Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91691
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄zh_TW
dc.contributor.advisorHao-Hsiung Linen
dc.contributor.author許志瑋zh_TW
dc.contributor.authorCHIH-WEI HSUen
dc.date.accessioned2024-02-22T16:15:31Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-02-01-
dc.identifier.citation[1] Gonze, Xavier, J-P. Michenaud, and J-P. Vigneron. "First-principles study of As, Sb, and Bi electronic properties." Physical Review B 41.17 (1990): 11827.
[2] Lin, Yu-Ming, Xiangzhong Sun, and M. S. Dresselhaus. "Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires." Physical Review B 62.7 (2000): 4610.
[3] Michenaud, J-P., and J-P. Issi. "Electron and hole transport in bismuth." Journal of Physics C: Solid State Physics 5.21 (1972): 3061.
[4] Gity, Farzan, et al. "Reinventing solid state electronics: Harnessing quantum confinement in bismuth thin films." Applied physics letters 110.9 (2017).
[5] Butenko, A. V., et al. "Characterization of the electrical properties of semimetallic Bi films by electrical field effect." Journal of applied physics 82.3 (1997): 1266-1273.
[6] Boukai, Akram, Ke Xu, and James R. Heath. "Size‐dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires." Advanced Materials 18.7 (2006): 864-869.
[7] Yang, Zhibin, et al. "Centimeter‐scale growth of two‐dimensional layered high‐mobility bismuth films by pulsed laser deposition." InfoMat 1.1 (2019): 98-107.
[8] Sun, Xinghao, et al. "Effects of the thickness and laser irradiation on the electrical properties of e-beam evaporated 2D bismuth." Nanoscale 13.4 (2021): 2648-2657.
[9] Butenko, A. V., et al. "The cause of the anomalously small electric field effect in thin films of Bi." Applied physics letters 75.11 (1999): 1628-1630.
[10]T. Hirahara, I. Matusda, S. Yamazaki, N. Miyata, and S. Hasegawa, “Large surface-state conductivity in ultrathin Bi films, ” Appl. Phys. Lett 91, 202106 (2007).
[11] Y. Ohtsubo, L. Perfetti, M. O. Goerbig, P. Le Fevre, F. Bertran, and A. Taleb-Ibrahimi, “Non-trivial surface-band dispersion on Bi(111), ” New J. of Physics 15, 033041 (2013).
[12] S. Ito, M. Arita, A. Takayama, R. Y. Liu, T. Someya, W. C. Chen, T. Iimori, H. Namatame, M. Taniguchi, C. M. Cheng, S. J. Tang, F. Komori, K. Kobayashi, T. C. Chiang, and I. Matsuda, “Proving nontrivial topology of pure bismuth by quantum confinement, ” Phys. Rev. Lett. 117, 236402 (2016).
[13] Mitta, Sekhar Babu, et al. "Electrical characterization of 2D materials-based field-effect transistors." 2D Materials 8.1 (2020): 012002.
[14] Maitland, Tim, and Scott Sitzman. "Electron backscatter diffraction (EBSD) technique and materials characterization examples." Scanning microscopy for nanotechnology: techniques and applications (2007): 41-75.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91691-
dc.description.abstract本論文研究以Bi/SiO2 /p+ Si(100)為結構的鉍通道背閘極電晶體的製程與電晶體特性。在製程方面,我們使用分子束磊晶(Molecular Beam Epitaxy, MBE)在二氧化矽基板上成長鉍薄膜,透過EBSD、XRD和SEM觀察鉍薄膜的晶粒尺寸、晶格排列及表面形態,接著經由黃光微影製作出背閘極電晶體。最後我們量測了電晶體的電性,並比較其在真空環境下熱退火後的電性差異。
在熱退火的研究中,我們發現熱退火可以改善鉍與接觸金屬間的歐姆接觸,使接觸電阻下降。而最佳的熱退火條件是溫度150°C、時間6小時,在這個條件下,熱退火對鉍薄膜的表面形態變化較小。
在鉍通道背閘極的電性研究中,我們使用鉍的厚度為30 nm,鉍的性質仍呈現半金屬特性,電晶體無法關閉。然而我們對量測到的Id-Vg曲線,利用微分的方式,求得電晶體的轉導,並計算場效載子遷移率(field effect mobility)。
不同電晶體的場效遷移率有很大的變化範圍,最低值小於1 cm2 /Vs ,最高值可達325 cm2 /Vs。最高值略高於現有文獻中的最高值235 cm2 /Vs 。我們以EBSD、XRD和SEM觀察鉍薄膜,發現場效遷移率越高的電晶體,有越大的晶粒尺寸和越高的XRD峰值。除此之外,我們也發現能透過提高電晶體的汲極偏壓,使電流變化量及場效遷移率提升,並提出能帶模型來對此現象進行解釋。
zh_TW
dc.description.abstractThis paper investigate the process and transistor characteristics of a bismuth channel back-gated transistor with a structure of Bi/SiO2/p+ Si(100). In the process, we use Molecular Beam Epitaxy (MBE) to grow bismuth thin films on SiO2. The grain size, lattice arrangement, and surface morphology of the bismuth film are observed through EBSD, XRD, and SEM. Subsequently, back-gated transistors are fabricated using photolithography. Finally, we measure the transistor's electrical properties and compare the after annealing in a vacuum environment.
