<0.05), but there was no significant difference in comparison with papain (p>0.05). However, in terms of expressible moisture (EM), treatments of both bromelain and bromelain+vacuum tumbling cause higher values compared to other groups. Regarding the lipid oxidation of cooked samples, the vacuum tumbling treatment resulted in higher thiobarbituric acid reactive substance (TBARS) values (p<0.05). Taken together, enzyme treatment before sous vide cooking positively affected overall texture but negatively impacted on water holding capacity, causing more moisture loss than non-enzyme treated group. Bromelain could be a suitable enzyme applying to improve physical properties of tough beef portion, i.e. beef clod. However, a short period of vacuum tumbling before sous vide cooking doesn’t seem recommendable due to its adverse effects on meat quality, such as increased TBARS values and expressible moisture. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:20:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:20:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 vi
Abstract vii I. Introduction 1 II. Literature review 2 2.1. Meat and East Asia 2 2.1.1. Meat 2 2.1.2. Composition and structure of muscle 2 2.1.3. Nutrition value of beef 5 2.1.4. Cuts of beef 8 2.1.5. Beef clod 9 2.1.6. Characteristics of East Asian food 10 2.1.7. Meat consumption in East Asia 10 2.1.8. Super-aged society in East Asia 13 2.2. Meat palatability 16 2.2.1. Juiciness 16 2.2.2. Flavor 16 2.2.3. Meat tenderness 17 2.2.4. Measurement of palatability 18 2.3. Meat tenderizing 22 2.3.1. Mechanical tenderization 22 2.3.2. Vacuum tumbling 22 2.3.3. Chemical tenderization 23 2.3.4. Plant protease in tenderization 24 2.3.5. Thermal tenderization and Sous vide 26 III. Materials and methods 29 3.1. The flow chart of the experimental design 29 3.2. Sample preparation 30 3.2.1. Raw material 30 3.2.2. The sample preparation for non-tumbling group 30 3.2.3. The sample preparation for tumbling group 31 3.3. Physicochemical properties measurement 33 3.3.1. Texture profile analysis of tenderized beef clod 33 3.3.2. Myofibrils fragmentation of tenderized beef clod 34 3.3.3. Cooking loss of tenderized beef clod 34 3.3.4. Expressible moisture (EM) of tenderized beef clod 35 3.3.5. Lipid oxidation of tenderized beef clod 35 3.4. Color parameter of tenderized beef clod 36 3.5. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) 37 3.5.1. Sample preparation for SDS-PAGE 37 3.5.2. Electrophoresis 37 3.6. Statistical analysis 40 IV. Result and discussion 41 4.1. Physicochemical properties measurement 41 4.1.1. Texture profile of tenderized beef clod 41 4.1.2. Myofibrillar fragmentation index (MFI) of tenderized beef clod 42 4.2. Meat quality of tenderized beef clod 43 4.2.1. Cooking loss 43 4.2.2. Expressible moisture (EM) 44 4.2.3. Lipid oxidation of tenderized beef clod 45 4.3. Color parameter of tenderized beef clod 45 4.4. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis of different tenderizing method 46 V. Conclusion 54 VI. Reference 56 VII. Appendix 68 | - |
dc.language.iso | en | - |
dc.title | 探討在真空滾打下木瓜酵素和鳳梨酵素搭配舒肥烹調法對改善牛肩肉嫩度之影響 | zh_TW |
dc.title | A study on papain and bromelain treatment with vacuum tumbling under a sous vide cooking for tenderizing of beef clod | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 周崇熙;吳奕賢 | zh_TW |
dc.contributor.oralexamcommittee | Chung-Hsi Chou;Yi-Hsieng Wu | en |
dc.subject.keyword | 鳳梨酵素,木瓜酵素,蛋白質降解,嫩度,舒肥,真空滾打, | zh_TW |
dc.subject.keyword | bromelain,papain,protein degradation,tenderness,sous vide,vacuum tumbling, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU202400432 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-02 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
Appears in Collections: | 全球農業科技與基因體科學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-1.pdf | 10.08 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.