Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91678
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林恩仲 | zh_TW |
dc.contributor.advisor | En-Chung Lin | en |
dc.contributor.author | ALBERT FRESNIDO ASTILLERO | zh_TW |
dc.contributor.author | ALBERT FRESNIDO ASTILLERO | en |
dc.date.accessioned | 2024-02-22T16:10:57Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-30 | - |
dc.identifier.citation | Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., Sousa, J., 2017. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 9, 1110. https://doi.org/10.3390/rs9111110.
Agisoft LLC, 2023. Agisoft Metashape User Manual: Professional Edition, Version 2.1. Agisoft. St. Petersburg, Russia. AgriMetSoft, 2019. Online Calculators. https://agrimetsoft.com/calculators/ Alberto, R. T., 2019. Remote Sensing, UAV and Spectroscopy: A Game Changer in Philippine Agriculture. https://ap.fftc.org.tw/article/1635 (accessed 23 January 2024). Alberto, R. T., Rivera, J. C., Biagtan, A. R., Isip, M. F., 2019. Extraction of onion fields infected by anthracnose-Twister disease in selected municipalities of Nueva Ecija using UAV imageries. Spat. Inf. Res. 28, 383-389. https://doi.org/10.1007/s41324-019-00302-z. Alvarez-Mendoza, C. I., Guzman, D., Casas, J., Bastidas, M., Polanco, J., Valencia-Ortiz, M., Montenegro, F., Arango, J., Ishitani, M., Selvaraj, M. G., 2022. Predictive Modeling of Above-Ground Biomass in Brachiaria Pastures from Satellite and UAV Imagery using Machine Learning Approaches. Remote Sens. 14, 5870. https://doi.org/10.3390/rs14225870. Askari, M. S., McCarthy, T., Magee, A., Murphy, D. J., 2019. Evaluation of Grass Quality under Different Soil Management Scenarios Using Remote Sensing techniques. Remote Sens. 11, 1835. https://doi.org/10.3390/rs11151835. Ball, D. M., Collins, M., Lacefield, G. D., Martin, N. P., Mertens, D. A., Olson, K. E., Putnam, D. H., Undersander, D. J., Wolf, M. W., 2001. Understanding Forage Quality. American Farm Bureau Federation Publication 1-01, Park Ridge, IL. Bannari, A., Morin, D., Bonn, F., and Huete, A. R., 1995. A review of vegetation indices. Remote Sens. Rev. 13, 95–120. http://dx.doi.org/10.1080/02757259509532298. Barnetson, J., Phinn, S., Scarth, P. (2020). Estimating Plant Pasture Biomass and Quality from UAV Imaging across Queensland’s Rangelands. AgriEngineering 2, 523-543. https://doi.org/10.3390/agriengineering2040035. Batistoti, J., Marcato Junior, J., Ítavo, L., Matsubara, E., Gomes, E., Oliveira, B., Souza, M., Siqueira, H., Salgado Filho, G., Akiyama, T., Gonçalves, W., Liesenberg, V., Li, J., Dias, A., 2019. Estimating Pasture Biomass and Canopy Height in Brazilian Savanna Using UAV photogrammetry. Remote Sens. 11, 2447. https://doi.org/10.3390/rs11202447. Bazzo, C. O., Kamali, B., Hütt, C., Bareth, G., Gaiser, T., 2023. A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV. Remote Sens. 15, 639. https://doi.org/10.3390/rs15030639. Berra, E. F., Peppa, M. V., 2020. Advances and Challenges of UAV SFM MVS Photogrammetry and Remote Sensing: Short Review. 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile. 533-538. https://doi.org/10.1109/lagirs48042.2020.9285975. Bindelle, J., Da Silva Neto, G. F., Kokah Essomandan, U., Carvalho, P. C. F., Michez, A., 2021. Drone-based remote sensing of sward structure and biomass for precision grazing: state of the art and future challenges, in: Astor, T., Dzene, I., Sensing – New Insights into Grassland Science and Practice. The Organising Committee of the 21st Symposium of the European Grassland Federation, Universität Kassel, Grassland Science and Renewable Plant Resources, Steinstrasse 19, 37213 Witzenhausen, Germany, pp. 22-29. Bobbitt, Z., 2020. How to Calculate Adjusted R-Squared in R. https://www.statology.org/adjusted-r-squared-in-r/ (accessed 5 January 2024). Bobbitt, Z., 2021. A Gentle Guide to Sum of Squares: SST, SSR, SSE. https://www.statology.org/sst-ssr-sse/ (accessed 5 January 2024). Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., Suomalainen, J., 2015. Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches. ISPRS Int. J. Geo-Inf. 4, 2792-2820. https://doi.org/10.3390/ijgi4042792. Castro, W., Marcato Junior, J., Polidoro, C., Osco, L. P., Gonçalves, W., Rodrigues, L., Santos, M., Jank, L., Barrios, S., Valle, C., Simeão, R., Carromeu, C., Silveira, E., Jorge, L. A., Matsubara, E., 2020. Deep Learning Applied to Phenotyping of Biomass in Forages with UAV-Based RGB Imagery. Sensors 20, 4802. https://doi.org/10.3390/s20174802. Cook, B. G., Pengelly, B. C., Brown, S. D., Donnelly, J. L., Eagles, D. A., Franco, M. A., Hanson, J., Mullen, B. F., Partridge, I. J., Peters, M., Schultze-Kraft, R., 2005. Tropical Forages: an interactive tool. Web Tool. CSIRO, DPI&F(Qld), CIAT and ILRI, Brisbane, Australia. Cuaran, J., Leon, J. 2021. Crop Monitoring using Unmanned Aerial Vehicles: A Review. Agric. Rev. 42, 121-132. https://doi.org/10.18805/ag.r-180. Cunliffe, A. M., Brazier, R. E., Anderson, K., 2016. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 183, 129-143. https://doi.org/10.1016/j.rse.2016.05.019. Curran, P. J., 1989. Remote sensing of foliar chemistry. Remote Sens. Environ. 30, 271-278. https://doi.org/10.1016/0034-4257(89)90069-2. Datta, D., Mallick, P. K., Bhoi, A. K., Ijaz, M. F., Shafi, J., Choi, J., 2022. Hyperspectral Image Classification: Potentials, Challenges, and Future Directions. Comput. Intell. Neurosci. 3854635. https://doi.org/10.1155/2022/3854635. De Rosa, D., Basso, B., Fasiolo, M., Friedl, J., Fulkerson, B., Grace, P. R., Rowlings, D. W., 2021. Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery. Comput. Electron. Agric. 180, 105880. https://doi.org/10.1016/j.compag.2020.105880. Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., Sun, X., 2021. A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges. Remose Sens. 13, 1204. https://doi.org/10.3390/rs13061204. Dili, R. M., 2022. An Analysis on the Impact of the COVID-19 Pandemic on Agricultural Sector in Achieving Food Productivity and Security in the Philippines. Agricultural CRI Journal, 2. DJI., 2022. DJI Mavic 3 Classic User Manual v1.0 2022.11. DJI. DJI., 2024. DJI Mavic 3 Classic Technical parameters. https://www.dji.com/tw/mavic-3-classic/specs (accessed 5 January 2024). Elauria, M. M., 2015. Farm Land Policy and Financing Program for Young Generation in the Philippines. https://ap.fftc.org.tw/article/882 (accessed 23 January 2024). Elhadary, A., Rabah, M., Ghanim, E., Mohie, R., Taha, A., 2022. The influence of flight height and overlap on UAV imagery over featureless surfaces and constructing formulas predicting the geometrical accuracy. NRIAG J. Astron. Geophys. 11, 210-223. https://doi.org/10.1080/20909977.2022.2057148. Equi-Analytical, 2023. As Sampled Vs. Dry Matter Results. https://equi-analytical.com/resources/as-sampled-vs-dry-matter-results/ (accessed 10 December 2023). FAO, 2018. Digital innovations are bringing youth back to agriculture. https://www.fao.org/fao-stories/article/en/c/1149534/ (accessed 23 January 2024). Fan, X., Kawamura, K., Xuan, T. D., Yuba, N., Lim, J., Yoshitoshi, R., Minh, T. N., Kurokawa, Y., Obitsu, T., 2017. Low-cost visible and near-infrared camera on an unmanned aerial vehicle for assessing the herbage biomass and leaf area index in an Italian ryegrass field. Grassl. Sci. 64, 145-150. https://doi.org/10.1111/grs.12184. Faraway, J., 2005. Linear Models with R, in: Chatfield, C., Tanner, M., Zidek, J., Texts in Statistical Science Series. Chapman and Hall/CRC, Florida. Faul, F., Erdfelder, E., Lang, A.-G., Buchner, A., 2007. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 39, 175-191. https://doi.org/10.3758/BF03193146. Franceschini, M., Becker, R., Wichern, F., Kooistra, L., 2022. Quantification of Grassland Biomass and Nitrogen Content through UAV Hyperspectral Imagery—Active Sample Selection for Model Transfer. Drones 6, 73. https://doi.org/10.3390/drones6030073. Fulgueira, C. L., Amigot, S. L., Gaggiotti, M., Romero, L. A., Basilio, J. C., 2007. Forage Quality: Techniques for Testing. in: Fresh Produce 1. Global Science Books, pp. 121-131. Geipel, J., Bakken, A. K., Jørgensen, M., Korsaeth, A., 2021. Forage yield and quality estimation by means of UAV and hyperspectral imaging. Precision Agric. 