In the annealing study, we find that annealing improves the ohmic contact between bismuth and the contact metal, leading to a decrease in contact resistance. The optimal annealing conditions are a temperature of 150°C for 6 hours. Under these conditions, the thermal annealing leads to a relatively minor change in the surface morphology of the bismuth film. In the study of the bismuth back-gated transistor, we use a bismuth thickness of 30 nm, and despite the semi-metallic nature of bismuth, the transistor cannot be turned off. However, by analyzing the measured Id-Vg curves, we obtain the transconductance of the transistor and calculate the field-effect mobility. The field effect mobility of different transistors varies widely, with a minimum value of less than 1 cm2/Vs and maximum value of 325 cm2/Vs. The highest value is higher than the highest value of *235 cm2/Vs reported in existing literature [1]. Through EBSD, XRD, we find that transistors with higher field effect mobility have larger grain sizes and higher XRD peak values. Additionally, we discover that increasing the drain bias of the transistor can enhance the change in current and field-effect mobility, proposing a model to explain this phenomenon.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:15:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:15:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 II
中文摘要 III
英文摘要 IV
目次 V
圖次 VII
表次 VIII
第一章 導論 1
1.1文獻探討與研究動機 1
第二章 理論推導 3
2.1鉍的電導與載子濃度關係式 3
2.2電導變化量與費米能階關係式 4
2.3汲極偏壓與費米能階的關係 8
第三章 實驗分析 9
3.1熱退火條件對表面形貌的影響 9
3.2熱退火前後接觸電阻的變化 10
3.3鉍通道背閘極電晶體電性 13
第四章 結論 20
第五章 附錄 21
5.1背閘極電晶體製程 21
5.2量測架構 24
5.3背閘極電晶體Id-Vgs & Ig-Vgs 圖 25
5.4熱退火操作流程 27
5.5傳輸線模型 ( Transmission Line Method, TLM ) 28
5-6image J 軟體計算坑洞所佔比例 29
5-7EBSD 原理解說 30
參考文獻 31
-
dc.language.isozh_TW-
dc.subject場效特性zh_TW
dc.subject鉍薄膜zh_TW
dc.subject接觸電阻zh_TW
dc.subject熱退火zh_TW
dc.subject背閘極電晶體zh_TW
dc.subjectBack Gate Transistoren
dc.subjectThermal Annealingen
dc.subjectContact Resistanceen
dc.subjectElectric Field Effecten
dc.subjectBismuth thin Filmen
dc.title鉍背閘極電晶體製作與特性研究zh_TW
dc.titleFabrication and properties of Bismuth back-gate transistoren
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建宏;毛明華;王智祥zh_TW
dc.contributor.oralexamcommitteeJian-Hong Chen;Ming-Hua Mao;Jyh-Shyang Wangen
dc.subject.keyword鉍薄膜,場效特性,背閘極電晶體,熱退火,接觸電阻,zh_TW
dc.subject.keywordBismuth thin Film,Electric Field Effect,Back Gate Transistor,Thermal Annealing,Contact Resistance,en
dc.relation.page32-
dc.identifier.doi10.6342/NTU202400354-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf3.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved