Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91692
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柳玗珍zh_TW
dc.contributor.advisorWoo-Jin Yooen
dc.contributor.author盧彥廷zh_TW
dc.contributor.authorYen-Ting Luen
dc.date.accessioned2024-02-22T16:15:48Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2023-
dc.date.submitted2024-01-29-
dc.identifier.citation1. F. Mao, W. Ni, X. Xu, H. Wang, J. Wang, M. Ji, J. Li, Chemical Structure-Related Drug-Like Criteria of Global Approved Drugs. Molecules 2016, 21, 75.
2. L. M. Salonen, M. Ellermann, F. Diederich, Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angew. Chem. Int. Ed. 2011, 50, 4808-4842.
3. C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, E. J. Lien, Aromatic Substituent Constants for Structure-activity Correlations. J. Med. Chem. 1973, 16, 1207-1216.
4. M. R. Crampton, Nucleophilic Aromatic Substitution in Arene Chemistry, 2015, pp. 131-173.
5. M. H. Emmert, C. J. Legacy, Chelate-Assisted Arene C–H Bond Functionalization in Arene Chemistry, 2015, pp. 645-673.
6. A. Jutand, G. Lefèvre, Transition Metal-Catalyzed Carbon–Carbon Cross-Coupling in Arene Chemistry, 2015, pp. 511-545.
7. D. A. Klumpp, Electrophilic Aromatic Substitution in Arene Chemistry, 2015, pp. 1-31.
8. D. G. Brown, M. M. Gagnon, J. Boström, Understanding Our Love Affair with p-Chlorophenyl: Present Day Implications from Historical Biases of Reagent Selection. J. Med. Chem. 2015, 58, 2390-2405.
9. E. C. Miller, J. A. Miller, The Presence and Significance of Bound Aminoazo Dyes in the Livers of Rats Fed p-Dimethylaminoazobenzene. Cancer Research 1947, 7, 468-480.
10. J. L. Bolton, T. Dunlap, Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem. Res. Toxicol. 2017, 30, 13-37.
11. J. E. Stok, S. Chow, E. H. Krenske, C. FarfanSoto, C. Matyas, R. A. Poirier, C. M. Williams, J. J. DeVoss, Direct Observation of an Oxepin from a Bacterial Cytochrome P450-Catalyzed Oxidation. Chem. Eur. J. 2016, 22, 4408-4412.
12. M. A. M. Subbaiah, N. A. Meanwell, Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J. Med. Chem. 2021, 64, 14046-14128.
13. A. S. Kalgutkar, Designing around Structural Alerts in Drug Discovery. J. Med. Chem. 2020, 63, 6276-6302.
14. J. R. Mitchell, D. J. Jollow, J. R. Gillette, B. B. Brodie, Drug Metabolism as a Cause of Drug Toxicity. Drug Metab. Dispos. 1973, 1, 418-423.
15. L. L. Mazaleuskaya, K. Sangkuhl, C. F. Thorn, G. A. FitzGerald, R. B. Altman, T. E. Klein, PharmGKB Summary: Pathways of Acetaminophen Metabolism at the Therapeutic versus Toxic Doses. Pharmacogenet Genomics 2015, 25, 416-426.
16. D. W. Roberts, T. J. Bucci, R. W. Benson, A. R. Warbritton, T. A. McRae, N. R. Pumford, J. A. Hinson, Immunohistochemical Localization and Quantification of the 3-(cystein-S-yl)-Acetaminophen Protein Adduct in Acetaminophen Hepatotoxicity. Am. J. Pathol. 1991, 138, 359-371.
17. M. J. Smilkstein, G. L. Knapp, K. W. Kulig, B. H. Rumack, Efficacy of Oral N-Acetylcysteine in the Treatment of Acetaminophen Overdose. N. Engl. J. Med. 1988, 319, 1557-1562.
18. S. Babai, L. Auclert, H. Le-Louët, Safety Data and Withdrawal of Hepatotoxic Drugs. Therapie 2021, 76, 715-723.
19. R. F. Mayol, C. A. Cole, G. M. Luke, K. L. Colson, E. H. Kerns, Characterization of the Metabolites of the Antidepressant Drug Nefazodone in Human Urine and Plasma. Drug Metab. Dispos. 1994, 22, 304-311.