22, 1437-1463. https://doi.org/10.1007/s11119-021-09790-2. GIMP’s Team. GIMP GNU Image Manipulation Program (Version 2.10.34). https://www.gimp.org/. Gillan, J. F., Ponce-Campos, G. E., Swetnam, T. L., Gorlier, A., Heilman, P., McClaran, M. P., 2021. Innovations to expand drone data collection and analysis for rangeland monitoring. Ecosphere 12, e03649. https://doi.org/10.1002/ecs2.3649 Graser, A., Olaya, V., 2015. Processing: A Python Framework for the Seamless Integration of Geoprocessing Tools in QGIS. ISPRS Int. J. Geoinf. 4, 2219-2245. https://doi.org/10.3390/ijgi4042219. Grijalva-Gómez, I. R., Morales-Nieto, C. R., Pinedo-Álvarez, A., Santellano-Estrada, E., Aquino-de los Ríos, G. S., 2022. Biomass estimation in grasslands through traditional methods and use of drones in the State of Chihuahua. Agro Productividad 15, 27-32. https://doi.org/10.32854/agrop.v15i10.2196. Grüner, E., Astor, T., Wachendorf, M., 2019. Biomass Prediction of Heterogeneous Temperate Grasslands Using an SFM Approach Based on UAV imaging. Agron. J. 9, 54. https://doi.org/10.3390/agronomy9020054. Grüner, E., Wachendorf, M., Astor, T., 2020. The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures. PLoS ONE 15, e0234703. https://doi.org/10.1371/journal.pone.0234703. Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., Huang, H., 2019. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 11, 978. https://doi.org/10.3390/su11040978. Guo, Y., Yin, G., Sun, H., Wang, H., Chen, S., Senthilnath, J., Wang, J., Fu, Y., 2020. Scaling Effects on Chlorophyll Content Estimations with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods. Sensors, 20 5130. https://doi.org/10.3390/s20185130. Heuzé V., Tran G., Sauvant D., 2015. Koronivia grass (Brachiaria humidicola). https://www.feedipedia.org/node/585 (accessed 30 November 2023). Holman, F. H., Riche, A. B., Castle, M., Wooster, M. J., Hawkesford, M. J., 2019. Radiometric Calibration of ‘Commercial off the shelf’ Cameras for UAV-Based High-Resolution Temporal Crop Phenotyping of Reflectance and NDVI. Remote Sens. 11, 1657. https://doi.org/10.3390/rs11141657. Insua, J. R., Utsumi, S. A., Basso, B., 2019. Estimation of spatial and temporal variability of pasture growth and digestibility in grazing rotations coupling unmanned aerial vehicle (UAV) with crop simulation models. PLoS ONE 14, e0212773. https://doi.org/10.1371/journal.pone.0212773. Jose, A. E. O., 2024. PHL braces for impact of Red Sea crisis on goods. https://www.bworldonline.com/top-stories/2024/01/22/570253/phl-braces-for-impact-of-red-sea-crisis-on-goods/ (accessed 23 January 2024). Kabagani, L. J., 2022. Ukraine-Russia conflict poses implications to PH Economy: Palace. https://www.pna.gov.ph/articles/1168842 (accessed 23 January 2024). Kalacska, M., Lucanus, O., Arroyo-Mora, J., Laliberté, É., Elmer, K., Leblanc, G., Groves, A., 2020. Accuracy of 3D Landscape Reconstruction Without Ground Control Points Using Different UAS Platforms. Drones 4, 13. https://doi.org/10.3390/drones4020013. Karila, K., Alves Oliveira, R., Ek, J., Kaivosoja, J., Koivumäki, N., Korhonen, P., Niemeläinen, O., Nyholm, L., Näsi, R., Pölönen, I., Honkavaara, E., 2022. Estimating grass Sward quality and quantity parameters using drone remote sensing with deep neural networks. Remote Sens. 14, 2692. https://doi.org/10.3390/rs14112692. Katoch, R., 2023. Techniques in Forage Quality Analysis. Springer Nature, Singapore. Kedzierski, M., Wierzbicki, D., Sekrecka, A., Fryskowska, A., Walczykowski, P., Siewert, J., 2019. Influence of Lower Atmosphere on the Radiometric Quality of Unmanned Aerial Vehicle Imagery. Remote Sens. 11, 1214. https://doi.org/10.3390/rs11101214. Kitagawa, E., Muraki, H., Yoshinaga, K., Yamagishi, J., Tsumura, Y., 2018. Research on Shape Characteristic of 3D Modeling Software (SFM/MVS) in UAV Aerial Images. JSCE-JCCE 74, II_143-II_148. https://doi.org/10.2208/jscejcei.74.ii_143. Khun, K., Tremblay, N., Panneton, B., Vigneault, P., Lord, E., Cavayas, F., Codjia, C. 2021. Use of Oblique RGB Imagery and Apparent Surface Area of Plants for Early Estimation of Above-Ground Corn Biomass. Remote Sens. 13, 4032. https://doi.org/10.3390/rs13204032 Liang, Y., Kou, W., Lai, H., Wang, J., Wang, Q., Xu, W., Wang, H., Lu, N. (2022). Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecol. Indic. 142, 109286. https://doi.org/10.1016/j.ecolind.2022.109286 Liu, X., Yang, F., Wei, H., Gao, M., 2022a. Shadow Removal from UAV Images Based on Color and Texture Equalization Compensation of Local Homogeneous Regions. Remote Sens. 14, 2616. https://doi.org/10.3390/rs14112616. Liu, X., Yang, F., Wei, H., Gao, M., 2022b. Shadow Compensation from UAV Images Based on Texture-Preserving Local Color Transfer. Remote Sens. 14, 4969. https://doi.org/10.3390/rs14194969. López-Díaz, J. E., Roca-Fernández, A. I., González-Rodríguez, A., 2011. Measuring Herbage Mass by Non-Destructive Methods: A Review. J. Agric. Sci. Technol. A 1, 303-314. Lemus, R., 2020. Forage Nutritive Value on Livestock Production: Why CP and TDN Matter. In: Forage News 13, Mississippi State University Extension, pp. 1-3. Lugassi, R., Chudnovsky, A., Zaady, E., Dvash, L., Goldshleger, N., 2015. Estimating Pasture Quality of Fresh Vegetation Based on Spectral Slope of Mixed Data of Dry and Fresh Vegetation—Method Development. Remote Sens. 7, 8045-8066. https://doi.org/10.3390/rs70608045. Lussem, U., Bolten, A., Gnyp, M. L., Jasper, J., Bareth, G., 2018. Evaluation of RGB- -Based Vegetation Indices from UAV Imagery to Estimate Forage Yield in Grassland. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1215–1219, https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018, 2018. Ma, Y., Ma, L., Zhang, Q., Huang, C., Yi, X., Chen, X., Hou, T., Lv, X., Zhang, Z., 2022. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived from RGB Image. Front. Plant Sci. 13, 925986. https://doi.org/10.3389/fpls.2022.925986. Malinao, R. L., Hernadez, A. A., 2018. Potentials of using Unmanned Aerial Vehicle in the Philippine Farming Sector: Empirical evidence from field survey. Mazabel, J., Worthington, M., Castiblanco, V., Peters, M., Arango, J., 2020. Using near infrared reflectance spectroscopy for estimating nutritional quality of Brachiaria humidicola in breeding selections. Agrosyst. Geosci. Environ. 3, e20070. https://doi.org/10.1002/agg2.20070. Meng, B., Liang, T., Yi, S., Yin, J., Cui, X., Ge, J., Hou, M., Lv, Y., Sun, Y., 2020. Modeling Alpine Grassland Above Ground Biomass Based on Remote Sensing Data and Machine Learning Algorithm: A Case Study in East of the Tibetan Plateau, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 2986-2995. https://doi.org/10.1109/jstars.2020.2999348. Michez, A., Lejeune, P., Bauwens, S., Herinaina, A. A. L., Blaise, Y., Castro Muñoz, E., Lebeau, F., Bindelle, J., 2019. Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System. Remote Sens. 11, 473. https://doi.org/10.3390/rs11050473. Michez, A., Piégay, H., Lisein, J., Claessens, H., Lejeune, P., 2016. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess. 188, 146. https://doi.org/10.1007/s10661-015-4996-2. Michez, A., Philippe, L., David, K., Sébastien, C., Christian, D., Bindelle, J., 2020. Can Low-Cost Unmanned Aerial Systems Describe the Forage Quality Heterogeneity? Insight from a Timothy Pasture Case Study in Southern Belgium. Remote Sens. 12, 1650. https://doi.org/10.3390/rs12101650. Mondal, S., Williamson, A., Xu, Z., Tsourdos, A., 2020. Autonomous Architecture for UAV-based Agricultural Survey. In:AIAA SciTech Forum 2020, Orlando, Florida, USA. https://doi.org/10.2514/6.2020-2298. Morais, T. G., Teixeira, R. F. M., Figueiredo, M., Domingos, T., 2021. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 130, 108081. https://doi.org/10.1016/j.ecolind.2021.108081. Murphy, D. J., Murphy, M. D., O’Brien, B., O’Donovan, M., 2021. A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland. Agriculture 11, 600. https://doi.org/10.3390/agriculture11070600. Mutanga, O., Skidmore, A. K., Kumar, L., Ferwerda, J., 2005. Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. Int. J. Remote Sens. 26, 1093-1108. https://doi.org/10.1080/01431160512331326738. Na, S., Kim, Y., Park, C., So, K., Park, J., Lee, K., 2017. Evaluation of Feed Value of IRG in Middle Region Using UAV. Korean J. Soil. Sci. Fert. 50, 391-400. https://doi.org/10.7745/KJSSF.2017.50.5.391. Nagy, S. 2024. Unseen Potential of Drones in Livestock Management. https://caldwell.ces.ncsu.edu/2023/10/unseen-potential-of-drones-in-livestock-management/ (accessed 23 January 2024). Näsi, R., Viljanen, N., Kaivosoja, J., Alhonoja, K., Hakala, T., Markelin, L., Honkavaara, E., 2018. Estimating Biomass and Nitrogen Amount of Barley and Grass using UAV and Aircraft Based Spectral and Photogrammetric 3D Features. Remote Sens. 10, 1082. https://doi.org/10.3390/rs10071082. Nduku, L., Kalumba, A. M., Munghemezulu, C., Mashaba-Munghemezulu, Z., Chirima, G. J., Afuye, G. A., Busayo, E. T., 2021. ISPRS Int. J. Geo-Inf. 10, 793. https://doi.org/10.3390/ijgi10110793. O’Connor, J., Smith, M. J., James, M. R., 2017. Cameras and settings for aerial surveys in the Geosciences: Optimising image data. Prog. Phys. Geogr. 41, 325-344. https://doi.org/10.1177/0309133317703092. O’Donovan, M., Dillon, P., Rath, M., Stakelum, G., 2002. A Comparison of Four Methods of Herbage Mass Estimation. Ir. J. Agric. Food Res. 41, 17-27. http://www.jstor.org/stable/25562447. Oliveira, R. A., Näsi, R., Niemeläinen, O., Nyholm, L., Alhonoja, K., Kaivosoja, J., Jauhiainen, L., Viljanen, N., Nezami, S., Markelin, L., Hakala, T., Honkavaara, E., 2020. Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sens. Environ. 246, 111830. https://doi.org/10.1016/j.rse.2020.111830. Omia, E., Bae, H., Park, E., Kim, M. S., Baek, I., Kabenge, I., Cho, B., 2023. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 15, 354. https://doi.org/10.3390/rs15020354. Parish, J., 2007. Feedstuff Comparisons – As Fed versus Dry Matter. Mississippi State University. Paz, C. C., Maciel e Silva, A. G., Rêgo, A. C., 2019. Use of near infrared spectroscopy for the evaluation of forage for ruminants. Rev. Cienc. Agrar. 62, http://dx.doi.org/10.22491/rca.2019.2923. Perotti, E., Huguenin-Elie, O., Meisser, M., Dubois, S., Probo, M., Mariotte, P., 2021. Climatic, soil, and vegetation drivers of forage yield and quality differ across the first three growth cycles of intensively managed permanent grasslands. Eur. J. Agron. 122, 126194. https://doi.org/10.1016/j.eja.2020.126194. Philippine Statistics Authority, 2019. Agricultural Indicators System (AIS) Good Sufficiency and Security. Report No. 2019-5. Philippine Statistics Authority, Quezon City, Philippines. Philippine Statistics Authority, 2023a. Special Release Carabao Situation Report January to March 2023. Philippine Statistics Authority, Quezon City, Philippines. Philippine Statistics Authority, 2023b. Special Release Cattle Situation Report January to March 2023. Philippine Statistics Authority, Quezon City, Philippines. Philippine Statistics Authority, 2023c. Special Release Dairy Situation Report January to March 2023. Philippine Statistics Authority, Quezon City, Philippines. Philippine Statistics Authority, 2023d. Special Release Goat Situation Report January to March 2023. Philippine Statistics Authority, Quezon City, Philippines. Philippine Statistics Authority, 2023e. Value of Production in Philippine Agriculture and Fisheries First Quarter 2023. Philippine Statistics Authority, Quezon City, Philippines. Python Software Foundation, 2023. Python (Version 3.11). https://www.python.org. Pix4D, 2017. Pix4Dmapper 4.1 User Manual. Pix4D SA, Switzerland. Pix4D, 2021. Ground sampling distance (GSD) in photogrammetry. https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry (accessed 5 September 2023). Prabhakara, K., Hively, W. D., McCarty, G. W., 2015. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 39, 88-102. https://doi.org/10.1016/j.jag.2015.03.002. Pranga, J., Borra-Serrano, I., Aper, J., De Swaef, T., Ghesquiere, A., Quataert, P., Roldán-Ruiz, I., Janssens, I. A., Ruysschaert, G., Lootens, P., 2021. Improving Accuracy of Herbage Yield Predictions in Perennial Ryegrass with UAV-Based Structural and Spectral Data Fusion and Machine Learning. Remote Sens. 13, 3459. https://doi.org/10.3390/rs13173459. Pullanagari, R. R., Dynes, R. A., King, W. M., Yule, I. J., Thulin, S., Knox, N. M., Ramoelo, A., 2013. Remote sensing of pasture quality. In: 2013 Proceedings of the 22nd International Grassland Congress. R Foundation, 2023. The R Project for Statistical Computing (Version 4.3.2.). https://www.r-project.org/. Rangwala, M., Liu, J., Ahluwalia, K. S., Ghajar, S., Dhami, H. S., Tracy, B. F., Tokekar, P., Williams, R. K., 2021. DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets. Agronomy 11, 2245. https://doi.org/10.3390/agronomy11112245. Reinermann, S., Asam, S., Kuenzer, C., 2020. Remote Sensing of Grassland Production and Management – A Review. Remote Sens. 12, 1949. https://doi.org/10.3390/rs12121949. Richards, J. A., 2022. Remote Sensing Digital Image Analysis, sixth ed. Springer Nature, Switzerland. Rueda-Ayala, V., Peña, J., Höglind, M., Bengochea-Guevara, J., Andújar, D., 2019. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley. Sensors 19, 535. https://doi.org/10.3390/s19030535. Sanderson, M. A., Rotz, C. A., Fultz, S. W., Rayburn, E. B., 2001. Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler. Agron. J. 93, 1281-1286. https://doi.org/10.2134/agronj2001.1281. Sangjan, W., McGee, R. J., Sankaran, S., 2022. Optimization of UAV-Based Imaging and Image Processing Orthomosaic and Point Cloud Approaches for Estimating Biomass in a Forage Crop. Remote Sens. 14, 2396. https://doi.org/10.3390/rs14102396. SAS Institute Inc., 2023. SAS (Version 9.4.) https://www.sas.com/. Seifert, E., Seifert, S., Vogt, H., Drew, D., Van Aardt, J., Kunneke, A., Seifert, T., 2019. Influence of Drone Altitude, Image Overlap, and Optical Sensor Resolution on Multi-View Reconstruction of Forest Images. Remote Sens. 11, 1252. https://doi.org/10.3390/rs11101252. Shahhosseini, M., Hu, G., Huber, I., Archontoulis, S. V., 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US corn belt. Sci. Rep. 11, 1606. https://doi.org/10.1038/s41598-020-80820-1. Shreve, B., Thiex, N., Wolf, M., 2006. NFTA Method 2.1.4 - Dry Matter by Oven Drying for 3 Hours at 105oC. In: National Forage Testing Association Reference Method, Faculty of Food and Agriculture, Department of Aridland Agriculture. Sinde-González, I., Gil-Docampo, M., Arza-García, M., Grefa-Sánchez, J., Yánez-Simba, D., Pérez-Guerrero, P., Abril-Porras, V., 2021. Biomass estimation of pasture plots with multitemporal UAV-based photogrammetric surveys. Int. J. Appl. Earth Obs. Geoinf. 101, 102355. https://doi.org/10.1016/j.jag.2021.102355. Shahhosseini, M., Hu, G., Huber, I., Archontoulis, S. V., 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11, 1606. https://doi.org/10.1038/s41598-020-80820-1. Sweet, D. D., Tirado, S. B., Springer, N. M., Hirsch, C. N., Hirsch, C. D., 2022. Opportunities and challenges in phenotyping row crops using drone‐based RGB imaging. The Plant Phenome J. 5, e20044. https://doi.org/10.1002/ppj2.20044. Tenkanen, H., 2018. Raster calculations. https://automating-gis-processes.github.io/CSC18/lessons/L6/raster-calculations.html (accessed 1 November, 2023). The Scottish Government, 2022. National Test Programme Testing Actions for Sustainable Farming Phase One – Survey Report. The Scottish Government. Edinburg, UK. Théau, J., Lauzier-Hudon, É., Aubé, L., Devillers, N., 2021. Estimation of forage biomass and vegetation cover in grasslands using UAV imagery. PloS ONE. 16, e0245784. https://doi.org/10.1371/journal.pone.0245784. Toffanin, P., 2023. OpenDroneMap: The Missing Guide (2nd ed). Van der Merwe, D., Baldwin, C. E., Boyer, W., 2020. An efficient method for estimating dormant season grass biomass in tallgrass prairie from ultra-high spatial resolution aerial imaging produced with small unmanned aircraft systems. Int. J. Wildland Fire. 29, 696-701. https://doi.org/10.1071/wf19026. Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O., Kaivosoja, J., 2018. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture 8, 70. https://doi.org/10.3390/agriculture8050070. Vong, C. N., Zhou, J., Tooley, J. A., Naumann, H. D., Lory, J. A., 2019. Estimating Forage Dry Matter and Nutritive Value using UAV and Ground-based Sensors – A Preliminary Study. ASABE Paper No. 1900556. St. Joseph, MI. https://doi.org/10.13031/aim.201900556. Ventusky, 2023. Venstusky – Wind, Rain and Temperature Maps. https://www.ventusky.com/ (accessed 1 November 2023). Wang, T., Liu, Y., Wang, M., Fan, Q., Tian, H., Qiao, X., Li, Y., 2021. Applications of UAS in Crop Biomass Monitoring: A Review. Front. Plant Sci. 12, 616689. https://doi.org/10.3389/fpls.2021.616689. Wang, Y., Yang, Z., Kootstra, G., Khan, H. A., 2023. Correction: The impact of variable illumination on vegetation indices and evaluation of illumination correction methods on chlorophyll content estimation using UAV imagery. Plant Methods 19, 51. https://doi.org/10.1186/s13007-023-01037-7. Wang, Z., Ma, Y., Zhang, Y., Shang, J., 2022. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 14, 2903. https://doi.org/10.3390/rs14122903. Wijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wengert, M., Wachendorf, M., 2020. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 12, 126. https://doi.org/10.3390/rs12010126. Xi, W., Zuo, X., Sangaiah, A. K., 2022. Enhancement of Unmanned Aerial Vehicle Image with Shadow Removal Based on Optimized Retinex Algorithm. Wirel. Commun. Mob. Com. 1, 3204407. https://doi.org/10.1155/2022/3204407. Xue, J., Su, B., 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sensors. 1353691. https://doi.org/10.1155/2017/1353691. Yang, F., Guo, X., Ni, K., 2022. Research Progress on Forage Production, Processing and Utilization in China. China Agricultural Science and Technology Press. Zanella, P. G., Carvalho, C. A., Ribeiro, E. T., Madeiro, A. S., Gomes, R. D., 2017. Optimal quadrat area and sample size to estimate the forage mass of stargrass. Semin. Ciênc. Agrár. 38, 3165-3172. https://doi.org/10.5433/1679-0359.2017v38n5p3165. Zhang, C., Kovacs, J. M., 2012. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agric. 13, 693-712. https://doi.org/10.1007/s11119-012-9274-5. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91678 | - |
dc.description.abstract | 飼草是反芻動物營養的重要組成部分,依賴適當的牧場管理。然而,不當的管理會導致過度放牧和牧場生產力的總體下降,從而影響動物的表現。為了防止這種情況發生,畜牧農民需要及時和相關的飼草產量和質量信息。傳統的飼草產量和質量測量方法費時、勞動密集,並且對更廣泛的區域精度較低。利用無人機進行這種應用越來越受歡迎,因為它提供了更多的操作靈活性。然而,先前的研究由於使用覆雜的工作流程和非常昂貴的設備,其應用仍然有限。因此,有必要開展研究,開發一種準確而簡單、使用更便宜的工具、計算效率更高的工作流程。在這項研究中,使用了一架配備RGB相機的DJI Mavic 3 Classic 無人機獲取圖像。從這些圖像中提取了植被指數作為預測變量,開發了一個用於預測飼草產量和質量的多項式多元回歸模型。結果顯示,通過結合線性、二次和三次植被指數,可以從20米的高度高度預測鮮重和幹物質,調整後的R2分別為0.71和0.66。然而,預測粗蛋白和中性洗滌纖維含量的準確性較低,調整後的R2分別為0.48和0.53。這表明了一種替代簡單工作流程、成本效益工具和統計方法在Brachiaria humidicola牧場產量預測中的潛力。 | zh_TW |
dc.description.abstract | Forages are a significant component of ruminant nutrition, which relies on proper pasture management. However, improper management results in overgrazing and an overall decline in pasture productivity, causing poor animal performance. To prevent this, timely and relevant information on forage yield and quality is necessary for the livestock farmer. Traditional ways of measuring forage yield and quality are laborious, time-consuming, and less accurate for wider areas. Using drones for this application is gaining popularity because it offers more operational flexibility. Previous research still has limited application because, despite promising results, they used complicated workflows and very expensive equipment. Thus, there is a need for research to develop a workflow that is accurate yet simple, uses cheaper tools, and is computationally efficient. In this research, a DJI Mavic 3 Classic drone with an RGB camera was used to obtain images. Vegetation indices were extracted from these images as predictors to develop a polynomial multiple regression model for the prediction of forage yield and quality. Results showed that fresh and dry matter can be highly predicted from 20-meter altitude with an adjusted R2 of 0.71 and 0.66, respectively by combining linear, quadratic, and cubic vegetation indices. However, the predictors have lower accuracy in predicting content of crude protein and neutral detergent fiber, with an adjusted R2 of 0.48 and 0.53, respectively. This demonstrates the potential of an alternative simple workflow, cost-effective tools, and statistical method for yield prediction in Brachiaria humidicola pastures. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:10:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:10:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgement ii
