請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91694
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐宏民 | zh_TW |
dc.contributor.advisor | Winston H.Hsu | en |
dc.contributor.author | 劉育嘉 | zh_TW |
dc.contributor.author | Yu-Jia Liou | en |
dc.date.accessioned | 2024-02-22T16:16:24Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-03 | - |
dc.identifier.citation | References
[1] Y. Biktairov, M. Stebelev, I. Rudenko, O. Shliazhko, and B. Yangel. Prank: motion prediction based on ranking. Advances in neural information processing systems, 33:2553–2563, 2020. [2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11621–11631, 2020. [3] S. Casas, C. Gulino, R. Liao, and R. Urtasun. Spagnn: Spatially-aware graph neural networks for relational behavior forecasting from sensor data. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 9491–9497. IEEE, 2020. [4] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun. Implicit latent variable model for scene-consistent motion forecasting. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages 624–641. Springer, 2020. [5] S. Casas, A. Sadat, and R. Urtasun. Mp3: A unified model to map, perceive, predict and plan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14403–14412, 2021. [6] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449, 2019. [7] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8748–8757, 2019. [8] J. Cheng, X. Mei, and M. Liu. Forecast-mae: Self-supervised pre-training for motion forecasting with masked autoencoders. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8679–8689, 2023. [9] S. Choi, J. Kim, J. Yun, and J. W. Choi. R-pred: Two-stage motion prediction via tube-query attention-based trajectory refinement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8525–8535, 2023. [10] A. Cui, S. Casas, K. Wong, S. Suo, and R. Urtasun. Gorela: Go relative for viewpoint-invariant motion forecasting. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 7801–7807. IEEE, 2023. [11] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schneider, and N. Djuric. Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In 2019 International Conference on Robotics and Automation (ICRA), pages 2090–2096. IEEE, 2019. [12] N. Djuric, V. Radosavljevic, H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin, N. Singh, and J. Schneider. Uncertainty-aware short-term motion prediction of traffic actors for autonomous driving. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2095–2104, 2020. [13] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. Mc-Cauley, J. Shlens, and D. Anguelov. Large scale interactive motion forecasting for autonomous driving : The waymo open motion dataset. arXiv, 2021. [14] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. Vectornet: Encoding hd maps and agent dynamics from vectorized representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11525–11533, 2020. [15] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde. Thomas: Trajectory heatmap output with learned multi-agent sampling, 2022. [16] R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide, and C. Pal. Latent variable sequential set transformers for joint multi-agent motion prediction. arXiv preprint arXiv:2104.00563, 2021. [17] J. Gu, C. Sun, and H. Zhao. Densetnt: End-to-end trajectory prediction from dense goal sets. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15303–15312, 2021. [18] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska. One thousand and one hours: Self-driving motion prediction dataset. In Conference on Robot Learning, pages 409–418. PMLR, 2021. [19] Z. Huang, X. Mo, and C. Lv. Multi-modal motion prediction with transformer based neural network for autonomous driving. In 2022 International Conference on Robotics and Automation (ICRA), pages 2605–2611. IEEE, 2022. [20] X. Jia, P. Wu, L. Chen, Y. Liu, H. Li, and J. Yan. Hdgt: Heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding. IEEE transactions on pattern analysis and machine intelligence, 2023. [21] N. Kamra, H. Zhu, D. K. Trivedi, M. Zhang, and Y. Liu. Multi-agent trajectory prediction with fuzzy query attention. Advances in Neural Information Processing Systems, 33:22530–22541, 2020. [22] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker. Desire: Distant future prediction in dynamic scenes with interacting agents. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 336–345, 2017. [23] L. L. Li, B. Yang, M. Liang, W. Zeng, M. Ren, S. Segal, and R. Urtasun. End-to-end contextual perception and prediction with interaction transformer. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5784–5791. IEEE, 2020. [24] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph representations for motion forecasting. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pages 541–556. Springer, 2020. [25] F. Marchetti, F. Becattini, L. Seidenari, and A. D. Bimbo. Mantra: Memory augmented networks for multiple trajectory prediction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 7143–7152, 2020. [26] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel. Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 14424–14432, 2020. [27] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley, C. Liu, A. Venugopal, et al. Scene transformer: A unified architecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417, 2021. [28] L. Rowe, M. Ethier, E.