20. J. N. Bauman, K. S. Frederick, A. Sawant, R. L. Walsky, L. M. Cox, R. S. Obach, A. S. Kalgutkar, Comparison of the Bioactivation Potential of the Antidepressant and Hepatotoxin Nefazodone with Aripiprazole, a Structural Analog and Marketed Drug. Drug Metab. Dispos. 2008, 36, 1016-1029.
21. A. S. Kalgutkar, A. D. N. Vaz, M. E. Lame, K. R. Henne, J. Soglia, S. X. Zhao, Y. A. Abramov, F. Lombardo, C. Collin, Z. S. Hendsch, C. E. C. A. Hop, Bioactivation of the Nontricyclic Antidepressant Nefazodone to a Reactive Quinone-imine Species in Human Liver Microsomes and Recombinant Cytochrome P450 3A4. Drug Metab. Dispos. 2005, 33, 243-253.
22. A. Claesson, A. Minidis, Systematic Approach to Organizing Structural Alerts for Reactive Metabolite Formation from Potential Drugs. Chem. Res. Toxicol. 2018, 31, 389-411.
23. I. Langmuir, Isomorphism, Isoserism and Covalence. J. Am. Chem. Soc. 1919, 41, 1543-1559.
24. H. Grimm, Structure and Size of the Non-metallic Hydrides. Z. Electrochem 1925, 31, 474-480.
25. H. Grimm, On the Systematic Arrangement of Chemical Compounds from the Perspective of Research on Atomic Composition; and on Some Challenges in Experimental Chemistry. Naturwissenschaften 1929, 17, 557-564.
26. H. Erlenmeyer, M. Leo, Über Pseudoatome. Helv. Chim. Acta 1932, 15, 1171-1186.
27. G. A. Patani, E. J. LaVoie, Bioisosterism:  A Rational Approach in Drug Design. Chem. Rev. 1996, 96, 3147-3176.
28. J. Tomcsik, H. Sehwarzweiss, M. Trissler, H. Erlenmeyer, Untersuchungen über einen immunochemischen Vergleich zwischen Ring- und Pseudoringverbindungen. Helv. Chim. Acta 1949, 32, 31-34.
29. N. A. Meanwell, Synopsis of Some Recent Tactical Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54, 2529-2591.
30. N. R. Council, First Symposium on Chemical-biological Correlation, May 26-27, 1950, The National Academies Press, Washington, DC, 1951.
31. A. Oladipupo, Toxin to Medicine and Bioisosterism in Drug Development: a Study of the Discovery and Development of ACE Inhibitors from Snake Venom. Macedonian Pharmaceutical Bulletin 2020, 66, 15-33.
32. N. Brown, Bioisosteres and Scaffold Hopping in Medicinal Chemistry. Mol. Inf. 2014, 33, 458-462.
33. R. M. C. Di Martino, B. D. Maxwell, T. Pirali, Deuterium in Drug Discovery: Progress, Opportunities and Challenges. Nat. Rev. Drug Discov. 2023, 22, 562-584.
34. S. D. Nelson, R. H. McClanahan, D. Thomassen, W. Perry Gordon, N. Knebel, Investigations of Mechanisms of Reactive Metabolite Formation from (R)-(+)-pulegone. Xenobiotica 1992, 22, 1157-1164.
35. S. D. Nelson, W. F. Trager, The Use of Deuterium Isotope Effects to Probe the Active Site Properties, Mechanism of Cytochrome P450-catalyzed Reactions, and Mechanisms of Metabolically Dependent Toxicity. Drug Metab Dispos 2003, 31, 1481-1498.
36. A. E. Mutlib, R. J. Gerson, P. C. Meunier, P. J. Haley, H. Chen, L. S. Gan, M. H. Davies, B. Gemzik, D. D. Christ, D. F. Krahn, J. A. Markwalder, S. P. Seitz, R. T. Robertson, G. T. Miwa, The Species-dependent Metabolism of Efavirenz Produces a Nephrotoxic Glutathione Conjugate in Rats. Toxicol. Appl. Pharmacol. 2000, 169, 102-113.
37. W. K. Hagmann, The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359-4369.
38. H.-J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, Fluorine in Medicinal Chemistry. ChemBioChem 2004, 5, 637-643.
39. J. W. Clader, The Discovery of Ezetimibe:  A View from Outside the Receptor. J. Med. Chem. 2004, 47, 1-9.
40. T. J. Ritchie, S. J. F. Macdonald, Heterocyclic Replacements for Benzene: Maximising ADME Benefits by Considering Individual Ring Isomers. Eur. J. Med. Chem. 2016, 124, 1057-1068.
41. G. Chang, K. Huard, G. W. Kauffman, A. F. Stepan, C. E. Keefer, A Multi-endpoint Matched Molecular Pair (MMP) Analysis of 6-Membered Heterocycles. Bioorg. Med. Chem. 2017, 25, 381-388.
42. D. K. Dalvie, A. S. Kalgutkar, S. C. Khojasteh-Bakht, R. S. Obach, J. P. O''Donnell, Biotransformation Reactions of Five-Membered Aromatic Heterocyclic Rings. Chem. Res. Toxicol. 2002, 15, 269-299.
43. K.-S. Yeung, B. R. Beno, K. Parcella, J. A. Bender, K. A. Grant-Young, A. Nickel, P. Gunaga, P. Anjanappa, R. O. Bora, K. Selvakumar, K. Rigat, Y.-K. Wang, M. Liu, J. Lemm, K. Mosure, S. Sheriff, C. Wan, M. Witmer, K. Kish, U. Hanumegowda, X. Zhuo, Y.-Z. Shu, D. Parker, R. Haskell, A. Ng, Q. Gao, E. Colston, J. Raybon, D. M. Grasela, K. Santone, M. Gao, N. A. Meanwell, M. Sinz, M. G. Soars, J. O. Knipe, S. B. Roberts, J. F. Kadow, Discovery of a Hepatitis C Virus NS5B Replicase Palm Site Allosteric Inhibitor (BMS-929075) Advanced to Phase 1 Clinical Studies. J. Med. Chem. 2017, 60, 4369-4385.
44. L. D. Pennington, B. M. Aquila, Y. Choi, R. A. Valiulin, I. Muegge, Positional Analogue Scanning: An Effective Strategy for Multiparameter Optimization in Drug Design. J. Med. Chem. 2020, 63, 8956-8976.
45. H. Abe, S. Kikuchi, K. Hayakawa, T. Iida, N. Nagahashi, K. Maeda, J. Sakamoto, N. Matsumoto, T. Miura, K. Matsumura, N. Seki, T. Inaba, H. Kawasaki, T. Yamaguchi, R. Kakefuda, T. Nanayama, H. Kurachi, Y. Hori, T. Yoshida, J. Kakegawa, Y. Watanabe, A. G. Gilmartin, M. C. Richter, K. G. Moss, S. G. Laquerre, Discovery of a Highly Potent and Selective MEK Inhibitor: GSK1120212 (JTP-74057 DMSO Solvate). ACS Med. Chem. Lett. 2011, 2, 320-324.
46. F. Lovering, J. Bikker, C. Humblet, Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752-6756.
47. F. Lovering, Escape from Flatland 2: complexity and promiscuity. MedChemComm 2013, 4, 515-519.
48. P. E. Eaton, Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century. Angew. Chem. Int. Ed. 1992, 31, 1421-1436.
49. T. Yildirim, P. M. Gehring, D. A. Neumann, P. E. Eaton, T. Emrick, Solid Cubane: A Brief Review. Carbon 1998, 36, 809-815.
50. T. A. Reekie, C. M. Williams, L. M. Rendina, M. Kassiou, Cubanes in Medicinal Chemistry. J. Med. Chem. 2019, 62, 1078-1095.
51. P. K. Mykhailiuk, Saturated Bioisosteres of Benzene: Where to Go Next? Org. Biomol. Chem. 2019, 17, 2839-2849.
52. V. V. Levterov, Y. Panasyuk, V. O. Pivnytska, P. K. Mykhailiuk, Water-Soluble Non-classical Benzene Mimetics. Angew. Chem. Int. Ed. 2020, 59, 7161-7167.
53. A. Denisenko, P. Garbuz, S. V. Shishkina, N. M. Voloshchuk, P. K. Mykhailiuk, Saturated Bioisosteres of ortho-Substituted Benzenes. Angew. Chem. Int. Ed. 2020, 59, 20515-20521.
54. V. Ripenko, D. Vysochyn, I. Klymov, S. Zhersh, P. K. Mykhailiuk, Large-Scale Synthesis and Modifications of Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acid (BCP). J. Org. Chem. 2021, 86, 14061-14068.
