請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91690
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃定洧 | zh_TW |
dc.contributor.advisor | Ding-Wei Huang | en |
dc.contributor.author | 花聖硯 | zh_TW |
dc.contributor.author | Sheng-Yen Hua | en |
dc.date.accessioned | 2024-02-22T16:15:15Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-31 | - |
dc.identifier.citation | [1] A. Savini and G. Savini, “A short history of 3D printing, a technological revolution just started,” in 2015 ICOHTEC/IEEE international history of high-technologies and their socio-cultural contexts conference (HISTELCON), 2015: IEEE, pp. 1-8.
[2] C. A. G. Lengua, “History of rapid prototyping,” Rapid Prototyping in Cardiac Disease: 3D Printing the Heart, pp. 3-7, 2017. [3] Yan, Y. , Li, S., Zhang, R., Lin, F., Wu, R., Lu, Q., Xiong, Z., & Wang, X., “Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends,” Tsinghua Science and Technology, vol. 14, no. S1, pp. 1-12, 2009. [4] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Composites Part B: Engineering, vol. 143, pp. 172-196, 2018. [5] M. Srivastava, S. Rathee, V. Patel, A. Kumar, and P. G. Koppad, “A review of various materials for additive manufacturing: Recent trends and processing issues,” Journal of Materials Research and Technology, vol. 21, pp. 2612-2641, 2022. [6] J. R. C. Dizon, A. H. Espera Jr, Q. Chen, and R. C. Advincula, “Mechanical characterization of 3D-printed polymers,” Additive manufacturing, vol. 20, pp. 44-67, 2018. [7] Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, C. C., Shin, Y. C., Zhang, S., & Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65-89, 2015. [8] J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Applied materials today, vol. 7, pp. 120-133, 2017. [9] D. Kazmer, “Three-dimensional printing of plastics,” in Applied plastics engineering handbook: Elsevier, 2017, pp. 617-634. [10] T. Xu, H. Li, Y. Xia, S. Ding, Q. Yang, and G. Yang, “Three-Dimensional-Printed Oral Films Based on LCD: Influence Factors of the Film Printability and Received Qualities,” Pharmaceutics, vol. 15, no. 3, p. 758, 2023. [11] M. Ali, F. Alam, Y. F. Fah, O. Shiryayev, N. Vahdati, and H. Butt, “4D printed thermochromic Fresnel lenses for sensing applications,” Composites Part B: Engineering, vol. 230, p. 109514, 2022. [12] F. Alam, M. Elsherif, A. E. Salih, and H. Butt, “3D printed polymer composite optical fiber for sensing applications,” Additive Manufacturing, vol. 58, p. 102996, 2022. [13] Ozkan, B., Sameni, F., Bianchi, F., Zarezadeh, H., Karmel, S., Engstrøm, D. S., & Sabet, E. “3D printing ceramic cores for investment casting of turbine blades, using LCD screen printers: the mixture design and characterisation,” Journal of the European Ceramic Society, vol. 42, no. 2, pp. 658-671, 2022. [14] M. J. Yin, M. Yao, S. Gao, A. P. Zhang, H. Y. Tam, and P. K. A. Wai, “Rapid 3D patterning of poly (acrylic acid) ionic hydrogel for miniature pH sensors,” Advanced Materials, vol. 28, no. 7, pp. 1394-1399, 2016. [15] Peterson, G. I., Schwartz, J. J., Zhang, D., Weiss, B. M., Ganter, M. A., Storti, D. W., & Boydston, A. J. “Production of materials with spatially-controlled cross-link density via vat photopolymerization,” ACS applied materials & interfaces, vol. 8, no. 42, pp. 29037-29043, 2016. [16] Kotz, F. , Arnold, K., Bauer, W., Schild, D., Keller, N., Sachsenheimer, K., Nargang, T. M., Richter, C., Helmer, D., & Rapp, B. E., “Three-dimensional printing of transparent fused silica glass,” Nature, vol. 544, no. 7650, pp. 337-339, 2017. [17] A. Al Rashid, W. Ahmed, M. Y. Khalid, and M. Koc, “Vat photopolymerization of polymers