請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91695
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林璧鳳 | zh_TW |
dc.contributor.advisor | Bi-Fong Lin | en |
dc.contributor.author | 李佩儒 | zh_TW |
dc.contributor.author | Pei-Ru Li | en |
dc.date.accessioned | 2024-02-22T16:16:41Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-28 | - |
dc.identifier.citation | 盧頡 (2021)。母乳短鏈脂肪酸組成與異位性皮膚炎的相關性探討。國立臺灣大學生化科技學系碩士論文。
Ahn, C., & Huang, W. (2017). Clinical presentation of atopic dermatitis. Advances in Experimental Medicine and Biology, 1027, 39–46. doi: 10.1007/978-3-319-64804-0_4 Akbari, P., Braber, S., Alizadeh, A., Verheijden, K. A., Schoterman, M. H., Kraneveld, A. D., …, Fink-Gremmels, J. (2015). Galacto-oligosaccharides protect the intestinal barrier by maintaining the tight junction network and modulating the inflammatory responses after a challenge with the mycotoxin deoxynivalenol in human Caco-2 cell monolayers and B6C3F1 Mice. The Journal of Nutrition, 145(7), 1604–1613. doi :10.3945/jn.114.209486 Andrade-Oliveira, V., Amano, M. T., Correa-Costa, M., Castoldi, A., Felizardo, R. J., de Almeida, D. C., …, Câmara, N. O. (2015). Gut bacteria products prevent AKI induced by ischemia-reperfusion. Journal of the American Society of Nephrology, 26(8), 1877–1888. doi: 10.1681/ASN.2014030288 Appiah, M. M., Haft, M. A., Kleinman, E., Laborada, J., Lee, S., Loop, L., …, Eichenfield, L. F. (2022). Atopic dermatitis review of comorbidities and therapeutics. Annals of Allergy, Asthma & Immunology, 129(2), 142–149. doi: 10.1016/j.anai.2022.05.015 Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., …, Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455. doi: 10.1038/nature12726 Avena-Woods C. (2017). Overview of atopic dermatitis. The American Journal of Managed Care, 23(8 Suppl), S115–S123. doi: Not Found; PMID: 28978208 Bartolomaeus, H., Balogh, A., Yakoub, M., Homann, S., Markó, L., Höges, S., …, Wilck, N. (2019). Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation, 139(11), 1407–1421. doi: 10.1161/CIRCULATIONAHA.118.036652 Bermudez-Brito, M., Rösch, C., Schols, H. A., Faas, M. M., & de Vos, P. (2015). Resistant starches differentially stimulate Toll-like receptors and attenuate proinflammatory cytokines in dendritic cells by modulation of intestinal epithelial cells. Molecular Nutrition & Food Research, 59(9), 1814–1826. doi: 10.1002/mnfr.201500148 Bishehsari, F., Engen, P. A., Preite, N. Z., Tuncil, Y. E., Naqib, A., Shaikh, M., …, Keshavarzian, A. (2018). Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes, 9(2), 102. doi.org/10.3390/genes9020102 Böttcher, M. F., Nordin, E. K., Sandin, A., Midtvedt, T., & Björkstén, B. (2000). Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clinical and Experimental Allergy, 30(11), 1590–1596. doi: 10.1046/j.1365-2222.2000.00982.x Bovenschen, H. J., van de Kerkhof, P. C., van Erp, P. E., Woestenenk, R., Joosten, I., & Koenen, H. J. (2011). Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. The Journal of Investigative Dermatology, 131(9), 1853–1860. doi: 10.1038/jid.2011.139 Bunesova, V., Lacroix, C., & Schwab, C. (2018). Mucin cross-feeding of infant Bifidobacteria and Eubacterium hallii. Microbial Ecology, 75(1), 228–238.doi: 10.1007/s00248-017-1037-4 Cai, Y., Folkerts, J., Folkerts, G., Maurer, M., & Braber, S. (2020). Microbiota-dependent and -independent effects of dietary fibre on human health. British Journal of Pharmacology, 177(6), 1363–1381. doi: .org/10.1111/bph.14871 Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews. Endocrinology, 11(10), 577–591. doi: 10.1038/nrendo.2015.128 Carretta, M. D., Quiroga, J., López, R., Hidalgo, M. A., & Burgos, R. A. (2021). Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer. Frontiers in Physiology, 12, 662739. doi: 10.3389/fphys.2021.662739 Chia, L. W., Mank, M., Blijenberg, B., Bongers, R. S., van Limpt, K., Wopereis, H., …, Knol, J. (2021). Cross-feeding between Bifidobacterium infantis and Anaerostipes caccae on lactose and human milk oligosaccharides. Beneficial Microbes, 12(1), 69–83. doi: 10.3920/BM2020.0005 Cho, Y. T., & Chu, C. Y. (2019). Advances in systemic treatment for adults with moderate-to-severe atopic dermatitis. Dermatologica Sinica, 37(1), 3.doi: 10.4103/ds.ds_48_18 Cronin, P., Joyce, S. A., O'Toole, P. W., & O'Connor, E. M. (2021). Dietary fibre modulates the gut microbiota. Nutrients, 13(5), 1655. doi: 10.3390/nu13051655 Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P., & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28(10), 1221–1227. doi: org/10.1136/gut.28.10.1221 Czarnowicki, T., Esaki, H., Gonzalez, J., Malajian, D., Shemer, A., Noda, S., …, Guttman-Yassky, E. (2015). Early pediatric atopic dermatitis shows only a cutaneous lymphocyte antigen (CLA)(+) TH2/TH1 cell imbalance, whereas adults acquire CLA(+) TH22/TC22 cell subsets. The Journal of Allergy and Clinical Immunology, 136(4), 941–951.e3. doi: 10.1016/j.jaci.2015.05.049 David Boothe, W., Tarbox, J. A., & Tarbox, M. B. (2017). Atopic dermatitis: pathophysiology. Advances in Experimental Medicine and Biology, 1027, 21–37. doi: 10.1007/978-3-319-64804-0_3 David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., …, Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. doi: 10.1038/nature12820 De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., …, Mithieux, G. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156(1-2), 84–96. doi: 10.1016/j.cell.2013.12.016 Den Besten, G., Lange, K., Havinga, R., van Dijk, T. H., Gerding, A., van Eunen, K., …, Reijngoud, D. J. (2013). Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. American Journal of Physiology. Gastrointestinal and liver physiology, 305(12), G900–G910. doi: 10.1152/ajpgi.00265.2013 Eichenfield, L. F., Stripling, S., Fung, S., Cha, A., O'Brien, A., & Schachner, L. A. (2022). Recent developments and advances in atopic dermatitis: A gocus on Epidemiology, Pathophysiology, and Treatment in the Pediatric Setting. Pediatric Drugs, 24(4), 293–305. doi: 10.1007/s40272-022-00499-x El Hage, R., Hernandez-Sanabria, E., Calatayud Arroyo, M., & Van de Wiele, T. (2020). Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis. American Journal of Physiology. Endocrinology and Metabolism, 318(5), E742–E749. doi: 10.1152/ajpendo.00523.2019 Folkerts, J., Redegeld, F., Folkerts, G., Blokhuis, B., van den Berg, M. P. M., de Bruijn, M. J. W., …, Maurer, M. (2020). Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy, 75(8), 1966–1978. doi: 10.1111/all.14254 Foolad, N., & Armstrong, A. W. (2014). Prebiotics and probiotics: the prevention and reduction in severity of atopic dermatitis in children. Beneficial Microbes, 5(2), 151–160. doi: 10.3920/BM2013.0034 Frazer, L. C., Yakah, W., & Martin, C. R. (2022). Decreased acetic acid in the stool of preterm infants is associated with an increased risk of bronchopulmonary dysplasia. Nutrients, 14(12), 2412.doi: 10.3390/nu14122412 Frikeche, J., Simon, T., Brissot, E., Grégoire, M., Gaugler, B., & Mohty, M. (2012). Impact of valproic acid on dendritic cells function. Immunobiology, 217(7), 704–710. doi: 10.1016/j.imbio.2011.11.010 Furue, K., Ito, T., & Furue, M. (2018). Differential efficacy of biologic treatments targeting the TNF-α/IL-23/IL-17 axis in psoriasis and psoriatic arthritis. Cytokine, 111, 182–188. doi: 10.1016/j.cyto.2018.08.025 Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., …, Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509–1517. doi: 10.2337/db08-1637 Gio-Batta, M., Spetz, K., Barman, M., Bråbäck, L., Norin, E., Björkstén, B., …, Sandin, A. (2022). Low concentration of fecal valeric acid at 1 year of age is linked with eczema and food allergy at 13 years of age: findings from a Swedish birth cohort. International Archives of Allergy and Immunology, 183(4), 398–408. doi: 10.1159/000520149 Haghikia, A., Zimmermann, F., Schumann, P., Jasina, A., Roessler, J., Schmidt, D., …, Landmesser, U. (2022). Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. European Heart Journal, 43(6), 518–533. doi: 10.1093/eurheartj/ehab644 Hansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature Immunology, 12(3), 204–212. doi: 10.1038/ni.2001 He, J., Zhang, P., Shen, L., Niu, L., Tan, Y., Chen, L., …, Zhu, L. (2020). Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. International Journal of Molecular Sciences, 21(17), 6356. doi: 10.3390/ijms21176356 Heimann, E., Nyman, M., Pålbrink, A. K., Lindkvist-Petersson, K., & Degerman, E. (2016). Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte, 5(4), 359–368. doi: 10.1080/21623945.2016.1252011 Hernández, M. A. G., Canfora, E. E., & Blaak, E. E. (2021). Faecal microbial metabolites of proteolytic and saccharolytic fermentation in relation to degree of insulin resistance in adult individuals. Beneficial Microbes, 12(3), 259–266. doi: 10.3920/BM2020.0179 Hino, S., Sonoyama, K., Bito, H., Kawagishi, H., Aoe, S., & Morita, T. (2013). Low-methoxyl pectin stimulates small intestinal mucin secretion irrespective of goblet cell proliferation and is characterized by jejunum Muc2 upregulation in rats. The Journal of Nutrition, 143(1), 34–40. doi: 10.3945/jn.112.167064 Hong, Y. H., Nishimura, Y., Hishikawa, D., Tsuzuki, H., Miyahara, H., Gotoh, C., …, Sasaki, S. (2005). Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology, 146(12), 5092–5099. doi: 10.1210/en.2005-0545 Hu, J., Lin, S., Zheng, B., & Cheung, P. C. K. (2018). Short-chain fatty acids in control of energy metabolism. Critical Reviews in Food Science and Nutrition, 58(8), 1243–1249. doi: 10.1080/10408398.2016.1245650 Hu, T., Wu, Q., Yao, Q., Jiang, K., Yu, J., & Tang, Q. (2022). Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Research Reviews, 81, 101706. doi: 10.1016/j.arr.2022.101706 Irazabal, M. V., & Torres, V. E. (2020). Reactive oxygen species and redox signaling in chronic kidney disease. Cells, 9(6), 1342. doi: 10.3390/cells9061342 Johnson, H., & Yu, J. (2022). Current and emerging therapies in pediatric atopic dermatitis. Dermatology and Therapy, 12(12), 2691–2703. doi: 10.1007/s13555-022-00829-4 Kanda, N., Hoashi, T., & Saeki, H. (2021). The defect in regulatory T cells in psoriasis and therapeutic approaches. Journal of Clinical Medicine, 10(17), 3880. doi: 10.3390/jcm10173880 Kaufman, B. P., Guttman-Yassky, E., & Alexis, A. F. (2018). Atopic dermatitis in diverse racial and ethnic groups-variations in epidemiology, genetics, clinical presentation and treatment. Experimental Dermatology, 27(4), 340–357. doi: 10.1111/exd.13514 Khan, S., & Jena, G. (2014). Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food and Chemical Toxicology, 73, 127–139. doi: 10.1016/j.fct.2014.08.010 Kim C. H. (2021). Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellular & Molecular Immunology, 18(5), 1161–1171. doi: 10.1038/s41423-020-00625-0 Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332–1345. doi: 10.1016/j.cell.2016.05.041 Langan, S. M., Irvine, A. D., & Weidinger, S. (2020). Atopic dermatitis. The Lancet, 396(10247), 345–360. doi: 10.1016/S0140-6736(20)31286-1 Lee, E. M., Cho, Y. T., Hsieh, W. T., Chan, T. C., Shen, D., Chu, C. Y., & Tang, C. H. (2022). Healthcare utilization and costs of atopic dermatitis in Taiwan. Journal of the Formosan Medical Association, 121(10), 1963–1971. doi: 10.1016/j.jfma.2022.01.028 Lee, H., Lee, K., Son, S., Kim, Y. C., Kwak, J. W., Kim, H. G., …, Kim, T. H. (2021). Association of allergic diseases and related conditions with dietary fiber intake in Korean adults. International Journal of Environmental Research and Public Health, 18(6), 2889. doi.org/10.3390/ijerph18062889 Lehmann, S., Hiller, J., van Bergenhenegouwen, J., Knippels, L. M., Garssen, J., & Traidl-Hoffmann, C. (2015). In vitro evidence for immune-modulatory properties of non-digestible oligosaccharides: Direct Effect on Human Monocyte Derived Dendritic Cells. PLOS ONE, 10(7), e0132304. doi: 10.1371/journal.pone.0132304 Li, M., van Esch, B. C. A. M., Henricks, P. A. J., Garssen, J., & Folkerts, G. (2018). Time and concentration dependent effects of short-chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-induced endothelial activation. Frontiers in Pharmacology, 9, 233. doi: 10.3389/fphar.2018.00233 Lim, B. O., Yamada, K., Nonaka, M., Kuramoto, Y., Hung, P., & Sugano, M. (1997). Dietary fibers modulate indices of intestinal immune function in rats. The Journal of Nutrition, 127(5), 663–667. doi: 10.1093/jn/127.5.663 Liu, Y., Zhang, C., Li, B., Yu, C., Bai, X., Xiao, C., …, Wang, G. (2021). A novel role of IL-17A in contributing to the impaired suppressive function of Tregs in psoriasis. Journal of Dermatological Science, 101(2), 84–92. doi: 10.1016/j.jdermsci.2020.09.002 Lu, W., Deng, Y., Fang, Z., Zhai, Q., Cui, S., Zhao, J., …, Zhang, H. (2021). Potential role of probiotics in ameliorating psoriasis by modulating gut microbiota in imiquimod-induced psoriasis-like mice. Nutrients, 13(6), 2010. doi: 10.3390/nu13062010 Luu, M., Weigand, K., Wedi, F., Breidenbend, C., Leister, H., Pautz, S., …, Visekruna, A. (2018). Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Scientific Reports, 8(1), 14430. doi: 10.1038/s41598-018-32860-x Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International, 95(1), 50–60. doi: 10.5740/jaoacint.sge_macfarlane Machado, R. A., Constantino, L.deS., Tomasi, C. D., Rojas, H. A., Vuolo, F. S., …, Dal-Pizzol, F. (2012). Sodium butyrate decreases the activation of NF-κB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrology, Dialysis, Transplantation, 27(8), 3136–3140. doi: 10.1093/ndt/gfr807 Macia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., …, Mackay, C. R. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 6, 6734. doi: 10.1038/ncomms7734 Magliocca, G., Mone, P., Di Iorio, B. R., Heidland, A., & Marzocco, S. (2022). Short-chain fatty acids in chronic kidney disease: focus on inflammation and oxidative stress regulation. International Journal of Molecular Sciences, 23(10), 5354. doi: 10.3390/ijms23105354 Marques, F. Z., Nelson, E., Chu, P. Y., Horlock, D., Fiedler, A., …, Kaye, D. M. (2017). High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 135(10), 964–977. doi: 10.1161/CIRCULATIONAHA.116.024545 Martínez, I., Kim, J., Duffy, P. R., Schlegel, V. L., & Walter, J. (2010). Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLOS ONE, 5(11), e15046. doi: 10.1371/journal.pone.0015046 Marzocco, S., Fazeli, G., Di Micco, L., Autore, G., Adesso, S., Dal Piaz, F., Heidland, A., & Di Iorio, B. (2018). Supplementation of short-chain fatty acid, sodium propionate, in patients on maintenance hemodialysis: beneficial effects on inflammatory parameters and gut-derived uremic toxins, a pilot study. Journal of Clinical Medicine, 7(10), 315. doi: 10.3390/jcm7100315 Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., …, Mackay, C. R. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282–1286. doi: 10.1038/nature08530 Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189–200. doi: 10.1080/19490976.2015.1134082 Nakamura, Y., Nosaka, S., Suzuki, M., Nagafuchi, S., Takahashi, T., Yajima, T., T., …, Moro, I. (2004). Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clinical and Experimental Immunology, 137(1), 52–58. doi: 10.1111/j.1365-2249.2004.02487.x Nutten, S. (2015). Atopic dermatitis: global epidemiology and risk factors. Annals of Nutrition and Metabolism, 66 Suppl 1, 8–16. doi: 10.1159/000370220 Nylund, L., Nermes, M., Isolauri, E., Salminen, S., de Vos, W. M., & Satokari, R. (2015). Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy, 70(2), 241–244. doi.org/10.1111/all.12549 O'Garra, A., Vieira, P. L., Vieira, P., & Goldfeld, A. E. (2004). IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. The Journal of Clinical Investigation, 114(10), 1372–1378. doi.org/10.1172/JCI23215 Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., …, Ikeda, M. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis, 20(5), 425–442. doi: 10.5551/jat.15065 Ojo, O., Feng, Q. Q., Ojo, O. O., & Wang, X. H. (2020). The Role of Dietary Fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Nutrients, 12(11), 3239. doi: 10.3390/nu12113239 Oranje, A. P., Glazenburg, E. J., Wolkerstorfer, A., & de Waard-van der Spek, F. B. (2007). Practical issues on interpretation of scoring atopic dermatitis: the SCORAD index, objective SCORAD and the three-item severity score. The British Journal of Dermatology, 157(4), 645–648. doi: 10.1111/j.1365-2133.2007.08112.x Pachacama López, A. F., Tapia Portilla, M. F., Moreno-Piedrahíta Hernández F., Palacios-Álvarez, S. (2021). Probiotics to reduce the severity of atopic dermatitis in pediatric patients: a systematic review and meta-analysis. Actas Dermo-Sifiliográficas, 112(10), 881-890.doi: 10.1016/j.adengl.2021.06.006. Park, J., Kim, M., Kang, S. G., Jannasch, A. H., Cooper, B., Patterson, J., & Kim, C. H. (2015). Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology, 8(1), 80–93. doi: 10.1038/mi.2014.44 Park, Y. M., Lee, S. Y., Kang, M. J., Kim, B. S., Lee, M. J., Jung, S. S., …, Hong, S. J. (2020). Imbalance of gut Streptococcus, Clostridium, and Akkermansia determines the natural course of atopic dermatitis in infant. Allergy, Asthma & Immunology Research, 12(2), 322–337. doi: 10.4168/aair.2020.12.2.322 Penn, R., Ward, B. J., Strande, L., & Maurer, M. (2018). Review of synthetic human faeces and faecal sludge for sanitation and wastewater research. Water Research, 132, 222–240. doi: 10.1016/j.watres.2017.12.063 Pluznick J. (2014). A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes, 5(2), 202–207. doi: 10.4161/gmic.27492 Primec, M., Mičetić-Turk, D., & Langerholc, T. (2017). Analysis of short-chain fatty acids in human feces: A scoping review. Analytical Biochemistry, 526, 9–21. doi: 10.1016/j.ab.2017.03.007 Puar, N., Chovatiya, R., & Paller, A. S. (2021). New treatments in atopic dermatitis. Annals of Allergy, Asthma & Immunology, 126(1), 21–31. doi: 10.1016/j.anai.2020.08.016 Ratajczak, W., Rył, A., Mizerski, A., Walczakiewicz, K., Sipak, O., & Laszczyńska, M. (2019). Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica, 66(1), 1–12. doi: 10.18388/abp.2018_2648 Reddel, S., Del Chierico, F., Quagliariello, A., Giancristoforo, S., Vernocchi, P., Russo, A., …, El Hachem, M. (2019). Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Scientific Reports, 9(1), 4996. doi.org/10.1038/s41598-019-41149-6 Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de Los Reyes-Gavilán, C. G., & Salazar, N. (2016). Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology, 7, 185. doi: 10.3389/fmicb.2016.00185 Rios-Covian, D., González, S., Nogacka, A. M., Arboleya, S., Salazar, N., Gueimonde, M., & de Los Reyes-Gavilán, C. G. (2020). An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors. Frontiers in Microbiology, 11, 973. doi: 10.3389/fmicb.2020.00973 Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827–1879. doi: 10.1080/10643389.2014.1000761 Sairenji, T., Collins, K. L., & Evans, D. V. (2017). An update on inflammatory bowel disease. Primary Care, 44(4), 673–692. doi: 10.1016/j.pop.2017.07.010 Sandin, A., Bråbäck, L., Norin, E., & Björkstén, B. (2009). Faecal short chain fatty acid pattern and allergy in early childhood. Acta Paediatrica (Oslo, Norway: 1992), 98(5), 823–827. doi: 10.1111/j.1651-2227.2008.01215.x Sepahi, A., Liu, Q., Friesen, L., & Kim, C. H. (2021). Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunology, 14(2), 317–330. doi: 10.1038/s41385-020-0312-8 Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology, 11, 25. doi: 10.3389/fendo.2020.00025 Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., …, Ganapathy, V. (2014). Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 40(1), 128–139. doi: 10.1016/j.immuni.2013.12.007 Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-Y, M., …, Garrett, W. S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569–573. doi: 10.1126/science.1241165 So, D., Whelan, K., Rossi, M., Morrison, M., Holtmann, G., Kelly, J. T., …, Campbell, K. L. (2018). Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 107(6), 965–983. doi.org/10.1093/ajcn/nqy041 Somanunt, S., Chinratanapisit, S., Pacharn, P., Visitsunthorn, N., & Jirapongsananuruk, O. (2017). The natural history of atopic dermatitis and its association with Atopic March. Asian Pacific Journal of Allergy and Immunology, 35(3), 137–143. doi: 10.12932/AP0825 Sroka-Tomaszewska, J., & Trzeciak, M. (2021). Molecular mechanisms of atopic dermatitis pathogenesis. International Journal of Molecular Sciences, 22(8), 4130. doi: 10.3390/ijms22084130 Ständer S. (2021). Atopic dermatitis. The New England Journal of Medicine, 384(12), 1136–1143. doi: 10.1056/NEJMra2023911 Stec, A., Sikora, M., Maciejewska, M., Paralusz-Stec, K., Michalska, M., Sikorska, E., & Rudnicka, L. (2023). Bacterial