55. I. F. Yu, J. L. Manske, A. Diéguez-Vázquez, A. Misale, A. E. Pashenko, P. K. Mykhailiuk, S. V. Ryabukhin, D. M. Volochnyuk, J. F. Hartwig, Catalytic Undirected Borylation of Tertiary C–H Bonds in Bicyclo[1.1.1]pentanes and Bicyclo[2.1.1]hexanes. Nat. Chem. 2023, 15, 685-693.
56. V. V. Levterov, Y. Panasiuk, K. Sahun, O. Stashkevych, V. Badlo, O. Shablykin, I. Sadkova, L. Bortnichuk, O. Klymenko-Ulianov, Y. Holota, L. Lachmann, P. Borysko, K. Horbatok, I. Bodenchuk, Y. Bas, D. Dudenko, P. K. Mykhailiuk, 2-Oxabicyclo[2.2.2]octane as a New Bioisostere of the Phenyl Ring. Nat. Commun. 2023, 14, 5608.
57. K. C. Nicolaou, D. Vourloumis, S. Totokotsopoulos, A. Papakyriakou, H. Karsunky, H. Fernando, J. Gavrilyuk, D. Webb, A. F. Stepan, Synthesis and Biopharmaceutical Evaluation of Imatinib Analogues Featuring Unusual Structural Motifs. ChemMedChem 2016, 11, 31-37.
58. Y. L. Goh, Y. T. Cui, V. Pendharkar, V. A. Adsool, Toward Resolving the Resveratrol Conundrum: Synthesis and in Vivo Pharmacokinetic Evaluation of BCP–Resveratrol. ACS Med. Chem. Lett. 2017, 8, 516-520.
59. P. Girard, J. L. Namy, H. B. Kagan, Divalent Lanthanide Derivatives in Organic Synthesis. 1. Mild preparation of Samarium Iodide and Ytterbium Iodide and Their Use as Reducing or Coupling Agents. J. Am. Chem. Soc. 1980, 102, 2693-2698.
60. H. B. Kagan, J.-L. Namy, Influence of Solvents or Additives on the Organic Chemistry Mediated by Diiodosamarium in Lanthanides: Chemistry and Use in Organic Synthesis (Ed.: S. Kobayashi), Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 155-198.
61. M. Szostak, N. J. Fazakerley, D. Parmar, D. J. Procter, Cross-Coupling Reactions Using Samarium(II) Iodide. Chem. Rev. 2014, 114, 5959-6039.
62. H. Villar, F. Guibé, Diastereoselective SmI2-mediated Cyclisation of δ-oxo-α,β-Unsaturated Esters to Cyclopropanols. Tetrahedron Lett. 2002, 43, 9517-9520.
63. L. A. Paquette, K. Wah Lai, Pinacol Macrocyclization-based Route to the Polyfused Medium-sized CDE Ring System of Lancifodilactone G. Org. Lett. 2008, 10, 3781-3784.
64. C. De Dobbeleer, A. Ates, J.-C. Vanherk, I. E. Markó, Efficient Access to Functionalised Medium-ring Systems by Radical Fragmentation/Radical Addition to α-Iodoketones. Tetrahedron Lett. 2005, 46, 3889-3893.
65. X.-M. Zhang, B.-S. Li, S.-H. Wang, K. Zhang, F.-M. Zhang, Y.-Q. Tu, Recent Development and Applications of Semipinacol Rearrangement Reactions. Chem. Sci. 2021, 12, 9262-9274.
66. X.-M. Zhang, Y.-Q. Tu, F.-M. Zhang, Z.-H. Chen, S.-H. Wang, Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272-2305.
67. A. M. Socha, D. Garcia, R. Sheffer, D. C. Rowley, Antibiotic Bisanthraquinones Produced by a Streptomycete Isolated from a Cyanobacterium Associated with Ecteinascidia turbinata. J. Nat. Prod. 2006, 69, 1070-1073.
68. Y. Yamashita, Y. Hirano, A. Takada, H. Takikawa, K. Suzuki, Total Synthesis of the Antibiotic BE-43472B. Angew. Chem. Int. Ed. 2013, 52, 6658-6661.
69. H. Nemoto, H. Ishibashi, M. Mori, S. Fujita, K. Fukumoto, Ring Expansion of Cyclopropylmethanols to Cyclobutanes—An Enantioselective Total Synthesis of (R)-(+)-Dodecan-5-olide, and (S)-(+)- and (R)-(–)-5-[(Z)-dec-1-enyl]dihydrofuran-2(3H)-one. J. Chem. Soc., Perkin Trans. 1 1990, 2835-2840.