and polymer composites: Processes and applications,” Additive Manufacturing, vol. 47, p. 102279, 2021. [18] T. Hafkamp, G. van Baars, B. de Jager, and P. Etman, “A feasibility study on process monitoring and control in vat photopolymerization of ceramics,” Mechatronics, vol. 56, pp. 220-241, 2018. [19] V. G. Colin, T. Travers, D. Gindre, R. Barillé, and M. Loumaigne, “Cheap, versatile, and turnkey fabrication of microfluidic master molds using consumer-grade LCD stereolithography 3D printing,” The International Journal of Advanced Manufacturing Technology, vol. 116, no. 1-2, pp. 537-544, 2021. [20] Namgung, H., Kaba, A. M., Oh, H., Jeon, H., Yoon, J., Lee, H., & Kim, D, “Quantitative determination of 3D-printing and surface-treatment conditions for direct-printed microfluidic devices,” BioChip Journal, vol. 16, no. 1, pp. 82-98, 2022. [21] R. Oliveira, R. Nogueira, and L. Bilro, “Do-it-yourself three-dimensional large core multimode fiber splitters through a consumer-grade 3D printer,” Optical Materials Express, vol. 12, no. 2, pp. 593-605, 2022. [22] Y. Shan, A. Krishnakumar, Z. Qin, and H. Mao, “Reducing lateral stair-stepping defects in liquid crystal display-based vat photopolymerization by defocusing the image pattern,” Additive Manufacturing, vol. 52, p. 102653, 2022. [23] N. Vaidya and O. Solgaard, “3D printed optics with nanometer scale surface roughness,” Microsystems & nanoengineering, vol. 4, no. 1, p. 18, 2018. [24] H. Mao, J. Hua, Y. Shan, and R. Voyles, “Characterizing the Effect of Pixelations on Surface Profile and Refractive Index of 3D Printed Diffractive Optical Elements,” Optica open, 2023. [25] Y. Pan, X. Zhao, C. Zhou, and Y. Chen, “Smooth surface fabrication in mask projection based stereolithography,” Journal of Manufacturing Processes, vol. 14, no. 4, pp. 460-470, 2012. [26] R. Oliveira, R. Nogueira, and L. Bilro, “3D printed long period gratings and their applications as high sensitivity shear-strain and torsion sensors,” Optics Express, vol. 29, no. 12, pp. 17795-17814, 2021. [27] Gad, M. M., Fouda, S. M., Abualsaud, R., Alshahrani, F. A., Al‐Thobity, A. M., Khan, S. Q., Akhtar, S., Ateeq, I. S., Helal, M. A., & Al‐Harbi, F. A., “Strength and surface properties of a 3D‐printed denture base polymer,” Journal of Prosthodontics, vol. 31, no. 5, pp. 412-418, 2022. [28] A. KEßLER, R. Hickel, and N. Ilie, “In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials,” Dental Materials Journal, vol. 40, no. 3, pp. 641-649, 2021. [29] L. D. Vallejo-Melgarejo, R. G. Reifenberger, B. A. Newell, C. A. Narváez-Tovar, and J. M. Garcia-Bravo, “Characterization of 3D-printed lenses and diffraction gratings made by DLP additive manufacturing,” Rapid Prototyping Journal, vol. 25, no. 10, pp. 1684-1694, 2019. [30] P. J. van der Linden, A. M. Popov, and D. Pontoni, “Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer,” Lab on a Chip, vol. 20, no. 22, pp. 4128-4140, 2020. [31] K. Swargiary, P. Jarutatsanangkoon, P. Suwanich, R. Jolivot, and W. S. Mohammed, “Single-step 3D-printed integrated optical system and its implementation for a sensing application using digital light processing technology,” Applied Optics, vol. 59, no. 1, pp. 122-128, 2020. [32] E. N. Udofia and W. Zhou, “3D printed optics with a soft and stretchable optical material,” Additive Manufacturing, vol. 31, p. 100912, 2020. [33] H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” Journal of Lightwave Technology, vol. 24, no. 2, p. 919, 2006. [34] Xing, Jin-Feng, Mei-Ling Zheng, and Xuan-Ming Duan., “Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery,” Chemical Society Reviews, vol. 44, no. 15, pp. 5031-5039, 2015. [35] J. Zhang and P. Xiao, “3D printing of photopolymers,” Polymer Chemistry, vol. 9, no. 13, pp. 1530-1540, 2018. [36] M. Ramezanpour and B. Pourabbas, “High‐resolution 3D printing resin reinforced by polyurethane filler particles; physical and mechanical properties,” Polymer Composites, vol. 44, 2023. [37] V. O. Väyrynen, J. Tanner, and P. K. Vallittu, “The anisotropicity of the flexural properties of an occlusal device material processed by stereolithography,” The Journal of Prosthetic Dentistry, vol. 116, no. 5, pp. 811-817, 2016. [38] X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Composites Part B: Engineering, vol. 110, pp. 442-458, 2017. [39] L. Schittecatte, V. Geertsen, D. Bonamy, T. Nguyen, and P. Guenoun, “From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials,” MRS Communications, pp. 1-21, 2023. [40] A. L. Beckwith, J. T. Borenstein, and L. F. Velásquez-García, “Monolithic, 3D-printed microfluidic platform for recapitulation of dynamic tumor microenvironments,” Journal of Microelectromechanical Systems, vol. 27, no. 6, pp. 1009-1022, 2018. [41] O''Neill, P. F., Fouda, S. M., Abualsaud, R., Alshahrani, F. A., Al‐Thobity, A. M., Khan, S. Q., Akhtar, S., Ateeq, I. S., Helal, M. A., & Al‐Harbi, F. A., “Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications,” Biomicrofluidics, vol. 8, no. 5, 2014. [42] Y. He, G. Huai Xue, and J. Zhong. Fu, “Fabrication of low cost soft tissue prostheses with the desktop 3D printer,” Scientific reports, vol. 4, no. 1, p. 6973, 2014. [43] B. C. Gross, K. B. Anderson, J. E. Meisel, M. I. McNitt, and D. M. Spence, “Polymer coatings in 3D-printed fluidic device channels for improved cellular adherence prior to electrical lysis,” Analytical chemistry, vol. 87, no. 12, pp. 6335-6341, 2015. [44] E. Sirjani, M. Migas, P. J. Cragg, and M. K. Dymond, “3D printed UV/VIS detection systems constructed from transparent filaments and immobilised enzymes,” Additive Manufacturing, vol. 33, p. 101094, 2020. [45] C. Tang, A. Vaze, and J. Rusling, “Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins,” Lab on a Chip, vol. 17, no. 3, pp. 484-489, 2017. [46] J. Benkhoff, K. Dietliker, K. Powell, T. Jung, K. Studer, and E. Sitzmann, “Photolatent effect additives for coatings,” JCT coatingstech, vol. 4, no. 4, pp. 40-46, 2007. [47] S. C. Ligon, B. Husár, H. Wutzel, R. Holman, and R. Liska, “Strategies to reduce oxygen inhibition in photoinduced polymerization,” Chemical reviews, vol. 114, no. 1, pp. 557-589, 2014. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91690 | - |
dc.description.abstract | 聚合物光波導元件是短距離光通訊產品之關鍵零組件。目前製作聚合物光波導元件之方法包括半導體微影製程、熱壓成型及射出成形,然而這些技術通常製程複雜高、彈性度低且設備昂貴,較無法滿足未來光通訊產品低價位、普及化以及可快速客製化的發展趨勢。因此,本研究主要目的在於開發低成本、高製程彈性及高品質的聚合物光波導元件之製作技術。
此技術創新之處有兩方面: 首先是透過模擬軟體分析缺陷對於光波導的影響,並利用不同材料的特性以及材料的預處理,解決列印品內部的缺陷,以降低光波導內部之散射損耗;第二是首次使用雙材料之 3D 列印製程技術來製作長直光波導元件,利用足夠折射率差的材料組合並輔以合適的曝光參數,可避免列印品內部層與層之間脫落,同時減少核心層與披覆層介面的散射損耗,並增加光波導設計的彈性。 本論文進一步開發 3D 列印光波導之表面平滑化方法,利用 3D 列印本身所使用之樹脂搭配自製之微米級筆刷以及真空系統進行平滑化處理,成功解決樹脂表面之厭氧性造成的固化不完全,藉此技術降低表面粗糙。實驗結果顯示,使用合適的材料組合及列印製程,可成功批次製作出截面積分別為 200×198、459×421、712×667、997×933 平方微米之 3D 列印長直波導,並搭配平滑化製程進行後處理。光損耗量測結果顯示截面積為 997×933 平方微米之波導在 650 奈米波長時平均傳播損耗為 0.27 dB/cm。此結果顯示,本論文所使用之雙材料 3D 列印技術具有高製程彈性與低成本的優勢,使其成為未來製作光波導的最佳選擇方案之一。 | zh_TW |
dc.description.abstract | Polymer waveguides are key components for short-haul optical communication. Recently, several methods for fabricating polymer waveguides have been developed, including photolithography, hot embossing and injection molding, etc. However, these technologies are usually complicated, non-flexible and need expensive facility.