Abstract iii Table of Contents iv List of Tables vii List of Figures viii List of Appendices x Abbreviations xi Chapter 1. Introduction 1 Chapter 2. Review of Related Literature 3 2.1. Industry situation in the Philippines 3 2.2. Brachiaria humidicola and its importance in pasture and ruminant production 4 2.3. Forage yield and quality estimation methods: traditional to drone-based method 5 2.4. Drone platform 8 2.5. Camera or sensors 9 2.6. Image pre-processing 12 2.7. Extraction of vegetation indices 14 2.8. Data analysis and prediction models 17 2.9. Forage sampling and laboratory analysis as ground truth 18 2.10. Knowledge gap, challenges, and opportunities 19 2.11. Objectives of the study 20 Chapter 3. Materials and Methods 21 3.1. Study area 21 3.2. Experimental layout 22 3.3. Drone image collection 25 3.4. Forage sampling and laboratory analysis 26 3.5. Image processing 29 3.6. Merging of the field, laboratory, and image datasets 32 3.7. Statistical modeling 34 Chapter 4. Results 38 4.1. Image dimension and camera settings 38 4.2. Image radiometric quality 38 4.3. Correlation analysis 40 4.4. Optimum regression model 40 4.5. Fixed effect of different sampling areas on the optimum regression model 46 4.6. Effect of single vs combined altitude datasets on the optimum regression model 47 4.7. Prediction accuracy by comparing measured vs predicted values 48 Chapter 5. Discussions 51 5.1. Drone, sensor characteristics and settings effect on image quality 51 5.2. Image processing workflow 52 5.3. Random forage sampling and field work efficiency 53 5.4. Regression model accuracy and implications 54 Chapter 6. Conclusion and Perspective 59 References 61 Appendices 80 Appendix A. Experimental workflow 80 Appendix B. Experimental layout and random forage sampling points in Area A 80 Appendix C. Experimental layout and random forage sampling points in Area B 81 Appendix D. Experimental layout and random forage sampling points in Area C 81 Appendix E. Correlation between the X and Y variables at 20-m altitude 82 Appendix F. Correlation between the X and Y variables at 25-m altitude 82 Appendix G. Correlation between the X and Y variables at 30-m altitude 82 Appendix H. Scatterplot between the FM and VI’s at 20 m altitude, (a) FM vs ExG, (b) FM vs ExGR, (c) FM vs ExR, (d) FM vs GLI, (e) FM vs MGRVI, (f) FM vs NGBI, (g) FM vs NGRDI, (h) FM vs RGBVI 83 Appendix I. Scatterplot between the DM and VI’s at 20 m altitude, (a) DM vs ExG, (b) DM vs ExGR, (c) DM vs ExR, (d) DM vs GLI, (e) DM vs MGRVI, (f) DM vs NGBI, (g) DM vs NGRDI, (h) DM vs RGBVI 84 Appendix J. Number of samples, mean plant height, age of grass, and fertilizer management in the study area 85 Appendix K. DJI Mavic 3 classic drone and camera specifications 85 Appendix L. Temperature and humidity during the activity in the field 85 | - |
dc.language.iso | en | - |
dc.title | 無人機RGB影像衍生植生指數預測Humidicola (Brachiaria humidicola)產量和品質 | zh_TW |
dc.title | Drone RGB Image-Derived Vegetation Indices to Predict Yield and Quality in Humidicola (Brachiaria humidicola) Grass | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | Thomas Banhazi;馬宇安 | zh_TW |
dc.contributor.oralexamcommittee | Thomas Banhazi;Yu-An Ma | en |
dc.subject.keyword | 牧草質量,飼草質量,無人機,RGB相機,植被指數,多元回歸,Brachiaria humidicola, | zh_TW |
dc.subject.keyword | forage yield,forage quality,drone,RGB camera,vegetation indices,multiple regression,Brachiaria humidicola, | en |
dc.relation.page | 85 | - |
dc.identifier.doi | 10.6342/NTU202400366 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-02-01 | - |
dc.contributor.author-college | 共同教育中心 | - |
dc.contributor.author-dept | 全球農業科技與基因體科學碩士學位學程 | - |
Appears in Collections: | 全球農業科技與基因體科學碩士學位學程 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-1.pdf Restricted Access | 5.26 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.