70. W. Ren, Y. Bian, Z. Zhang, H. Shang, P. Zhang, Y. Chen, Z. Yang, T. Luo, Y. Tang, Enantioselective and Collective Syntheses of Xanthanolides Involving a Controllable Dyotropic Rearrangement of cis-β-Lactones. Angew. Chem. Int. Ed. 2012, 51, 6984-6988.
71. R. L. Davis, C. A. Leverett, D. Romo, D. J. Tantillo, Switching between Concerted and Stepwise Mechanisms for Dyotropic Rearrangements of β-Lactones Leading to Spirocyclic, Bridged γ-Butyrolactones. J. Org. Chem. 2011, 76, 7167-7174.
72. M. J. Falkiner, S. W. Littler, K. J. McRae, G. P. Savage, J. Tsanaktsidis, Pilot-Scale Production of Dimethyl 1,4-Cubanedicarboxylate. Org. Process. Res. Dev. 2013, 17, 1503-1509.
73. G. A. Molander, J. A. McKie, A Facile Synthesis of Bicyclo[m.n.1]alkan-1-ols. Evidence for Organosamarium Intermediates in the Samarium(II) Iodide Promoted Intramolecular Barbier-type reaction. J. Org. Chem. 1991, 56, 4112-4120.
74. G. A. Molander, J. A. McKie, Samarium(II) Iodide-induced Reductive Cyclization of Unactivated Olefinic Ketones. Sequential Radical Cyclization/Intermolecular Nucleophilic Addition and Substitution Reactions. J. Org. Chem. 1992, 57, 3132-3139.
75. J.-F. Brière, Richard H. Blaauw, Jorg C. J. Benningshof, Angeline E. van Ginkel, Jan H. van Maarseveen, H. Hiemstra, Synthesis of the Right-Hand Substructure of Solanoeclepin A. Eur. J. Org. Chem. 2001, 2001, 2371-2377.
76. H. Gerdes, H. Marschall, P. Weyerstahl, Fragmentierungsreaktionen an Carbonylverbindungen mit β-Ständigen Elektronegativen Substituenten, XXX. Solvolyse von 2,2-Bis(tosyloxymethyl)cycloalkanonen. Chemische Berichte 1975, 108, 3448-3460.
77. U. Heinz, E. Adams, R. Klintz, P. Welzel, 2 -Tosyloxymethylcyclanones: Ring Size Dependence of Fragmentation versus Intramolecular Alkylation. Tetrahedron 1990, 46, 4217-4230.
78. T. Hoshikawa, K. Tanji, J.-i. Matsuo, H. Ishibashi, Intramolecular [2+2] Cycloaddition of Homoallylketenes to Bicyclo[2.1.1]hexan-5-ones. Chem. Pharm. Bull. 2012, 60, 548-553.
79. W. H. Moser, L. S. Hegedus, Photoreactions of γ,δ-Unsaturated Chromium Carbene Complexes. J. Am. Chem. Soc. 1996, 118, 7873-7880.
80. K. B. Wiberg, B. R. Lowry, T. H. Colby, Bicyclo [2.1.1.]hexane Derivatives1. J. Am. Chem. Soc. 1961, 83, 3998-4006.
81. W. Kirmse, J. Alberti, Desaminierungsreaktionen, 18. Umlagerung von 1-Alkoxybicyclo[n.1.0]alkan-2-diazonium-Ionen. Chemische Berichte 1973, 106, 236-245.
82. Y. Yamashita, D. Maki, S. Sakurai, T. Fuse, S. Matsumoto, M. Akazome, Preparation of Chiral 3-Oxocycloalkanecarbonitrile and its Derivatives by Crystallization-induced Diastereomer Transformation of Ketals with Chiral 1,2-Diphenylethane-1,2-diol. RSC Adv. 2018, 8, 32601-32609.
83. S. Ramesh, R. Balakumar, J. R. Rizzo, T. Y. Zhang, Facile Synthesis of 2-Azaspiro[3.4]octane. Org. Biomol. Chem. 2019, 17, 3056-3065.
84. F. O. Battiti, S. A. Zaidi, V. Katritch, A. H. Newman, A. Bonifazi, Chiral Cyclic Aliphatic Linkers as Building Blocks for Selective Dopamine D2 or D3 Receptor Agonists. J. Med. Chem. 2021, 64, 16088-16105.