In the thesis, a low-cost low-loss two-material polymer waveguide was designed, fabricated and tested. The waveguide was fabricated using photopolymerization based two-material 3D printing technique. In this technique, the optical transmission influenced by defects in the printed object was analyzed through simulation software in advance. The scattering loss caused by defects was minimized by choosing suitable material combination and proper material preparation. In addition, a surface smoothing treatment for 3D printed optical waveguides was proposed. The process involves the use of a micrometer-scale brush and a vacuum system for smoothing treatment, which successfully addressed the issue of incomplete curing caused by the oxygen inhibition on the resin surface. This treatment can significantly reduce surface roughness. The effects of printing process on the quality of fabricated polymer waveguides were also investigated. Under proper processing conditions, polymer waveguides with cross-sectional dimensions of 200 × 198, 459 × 421, 712 × 667, and 997 × 933 μm2 were successfully fabricated. The average propagation loss of those waveguides is 0.27 dB/cm measured at the wavelength of 650 nm. These results indicate the great potential of using photopolymerization 3D printing for rapid fabrication of polymer waveguides with high process flexibility and low cost. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:15:15Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:15:15Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 iii
Abstract iv 目次 v 圖次 viii 表次 xi 第1章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文架構 2 第2章 文獻回顧 3 2.1 使用數位光處理器之3D列印技術製作單步驟光學整合系統以及在感測的應用 3 2.2 透過消費者等級之3D列印機自製三維大核心之多模光纖分光器 5 2.3 利用3D列印製造柔軟可拉伸之光學元件 7 2.4 使用熱塑性塑膠和熱固化樹脂壓印製作具有可對準連接至塑膠光纖之大核芯聚合物光波導元件 9 第3章 研究方法與原理 11 3.1 實驗設備 11 3.1.1 光固化3D列印機 11 3.1.2 固化與清洗機 11 3.1.3 立體顯微鏡 12 3.1.4 真空系統 13 3.1.5 光功率偵測器 13 3.2 LCD 光固化列印原理與流程 14 3.2.1 紫外光固化樹脂的成份 14 3.2.2 光聚合反應 14 3.2.3 LCD 3D列印原理 15 3.2.4 LCD 3D列印流程與列印品質探討 17 3.3 幾何光學與光線追跡 19 第4章 光波導元件之設計製作與缺陷消除 22 4.1 光波導元件設計與模擬 22 4.1.1 光波導元件設計 22 4.1.2 光波導元件模擬 24 4.2 材料的選擇與列印品質改善技術 26 4.2.1 不同材料之列印品質探討 26 4.2.2 製程改良對於缺陷之影響 28 4.3 光波導元件製作流程 31 4.3.1 雙材料光波導的設計與列印步驟 31 4.3.2 不同曝光秒數之影響 32 4.4 光波導表面平滑化手法 35 4.4.1 平滑化製程之流程 35 4.4.2 樹脂表面厭氧特性之驗證 36 4.4.3 真空環境下平滑化處理後之結果 38 第5章 光波導量測與結果討論 40 5.1 光波導之光功率量測 40 5.2 光波導傳輸損耗檢測結果 42 5.3 與其他文獻中的聚合物光波導之比較 44 第6章 結論與未來展望 45 參考文獻 46 | - |
dc.language.iso | zh_TW | - |
dc.title | 以雙材料光固化 3D 列印技術製造低損耗光波導 | zh_TW |
dc.title | Low-Loss Polymer Waveguide Fabricated by Photopolymerization Based Two-Material 3D Printing Technique | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林晃巖;蕭惠心 | zh_TW |
dc.contributor.oralexamcommittee | Hoang-Yan Lin;Hui-Hsin Hsiao | en |
dc.subject.keyword | 光固化成型技術,光波導,雙材料結構,3D列印, | zh_TW |
dc.subject.keyword | vat polymerization,waveguide,multimaterial,3D printing, | en |
dc.relation.page | 50 | - |
dc.identifier.doi | 10.6342/NTU202400273 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-02 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 3.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。