metabolites: a link between gut microbiota and dermatological diseases. International Journal of Molecular Sciences, 24(4), 3494. doi: 10.3390/ijms24043494 Stephen, A. M., Champ, M. M., Cloran, S. J., Fleith, M., van Lieshout, L., Mejborn, H., & Burley, V. J. (2017). Dietary fibre in Europe: current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews, 30(2), 149–190. doi: 10.1017/S095442241700004X Sun, X., Zhang, B., Hong, X., Zhang, X., & Kong, X. (2013). Histone deacetylase inhibitor, sodium butyrate, attenuates gentamicin-induced nephrotoxicity by increasing prohibitin protein expression in rats. European Journal of Pharmacology, 707(1-3), 147–154. doi: 10.1016/j.ejphar.2013.03.018 Ta, L. D. H., Chan, J. C. Y., Yap, G. C., Purbojati, R. W., Drautz-Moses, D. I., Koh, Y. M., …, Lee, B. W. (2020). A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut microbes, 12(1), 1–22. doi: 10.1080/19490976.2020.1801964 Thio, C. L., Chi, P. Y., Lai, A. C., & Chang, Y. J. (2018). Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. The Journal of Allergy and Clinical Immunology, 142(6), 1867–1883.e12. doi: 10.1016/j.jaci.2018.02.032 Thorburn, A. N., Macia, L., & Mackay, C. R. (2014). Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity, 40(6), 833–842. doi: 10.1016/j.immuni.2014.05.014 Thorburn, A. N., McKenzie, C. I., Shen, S., Stanley, D., Macia, L., Mason, L. J., …, Mackay, C. R. (2015). Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Communications, 6, 7320. doi: 10.1038/ncomms8320 Torres, T., Ferreira, E. O., Gonçalo, M., Mendes-Bastos, P., Selores, M., & Filipe, P. (2019). Update on atopic dermatitis. Acta Medica Portuguesa, 32(9), 606–613. doi: 10.20344/amp.11963 Totté, J. E., van der Feltz, W. T., Hennekam, M., van Belkum, A., van Zuuren, E. J., & Pasmans, S. G. (2016). Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. The British Journal of Dermatology, 175(4), 687–695. doi: 10.1111/bjd.14566 Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., …, Marsland, B. J. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20(2), 159–166. doi: 10.1038/nm.3444 Trompette, A., Pernot, J., Perdijk, O., Alqahtani, R. A. A., Domingo, J. S., Camacho-Muñoz, D., …, Marsland, B. J. (2022). Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunology, 15(5), 908–926. doi: 10.1038/s41385-022-00524-9 Tsuge, M., Ikeda, M., Matsumoto, N., Yorifuji, T., & Tsukahara, H. (2021). Current Insights into Atopic March. Children, 8(11), 1067. doi: 10.3390/children8111067 Turner, N. D., & Lupton, J. R. (2011). Dietary fiber. Advances in nutrition (Bethesda, Md.), 2(2), 151–152. doi: 10.3945/an.110.000281 Verstegen, R. E. M., Kostadinova, A. I., Merenciana, Z., Garssen, J., Folkerts, G., Hendriks, R. W., & Willemsen, L. E. M. (2021). Dietary Fibers: Effects, Underlying Mechanisms and Possible Role in Allergic Asthma Management. Nutrients, 13(11), 4153. doi: 10.3390/nu13114153 Wagner, M., & Koyasu, S. (2021). Innate Lymphoid Cells in Skin Homeostasis and Malignancy. Frontiers in Immunology, 12, 758522. doi: 10.3389/fimmu.2021.758522 Waldecker, M., Kautenburger, T., Daumann, H., Busch, C., & Schrenk, D. (2008). Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. The Journal of Nutritional Biochemistry, 19(9), 587–593. doi: 10.1016/j.jnutbio.2007.08.002 Walter J. (2015). Murine gut microbiota-diet trumps genes. Cell Host & Microbe, 17(1), 3–5. doi: 10.1016/j.chom.2014.12.004 Wang, L. C., Huang, Y. M., Lu, C., Chiang, B. L., Shen, Y. R., Huang, H. Y., Lee, C. C., Su, N. W., & Lin, B. F. (2022). Lower caprylate and acetate levels in the breast milk is associated with atopic dermatitis in infancy. Pediatric Allergy and Immunology : Official Publication of the European Society of Pediatric Allergy and Immunology, 33(2), e13744. doi: 10.1111/pai.13744 Wang, Y., Dilidaxi, D., Wu, Y., Sailike, J., Sun, X., & Nabi, X. H. (2020). Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomedicine & Pharmacotherapy, 125, 109914.doi: 10.1016/j.biopha.2020.109914 Werfel, T., Allam, J. P., Biedermann, T., Eyerich, K., Gilles, S., Guttman-Yassky, E., …, Akdis, C. A. (2016). Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. The Journal of Allergy and Clinical Immunology, 138(2), 336–349. doi: 10.1016/j.jaci.2016.06.010 Wlodarska, M., Thaiss, C. A., Nowarski, R., Henao-Mejia, J., Zhang, J. P., Brown, E. M., …, Flavell, R. A. (2014). NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell, 156(5), 1045–1059. doi: 10.1016/j.cell.2014.01.026 Wong, J. M., de Souza, R., Kendall, C. W., Emam, A., & Jenkins, D. J. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235–243. doi: 10.1097/00004836-200603000-00015 Wu, W. F., Wan, K. S., Wang, S. J., Yang, W., & Liu, W. L. (2011). Prevalence, severity, and time trends of allergic conditions in 6-to-7-year-old schoolchildren in Taipei. Journal of Investigational Allergology and Clinical Immunology, 21(7), 556–562. doi: Not Found; PMID: 22312941 Xiao, X., Hu, X., Yao, J., Cao, W., Zou, Z., Wang, L., …, Li, J. (2023). The role of short-chain fatty acids in inflammatory skin diseases. Frontiers in Microbiology, 13, 1083432. doi: 10.3389/fmicb.2022.1083432 Yamashita, H., Fujisawa, K., Ito, E., Idei, S., Kawaguchi, N., Kimoto, M., …, & Tsuji, H. (2007). Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology, and Biochemistry, 71(5), 1236–1243. doi: 10.1271/bbb.60668 Yang, L., Fu, J., & Zhou, Y. (2020). Research progress in atopic march. Frontiers in Immunology, 11, 1907. doi: 10.3389/fimmu.2020.01907 Yang, Z., Deng, H., He, T., Sun, Z., Gifty, Z. B., Hu, P., …, Tang, Z. (2021). Effects of dietary protein levels on fecal amino acids excretion and apparent digestibility, and fecal and ileal microbial amino acids composition in weaned piglets. Frontiers in Nutrition, 8, 738707. doi: 10.3389/fnut.2021.738707 Yoo, J. Y., Sniffen, S., McGill Percy, K. C., Pallaval, V. B., & Chidipi, B. (2022). Gut dysbiosis and immune system in atherosclerotic cardiovascular disease. Microorganisms, 10(1), 108. doi.org/10.3390/microorganisms10010108 Zhao, G., Nyman, M., & Jönsson, J. A. (2006). Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomedical Chromatography, 20(8), 674–682. doi.org/10.1002/bmc.580 Zheng, L., Kelly, C. J., Battista, K. D., Schaefer, R., Lanis, J. M., Alexeev, E. E., …, Colgan, S. P. (2017). Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. Journal of Immunology, 199(8), 2976–2984. doi: 10.4049/jimmunol.1700105 Ziętek, M., Celewicz, Z., & Szczuko, M. (2021). Short-chain fatty acids, maternal microbiota and metabolism in pregnancy. Nutrients, 13(4), 1244. doi: 10.3390/nu13041244 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91695 | - |
dc.description.abstract | 異位性皮膚炎 (atopic dermatitis, AD) 是一種常見的慢性發炎皮膚疾病,尤其在台灣AD的發病率持續上升,主要好發於嬰兒及幼童。AD所導致的皮膚乾癢、紅腫等症狀對嬰幼兒的健康產生嚴重影響。近年來,AD發病機制越來越關注到腸道微生物,特別是其代謝產物短鏈脂肪酸 (short-chain fatty acids, SCFAs)。已經有證據表明SCFAs在調節免疫反應和維護皮膚健康方面扮演關鍵角色。因此,本研究旨在探討嬰兒糞便中的短鏈脂肪酸組成,包括與異位性皮膚炎之間的相關性。本研究與台大小兒過敏門診合作,收集6個月齡的嬰兒糞便樣本,並分析AD組 (n=70) 和對照組 (Ctrl)(n=49) 嬰兒的糞便短鏈脂肪酸濃度。同時,也收集嬰兒近1個月的飲食分析表,計算其膳食纖維攝取量。首先以氣相層析-質譜 (gas chromatography-mass spectrometry, GC-MS) 建立糞便短鏈脂肪酸檢測方法,並進行確效測試。結果顯示,使用0.25% HCl ACN前處理的各個短鏈脂肪酸在檢量線濃度範圍內呈現良好的線性關係 (R2>0.99),糞便樣品無明顯的基質效應,且具有良好的精密度及準確度,符合化學檢驗法的確效規範。依據此方法測得嬰兒糞便乙酸 (C2) 濃度為17.3-192 μmol/g、丙酸 (C3) 濃度為0.21-31 μmol/g、丁酸 (C4) 濃度為0-9 μmol/g,而戊酸與己酸則未能在糞便中檢測。與Ctrl組相比,AD組嬰兒的糞便乙酸、C2+C3+C4的濃度顯著較低,丙酸、丁酸也有較低的趨勢。另外,丙酸濃度與AD的疾病嚴重程度呈負相關。嬰兒飲食調查的結果發現,中度AD組嬰兒的膳食纖維攝取量顯著低於控制組,且膳食纖維量與AD的疾病嚴重程度呈負相關;嬰兒飲食內的膳食纖維量與糞便內乙酸、丙酸、C2+C3+C4呈正相關。此外,也有發現嬰兒飲食補充益生菌可提高糞便內丙酸、丁酸的濃度。綜上所述,罹患AD的嬰兒具有較低的糞便短鏈脂肪酸,而飲食的膳食纖維與益生菌,可能有助於提高短鏈脂肪酸濃度。 | zh_TW |
dc.description.abstract | Atopic dermatitis (AD) is a common chronic inflammatory skin disorder, and its incidence has been steadily increasing in Taiwan, particularly among infants and young children. The symptoms of AD, such as dry and inflamed skin, can severely impact health. In recent years, research on the pathogenesis of AD has increasingly focused on the gut microbiota, specifically its metabolic products known as short-chain fatty acids (SCFAs). Evidence suggests that SCFAs are crucial in regulating immune responses and maintaining skin health. Therefore, this study aims to investigate the correlation between the composition of fecal SCFAs and atopic dermatitis in