-H. Dykhne, and K. Czarnecki. Fjmp: Factorized joint multi-agent motion prediction over learned directed acyclic interaction graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13745–13755, 2023. [29] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Multiagent generative trajectory forecasting with heterogeneous data for control. arXiv preprint arXiv:2001.03093, 2, 2020. [30] Q. Sun, X. Huang, J. Gu, B. C. Williams, and H. Zhao. M2i: From factored marginal trajectory prediction to interactive prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6543–6552, 2022. [31] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov, et al. Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction. In 2022 International Conference on Robotics and Automation (ICRA), pages 7814–7821. IEEE, 2022. [32] M. Wang, X. Zhu, C. Yu, W. Li, Y. Ma, R. Jin, X. Ren, D. Ren, M. Wang, and W. Yang. Ganet: Goal area network for motion forecasting. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 1609–1615. IEEE, 2023. [33] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Kumar, A. Hartnett, J. K. Pontes, et al. Argoverse 2: Next generation datasets for self-driving perception and forecasting. arXiv preprint arXiv:2301.00493, 2023. [34] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof, C. Stiller, A. de La Fortelle, et al. Interaction dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint arXiv:1910.03088, 2019. [35] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu. Hivt: Hierarchical vector transformer for multi-agent motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8823–8833, 2022. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91694 | - |
dc.description.abstract | 預測車輛未來軌跡是自動駕駛中的一項重要的任務。先前的研究主要集中在為每個車輛預測個別的未來軌跡。然而,在現實世界的情境中,尤其是在複雜的場景,如路口,更重要的是預測多個車輛未來的聯合軌跡。在這份研究裡,我們將問題範疇縮小,專注於僅為中心車輛預測不會和周圍其他車輛未來發生碰撞的軌跡。我們提出了一個名為PITP的框架,它利用初始的多車輛軌跡預測模型,為中心車輛的每條可能軌跡選擇不同需要關注的車輛。PITP利用這些被關注的車輛,獲取沿著軌跡附近區域的場景特徵。隨後,它進一步利用這些特徵通過交叉關注學習所有車輛和地圖元素之間的互動。我們的實驗在Argoverse2上進行,其中包括從中擷取的複雜路口場景。結果顯示,PITP在公開資料上取得了具有競爭性的表現。此外,和目前的邊緣預測模型相比,PITP在特別挑戰性的場景中表現出顯著的改進。 | zh_TW |
dc.description.abstract | Predicting future trajectories of road agents is a crucial task in autonomous driving. Previous studies primarily concentrate on forecasting individual trajectories for each agent. Nevertheless, in real-world situations, particularly in complex scenarios such as intersections, prioritizing the generation of joint predictions for future trajectories across multiple agents becomes more crucial. In this work, we narrow down the problem to focus exclusively on predicting scene-compliant trajectories for a target agent. We propose a framework, termed PITP, which leverages the initial multi-agent prediction model to select different interactive agents for each potential trajectory of the target agent. PITP utilizes these interactive agents to acquire near local scene context features along each path. Subsequently, it further employs these features to learn interactions among all agents and map elements through cross attention. Our experiments were conducted on Argoverse2, with the complex intersection scenario extracted from it. The results indicate that PITP achieves competitive performance on benchmark and demonstrates significant improvement in challenging scenes compared to the current marginal prediction model. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:16:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:16:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Motion Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Interaction Modeling for Trajectory Prediction . . . . . . .. . . . . . 5 2.3 Relation Graph Prediction . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 3 Method 9 3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 10 3.3 Extract Intersection Data . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Initial Multi-Agent Prediction Model(MPNet) . . . . . . . . . . ... . . 12 3.5 Proposal-based Interactive Trajectory Prediction . . . . . . . .. . . . 12 3.5.1 Dense Future Prediction . . . . . . . . . . . . . . . . . . . . . . . 12 3.5.2 Interactive Agent Selection(IAS) . . . . . . . . . . . . . . .. . . . 13 3.5.3 Local Map Collection(LMC) . . . . . . . . . . .... . . . . . . . . . 13 3.5.4 Interactive Feature Fusion . . . . . . . . . . . . . . . . . . . . . 14 3.5.5 Attention Module with Interactive Feature . . . . . . . . . . ... . . 14 3.5.6 Prediction Head . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 Training loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 4 Experiment 17 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Chapter 5 Conclusion 23 References 25 | - |
dc.language.iso | en | - |
dc.title | 基於互動關係重要性篩選的路口車輛軌跡預測 | zh_TW |
dc.title | Intersection Motion Prediction Over Importance of Interactive Relation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳文進;陳奕廷;林忠緯 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Chin Chen;Yi-Ting Chen;Chung-Wei Lin | en |
dc.subject.keyword | 電腦視覺,自駕車,軌跡預測, | zh_TW |
dc.subject.keyword | Computer Vision,Autonomous Driving,Trajectory Prediction, | en |
dc.relation.page | 30 | - |
dc.identifier.doi | 10.6342/NTU202400425 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-02-05 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 資訊工程學系 | - |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 4.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。