85. H. E. Zimmerman, Z. Zhu, General Theoretical Treatments of Solid-State Photochemical Rearrangements and a Variety of Contrasting Crystal versus Solution Photochemistry. J. Am. Chem. Soc. 1995, 117, 5245-5262.
86. D. V. Sadasivam, K. A. Choquette, R. A. Flowers, 2nd, Preparation and Use of Samarium diiodide (SmI2) in Organic Synthesis: the Mechanistic Role of HMPA and Ni(II) Salts in the Samarium Barbier Reaction. J. Vis. Exp. 2013, 72, 4323.
87. T. N. Nguyen, K. Setthakarn, J. A. May, Oxyallyl Cation Capture via Electrophilic Deborylation of Organoboronates: Access to α,α′-Substituted Cyclic Ketones. Org. Lett. 2019, 21, 7837-7840.
88. C. E. Ayala, N. S. Dange, F. R. Fronczek, R. Kartika, Brønsted Acid Catalyzed α′-Functionalization of Silylenol Ethers with Indoles. Angew. Chem. Int. Ed. 2015, 54, 4641-4645.
89. H. Xu, C. Wolf, Asymmetric Synthesis of Chiral 1,3-Diaminopropanols: Bisoxazolidine-Catalyzed C-C Bond Formation with α-Keto Amides. Angew. Chem. Int. Ed. 2011, 50, 12249-12252.
90. J. Pletz, B. Berg, R. Breinbauer, A General and Direct Reductive Amination of Aldehydes and Ketones with Electron-deficient Anilines. Synthesis 2016, 48, 1301-1317.
91. M. Tajbakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, A. Heydari, S. Khaksar, Catalyst-free One-pot Reductive Alkylation of Primary and Secondary Amines and N, N-Dimethylation of Amino Acids Using Sodium Borohydride in 2, 2, 2-Trifluoroethanol. Synthesis 2011, 2011, 490-496.
92. J. Sietmann, M. Tenberge, J. M. Wahl, Wacker Oxidation of Methylenecyclobutanes: Scope and Selectivity in an Unusual Setting. Angew. Chem. Int. Ed. 2023, 62, e202215381.
93. R. O. Duthaler, P. Maienfisch, Preparation of Bicyclo[3.3.0]octane-2,8-dione- and Declain-1,8-dione-derivatives. Helv. Chim. Acta 1984, 67, 856-865.
94. J. S. Sharley, A. M. Collado Pérez, E. E. Ferri, A. F. Miranda, I. R. Baxendale, α, β-Unsaturated Ketones via Copper(II) Bromide Mediated Oxidation. Tetrahedron 2016, 72, 2947-2954.
95. C.-W. Hsu, Y.-T. Lu, C.-P. Lin, W.-J. Yoo, Synthesis of Bicyclo[2.1.1]hexan-5-ones via a Sequential Simmons-Smith Cyclopropanation and an Acid-Catalyzed Pinacol Rearrangement of α-Hydroxy Silyl Enol Ethers. Adv. Synth. Catal. 2023, 365, 3082-3087.