infants. This study collaborated with the Division of Pediatric Allergy of NTU hospital, collecting fecal samples from 6-month-old infants and analyzing the concentrations of SCFAs in both AD group (n=70) and control group (Ctrl) (n=49) of infants. Dietary intake data for infants were also collected to analyze their dietary fiber intake. The fecal SCFAs detection method was established using gas chromatography-mass spectrometry (GC-MS), and a validation test was conducted. The results showed that SCFAs, pretreated with 0.25% HCl ACN, exhibited good linear relationships of the calibration curves (R2>0.999), with no significant matrix effects in fecal samples. The method also demonstrated good precision and accuracy, complying with the validation guidelines. Using this method, the concentration of acetic acid (C2) in infant feces was measured to be 17.3-192 μmol/g, propionic acid (C3) ranged from 0.21-31 μmol/g, and butyric acid (C4) ranged from 0-9 μmol/g. However, valeric acid and caproic acid were not detected in feces. When compared to the control group, infants in the AD group had significantly lower concentration of acetic acid, C2+C3+C4, and a trend of lower propionic acid and butyric acid in feces. Furthermore, there was a negative correlation between propionic acid and the severity of AD. Dietary analysis showed that those with moderate AD had significantly lower dietary fiber intake, and dietary fiber intake was negatively correlated with the severity of AD. The amount of dietary fiber was positively correlated with fecal acetic acid, propionic acid, and C2+C3+C4 concentration. Additionally, it was observed that supplementing infants' diets with probiotics increased fecal propionic acid and butyric acid concentration. In summary, infants with AD had lower fecal SCFAs levels. Dietary fiber and probiotics in their diets may help increase SCFAs concentration. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:16:41Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:16:41Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目次 VI 圖次 IX 表次 X 縮寫對照表 XI 第一章 緒論 1 第一節 文獻回顧 1 一、 異位性皮膚炎 1 (一) 異位性皮膚炎流行病學 1 (二) 異位性皮膚炎與過敏疾病 1 (三) 異位性皮膚炎症狀及診斷 2 (四) 異位性皮膚炎成因 3 (五) 異位性皮膚炎的病理機制 4 (六) 兒童與成人異位性皮膚炎 5 (七) 異位性皮膚炎的治療 6 二、 糞便的組成 7 (一) 糞便微生物 7 (二) 糞便蛋白質或含氮物質 7 (三) 糞便碳水化合物或纖維 8 (四) 糞便脂質 8 三、 短鏈脂肪酸 9 (一) 腸道短鏈脂肪酸的分佈 9 (二) 飲食與短鏈脂肪酸 9 (三) 短鏈脂肪酸的生成途徑 10 (四) 腸道短鏈脂肪酸的吸收 11 (五) 短鏈脂肪酸的受體 12 (六) 短鏈脂肪酸的作用 13 (七) 短鏈脂肪酸與免疫細胞 15 (八) 短鏈脂肪酸組成與疾病 16 四、 膳食纖維 20 (一) 定義與種類 20 (二) 膳食纖維對於腸道微生物之影響 20 (三) 膳食纖維對於免疫之影響 21 第二節 研究動機與目的 22 第二章 嬰兒糞便短鏈脂肪酸檢測方法的建立與確效 23 第一節 前言 23 第二節 材料與方法 24 【儀器/耗材】 24 【標準品/藥品】 24 【方法】 25 一、 分析條件設定 25 二、 方法確效測試 26 第三節 結果 29 一、 分析條件設定 29 1. 選擇配製溶液 29 2. 標準品與內標準品配製 30 3. 氣相層析儀-質譜儀設置參數 31 二、 方法確效測試 34 1. 短鏈脂肪酸之檢量線線性評估 34 2. 檢測結果專一性評估 35 3. GC-MS之檢測極限和定量極限 37 4. 檢測結果準確度評估 37 5. 檢測結果精密度評估 40 第三章 嬰兒糞便短鏈脂肪酸組成與異位性皮膚炎的相關性 41 第一節 前言 41 第二節 材料與方法 42 一、 研究對象與實驗流程 42 二、 嬰兒糞便收集與短鏈脂肪酸分析 42 1. 糞便檢體收集和保存 43 2. 糞便樣品前處理 43 3. 氣相層析儀-質譜儀設置條件 43 三、 嬰兒飲食分析表 43 四、 統計分析 43 第三節 結果 44 一、 異位性皮膚炎的嬰兒糞便短鏈脂肪酸組成 44 二、 嬰兒異位性皮膚炎嚴重程度與糞便短鏈脂肪酸的含量之相關性 47 三、 嬰兒異位性皮膚炎的膳食纖維的攝取量 48 四、 嬰兒膳食纖維攝取量與糞便短鏈脂肪酸之相關性 50 五、 補充益生菌與罹患異位性皮膚炎對嬰兒糞便短鏈脂肪酸濃度的影響 51 第四章 綜合討論與結論 52 第一節 綜合討論 52 一、 嬰兒糞便短鏈脂肪酸檢測方法建立 52 二、 嬰兒糞便短鏈脂肪酸與異位性皮膚炎之相關性 53 三、 嬰兒膳食纖維攝取量與異位性皮膚炎之相關性 54 四、 嬰兒膳食纖維攝取量與糞便短鏈脂肪酸之相關性 55 五、 補充益生菌與罹患異位性皮膚炎對嬰兒糞便短鏈脂肪酸濃度的影響 55 六、 實驗限制 56 第二節 結論 57 參考文獻 58 附錄 71 | - |
dc.language.iso | zh_TW | - |
dc.title | 嬰兒糞便的短鏈脂肪酸組成與異位性皮膚炎之相關性 | zh_TW |
dc.title | The correlation between the fecal short-chain fatty acids composition and atopic dermatitis in infants | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 江伯倫;王麗潔;蘇南維;江孟燦 | zh_TW |
dc.contributor.oralexamcommittee | Bor-Luen Chiang;Li-Chieh Wang;Nan-Wei SU;Meng-Tsan Chiang | en |
dc.subject.keyword | 異位性皮膚炎,短鏈脂肪酸,膳食纖維,糞便,飲食, | zh_TW |
dc.subject.keyword | atopic dermatitis,short-chain fatty acids,dietary fiber,feces,diet, | en |
dc.relation.page | 74 | - |
dc.identifier.doi | 10.6342/NTU202400145 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-01-30 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科技學系 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 4.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。