96. G. Sheldrick, Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallographica Section A 1990, 46, 467-473.
97. G. M. Sheldrick, Program for Crystal-structure Refinement. SHELX-97 1997.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91692-
dc.description.abstract在藥物開發領域中,人們對於鄰位和間位取代的苯生物電子等排體的認識不斷增加,促進了其製備方法的發展。近年來提出幾種非共軛剛性碳氫化合物可作為苯生物電子等排體,其中發表較少的雙取代雙環[2.1.1]己烷具有相當高的潛力。因此我們提出了兩種可能的方法來獲得所需的5-取代雙環[2.1.1]己-1-醇和1-取代雙環[2.1.1]己-5-酮,分別是二碘化釤介導的環化和嚬哪醇重排反應。我們在二碘化釤介導的反應中得到不可預期的結果,而另一種重排方法已被證明可以成功建構雙環[2.1.1]己烷。該方法涉及連續的環丙烷化、嚬哪醇重排反應,將α-羥基矽基烯醇醚轉化為1-取代雙環[2.1.1]己-5-酮,此種雙環核心是製備鄰位取代苯生物電子等排體的關鍵中間體。為此,我們對雙環酮進行了多種官能基轉化,獲得多種1,5-雙取代的雙環[2.1.1]己烷衍生物。我們相信這些新方法可以有效解決合成鄰位取代苯生物電子等排體的障礙。zh_TW
dc.description.abstractThe increased recognition of ortho- and meta-substituted benzene bioisosteres in drug development has prompted the development of synthetic methods for their preparation. Several non-conjugated rigid hydrocarbons have been proposed as benzene bioisosteres, and among them, the less reported disubstituted bicyclo[2.1.1]hexanes (BCHs) have the potential to serve as bioisosteric frameworks. Herein, we propose two possible methods to obtain the desired 5-substituted bicyclo[2.1.1]hexan-1-ol and 1-substituted bicyclo[2.1.1]hexan-5-ones, namely SmI2-mediated cyclizations and pinacol rearrangement reactions. Despite encountering setbacks in the SmI2-mediated reaction, a simple and effective rearrangement approach was shown to deliver BCHs. This process involves the conversion of α-hydroxyl silyl enol ether to 1-substituted bicyclo[2.1.1]hexan-5-ones through a sequential cyclopropanation/pinacol rearrangement reaction. This bicyclic core was envisioned as a key intermediate for the preparation of ortho-substituted benzene bioisosteres. As such, several functional group interconversions were performed on the bicyclic ketone, resulting in various 1,5-disubstituted BCHs that could serve as ortho-substituted benzene bioisosteres. We believe these approaches offer a promising strategy to address the complex obstacles associated with the construction of bioisosteres resembling ortho-substituted benzenes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:15:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:15:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContent
口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Content v
List of Abbreviations vii
List of Figures x
List of Schemes xi
List of Tables xiii
Chapter 1 Introduction 1
1.1 The Importance of Benzene Ring 1
1.2 Development of Bioisosteres and Benzene Bioisosteres 6
1.3 SmI2-mediated Cross-coupling Reaction 20
1.4 1,2-Rearrangment 23
Chapter 2 Experimental Design 28
Chapter 3 Result and Discussion 32
3.1 Synthesis of 5-substituted bicyclo[2.1.1]hexan-1-ol via SmI2-mediated cyclization 32
3.1.1 Synthesis of starting material 32
3.1.2 SmI2-mediated Barbier reaction 36
3.1.3 Ketyl-olefin type SmI2-mediated cyclization 38
3.1.4 Conclusion 39
3.2 Synthesis of 1-substituted Bicyclo[2.1.1]hexan-5-one and its Derivatives via Pinacol Rearrangement Reaction 40
3.2.1 Synthesis of 1-phenyl bicyclo[2.1.1]hexan-5-one 40
3.2.2 Functionalization of 1-phenyl bicyclo[2.1.1]hexan-5-one 43
3.2.3 Conclusion 52
Chapter 4 Experimental Section 55
4.1 General Information 55
4.2 Physical and Analytical Measurements 55
4.3 Synthetic Methods 56
Reference 81
Chapter 5. Supplementary Information 97
5.1 Crystallographic Data (X-Ray) of 109 97
5.2 checkCIF report of 109 104
5.3 NMR Spectrum 108
-
dc.language.isoen-
dc.subject雙環[2.1.1]己烷zh_TW
dc.subject生物電子等排體zh_TW
dc.subject二碘化釤zh_TW
dc.subject酮zh_TW
dc.subject頻哪醇重排zh_TW
dc.subjectBioisostereen
dc.subjectPinacol rearrangementen
dc.subjectSmI2en
dc.subjectKetoneen
dc.subjectBicyclo[2.1.1]hexanesen
dc.title利用二碘化釤介導的環化和頻哪醇重排合成雙環[2.1.1]己烷衍生物作為鄰位取代的苯生物電子等排體zh_TW
dc.titleSynthesis of Bicyclo[2.1.1]hexane Derivatives as ortho-Substituted Benzene Bioisosteres via SmI2-mediated Cyclization and Pinacol Rearrangementen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee方俊民;林文偉zh_TW
dc.contributor.oralexamcommitteeJim-Min Fang;Wen-Wei Linen
dc.subject.keyword生物電子等排體,雙環[2.1.1]己烷,頻哪醇重排,酮,二碘化釤,zh_TW
dc.subject.keywordBioisostere,Bicyclo[2.1.1]hexanes,Pinacol rearrangement,Ketone,SmI2,en
dc.relation.page154-
dc.identifier.doi10.6342/NTU202400272-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-01-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2029-01-26-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2029-01-26
6.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved