請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91659
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李伯訓 | zh_TW |
dc.contributor.advisor | Bor-Shiunn Lee | en |
dc.contributor.author | 何艾珈 | zh_TW |
dc.contributor.author | Ai-Chia He | en |
dc.date.accessioned | 2024-02-20T16:25:38Z | - |
dc.date.available | 2024-02-21 | - |
dc.date.copyright | 2024-02-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-12-12 | - |
dc.identifier.citation | 1. Irani S. New Insights into Oral Cancer-Risk Factors and Prevention: A Review of Literature. Int J Prev Med. 2020;11:202.
2. Senevirathna K, Jayawickrama SM, Jayasinghe YA, Prabani KIP, Akshala K, Pradeep R, et al. Nanoplatforms: The future of oral cancer treatment. Health Sci Rep. 2023;6(8):e1471. 3. Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(5):776-91. 4. Matos BN, Pereira MN, Bravo MO, Cunha-Filho M, Saldanha-Araujo F, Gratieri T, Gelfuso GM. Chitosan nanoparticles loading oxaliplatin as a mucoadhesive topical treatment of oral tumors: Iontophoresis further enhances drug delivery ex vivo. Int J Biol Macromol. 2020;154:1265-75. 5. Mathur R, Singhavi HR, Malik A, Nair S, Chaturvedi P. Role of Poor Oral Hygiene in Causation of Oral Cancer-a Review of Literature. Indian J Surg Oncol. 2019;10(1):184-95. 6. Muhammad S, Lawal M. Oral hygiene and the use of plants. Scientific Research and Essays. 2010;5(14):1788-95. 7. Chen S, Hu H, Miao S, Zheng J, Xie Z, Zhao H. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo. Tumour Biol. 2017;39(5):1010428317705330. 8. Zeng XT, Leng WD, Zhang C, Liu J, Cao SY, Huang W. Meta-analysis on the association between toothbrushing and head and neck cancer. Oral Oncol. 2015;51(5):446-51. 9. Chang JS, Lo HI, Wong TY, Huang CC, Lee WT, Tsai ST, et al. Investigating the association between oral hygiene and head and neck cancer. Oral Oncol. 2013;49(10):1010-7. 10. Gupta B, Johnson NW. Emerging and established global life-style risk factors for cancer of the upper aero-digestive tract. Asian Pac J Cancer Prev. 2014;15(15):5983-91. 11. Zhang M, Liang J, Yang Y, Liang H, Jia H, Li D. Current Trends of Targeted Drug Delivery for Oral Cancer Therapy. Front Bioeng Biotechnol. 2020;8:618931. 12. Goldberg M, Manzi A, Birdi A, Laporte B, Conway P, Cantin S, et al. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun. 2022;13(1):4829. 13. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10-9. 14. Magrini SM, Buglione M, Corvò R, Pirtoli L, Paiar F, Ponticelli P, et al. Cetuximab and Radiotherapy Versus Cisplatin and Radiotherapy for Locally Advanced Head and Neck Cancer: A Randomized Phase II Trial. J Clin Oncol. 2016;34(5):427-35. 15. Holleran WM, DeGregorio MW. Evolution of high-dose cisplatin. Investigational New Drugs. 1988;6(2):135-42. 16. Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics. 2021;13(11). 17. Lin J, Alexander-Katz A. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano. 2013;7(12):10799-808. 18. Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Pérez JM. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med Chem. 2007;7(1):3-18. 19. Mohamed SY, Elshoky HA, El-Sayed NM, Fahmy HM, Ali MA. Ameliorative effect of zinc oxide-chitosan conjugates on the anticancer activity of cisplatin: Approach for breast cancer treatment. Int J Biol Macromol. 2023:128597. 20. Ahmad N, Khan MR, Palanisamy S, Mohandoss S. Anticancer Drug-Loaded Chitosan Nanoparticles for In Vitro Release, Promoting Antibacterial and Anticancer Activities. Polymers (Basel). 2023;15(19). 21. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14. 22. Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci. 2022;23(3). 23. Gavas S, Quazi S, Karpinski TM. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res Lett. 2021;16(1):173. 24. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387-92. 25. Barar J, Omidi Y. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy. Bioimpacts. 2013;3(4):149-62. 26. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews. 2011;63(3):131-5. 27. Padera TP, Stoll BR, Tooredman JB, Capen D, Tomaso Ed, Jain RK. Cancer cells compress intratumour vessels. Nature. 2004;427(6976):695-. 28. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology. 2007;2(12):751-60. 29. Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397-434. 30. Santi M, Maccari G, Mereghetti P, Voliani V, Rocchiccioli S, Ucciferri N, et al. Rational Design of a Transferrin-Binding Peptide Sequence Tailored to Targeted Nanoparticle Internalization. Bioconjugate Chemistry. 2017;28(2):471-80. 31. Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011;6:2859-64. 32. Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology. 2008;3(3):145-50. 33. Schneider-Futschik EK, Reyes-Ortega F. Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics. 2021;13(8):1157. 34. Andrade JFM, Cunha-Filho M, Gelfuso GM, Gratieri T. Iontophoresis for the cutaneous delivery of nanoentraped drugs. Expert Opin Drug Deliv. 2023;20(6):785-98. 35. Karpinski TM. Selected Medicines Used in Iontophoresis. Pharmaceutics. 2018;10(4). 36. Wanasathop A, Li SK. Iontophoretic Drug Delivery in the Oral Cavity. Pharmaceutics. 2018;10(3). 37. Serrano-Castañeda P, Escobar-Chavez JJ, Rodriguez-Cruz IM, Melgoza LM, Martinez-Hernandez J. Microneedles as Enhancer of Drug Absorption Through the Skin and Applications in Medicine and Cosmetology. J Pharm Pharm Sci. 2018;21(1):73-93. 38. Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin delivery. Adv Drug Deliv Rev. 2019;139:51-70. 39. Curdy C, Kalia YN, Guy RH. Post-iontophoresis recovery of human skin impedance in vivo. European Journal of Pharmaceutics and Biopharmaceutics. 2002;53(1):15-21. 40. Kalia YN, Nonato LB, Guy RH. The effect of iontophoresis on skin barrier integrity: non-invasive evaluation by impedance spectroscopy and transepidermal water loss. Pharm Res. 1996;13(6):957-60. 41. Byrne JD, Jajja MR, Schorzman AN, Keeler AW, Luft JC, Zamboni WC, et al. Iontophoretic device delivery for the localized treatment of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113(8):2200-5. 42. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261-8. 43. Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res. 2011;28(5):962-77. 44. Moarefian M, Davalos RV, Tafti DK, Achenie LE, Jones CN. Modeling iontophoretic drug delivery in a microfluidic device. Lab Chip. 2020;20(18):3310-21. 45. Byrne JD, Jajja MR, O'Neill AT, Bickford LR, Keeler AW, Hyder N, et al. Local iontophoretic administration of cytotoxic therapies to solid tumors. Sci Transl Med. 2015;7(273):273ra14. 46. Kalia YN, Naik A, Garrison J, Guy RH. Iontophoretic drug delivery. Adv Drug Deliv Rev. 2004;56(5):619-58. 47. Gratieri T, Kalia YN. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier. Adv Drug Deliv Rev. 2013;65(2):315-29. 48. Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev. 2001;46(1-3):281-305. 49. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications, 2nd Edition: John Wiley & Sons, Incorporated; 2000. 50. Ferry LL. Theoretical model of iontophoresis utilized in transdermal drug delivery. Pharm Acta Helv. 1995;70(4):279-87. 51. Liu W, Hu M, Liu W, Xue C, Xu H, Yang X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int J Pharm. 2008;364(1):135-41. 52. Koizumi T, Kakemi M, Katayama K, Inada H, Sudeji K, Kawasaki M. Transfer of diclofenac sodium across excised guinea pig skin on high-frequency pulse iontophoresis. I. Equivalent circuit model. Chem Pharm Bull (Tokyo). 1990;38(4):1019-21. 53. Koizumi T, Kakemi M, Katayama K, Inada H, Sudeji K, Kawasaki M. Transfer of diclofenac sodium across excised guinea pig skin on high-frequency pulse iontophoresis. II. Factors affecting steady-state transport rate. Chem Pharm Bull (Tokyo). 1990;38(4):1022-3. 54. Tiwari SB, Udupa N. Investigation into the potential of iontophoresis facilitated delivery of ketorolac. Int J Pharm. 2003;260(1):93-103. 55. Clemessy M, Couarraze G, Bevan B, Puisieux F. Mechanisms involved in iontophoretic transport of angiotensin. Pharm Res. 1995;12(7):998-1002. 56. Raiman J, Koljonen M, Huikko K, Kostiainen R, Hirvonen J. Delivery and stability of LHRH and Nafarelin in human skin: the effect of constant/pulsed iontophoresis. Eur J Pharm Sci. 2004;21(2-3):371-7. 57. Harris PR. Iontophoresis: clinical research in musculoskeletal inflammatory conditions. Journal of Orthopaedic & Sports Physical Therapy. 1982;4(2):109-12. 58. Liatsopoulou A, Varvaresou A, Mellou F, Protopapa E. Iontophoresis in dermal delivery: A review of applications in dermato-cosmetic and aesthetic sciences. Int J Cosmet Sci. 2023;45(2):117-32. 59. Takeuchi I, Kobayashi S, Hida Y, Makino K. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis. Colloids Surf B Biointerfaces. 2017;155:35-40. 60. Huber LA, Pereira TA, Ramos DN, Rezende LC, Emery FS, Sobral LM, et al. Topical Skin Cancer Therapy Using Doxorubicin-Loaded Cationic Lipid Nanoparticles and lontophoresis. J Biomed Nanotechnol. 2015;11(11):1975-88. 61. Kim SN, Min CH, Kim YK, Ha A, Park CG, Lee SH, et al. Iontophoretic ocular delivery of latanoprost-loaded nanoparticles via skin-attached electrodes. Acta Biomater. 2022;144:32-41. 62. Moscicka-Studzinska A, Kijeńska E, Ciach T. Electroosmotic flow as a result of buccal iontophoresis--buccal mucosa properties. Eur J Pharm Biopharm. 2009;72(3):595-9. 63. Campisi G, Giannola LI, Florena AM, De Caro V, Schumacher A, Göttsche T, et al. Bioavailability in vivo of naltrexone following transbuccal administration by an electronically-controlled intraoral device: a trial on pigs. J Control Release. 2010;145(3):214-20. 64. Paderni C, Campisi G, Schumacher A, Göttsche T, Giannola LI, De Caro V, Wolff A. Controlled delivery of naltrexone by an intraoral device: in vivo study on human subjects. Int J Pharm. 2013;452(1-2):128-34. 65. Cheng JX, Bai HT, Chang ZN, Li J, Chen QM. [Development of precancerous lesions of oral mucous membrane diseases and oral cancer animal models]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2020;38(2):198-204. 66. Nagini S, Letchoumy PV, A T, Cr R. Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol. 2009;45(6):e31-7. 67. Lin LM, Chen YK, Lai DL, Huang YL. Minimal arecaidine concentrations showing a promotion effect during DMBA-induced hamster cheek pouch carcinogenesis. J Oral Pathol Med. 1996;25(2):65-8. 68. Kanojia D, Vaidya MM. 4-nitroquinoline-1-oxide induced experimental oral carcinogenesis. Oral Oncol. 2006;42(7):655-67. 69. Nauta JM, Roodenburg JLN, Nikkels PGJ, Witjes MJH, Vermey A. Epithelial dysplasia and squamous cell carcinoma of the wistar rat palatal mucosa: 4NQO model. Head & Neck. 1996;18(5):441-9. 70. Al-Koshab M, Alabsi AM, Mohd Bakri M, Ali-Saeed R, Selvi Naicker M. Antitumor Activity of Ficus deltoidea Extract on Oral Cancer: An In Vivo Study. J Oncol. 2020;2020:5490468. 71. Anderson K, Ryan N, Alkhimovitch A, Siddiqui A, Oghumu S. Inhibition of PI3K Isoform p110gamma Increases Both Anti-Tumor and Immunosuppressive Responses to Aggressive Murine Head and Neck Squamous Cell Carcinoma with Low Immunogenicity. Cancers (Basel). 2021;13(5). 72. Gruber IV, Rueckert M, Kagan KO, Staebler A, Siegmann KC, Hartkopf A, et al. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BMC Cancer. 2013;13:328. 73. Sabek EAS, Salem HT. Technical Factors Affecting Ultrasound Breast Tumor Size as Correlated with Pathological Type. Medicina (Kaunas). 2019;55(11). 74. Lo WC, Chang CM, Cheng PC, Wen MH, Wang CT, Cheng PW, Liao LJ. The Applications and Potential Developments of Ultrasound in Oral Cancer Management. Technol Cancer Res Treat. 2022;21:15330338221133216. 75. Klein Nulent TJW, Noorlag R, Van Cann EM, Pameijer FA, Willems SM, Yesuratnam A, et al. Intraoral ultrasonography to measure tumor thickness of oral cancer: A systematic review and meta-analysis. Oral Oncol. 2018;77:29-36. 76. Noorlag R, Klein Nulent TJW, Delwel VEJ, Pameijer FA, Willems SM, de Bree R, van Es RJJ. Assessment of tumour depth in early tongue cancer: Accuracy of MRI and intraoral ultrasound. Oral Oncol. 2020;110:104895. 77. Yoon BC, Buch K, Cunnane ME, Sadow PM, Varvares MA, Juliano AF. Comparison between computed tomography and ultrasound for presurgical evaluation of oral tongue squamous cell carcinoma tumor thickness. Am J Otolaryngol. 2021;42(6):103089. 78. Aydin RST, Pulat M. 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. Journal of Nanomaterials. 2012;2012:42-. 79. Rwei SP, Anh THN, Chiang WY, Way TF, Hsu YJ. Synthesis and Drug Delivery Application of Thermo- and pH-Sensitive Hydrogels: Poly(β-CD-co-N-Isopropylacrylamide-co-IAM). Materials (Basel). 2016;9(12). 80. Basotra M, Singh SK, Gulati M. Development and validation of a simple and sensitive spectrometric method for estimation of cisplatin hydrochloride in tablet dosage forms: application to dissolution studies. International Scholarly Research Notices. 2013;2013. 81. Mirniaharikandehei S, VanOsdol J, Heidari M, Danala G, Sethuraman SN, Ranjan A, Zheng B. Developing a quantitative ultrasound image feature analysis scheme to assess tumor treatment efficacy using a mouse model. Scientific reports. 2019;9(1):7293. 82. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24(3):148-54. 83. Kinra P, Malik A. Ki 67: Are we counting it right? Indian Journal of Pathology and Microbiology. 2020;63(1):98. 84. Yang Y, Li J, Mao S, Zhu H. Comparison of immunohistology using pan-CK and EMA in the diagnosis of lymph node metastasis of gastric cancer, particularly micrometastasis and isolated tumor cells. Oncology letters. 2013;5(3):768-72. 85. Engelmann L, Thierauf J, Koerich Laureano N, Stark H-J, Prigge E-S, Horn D, et al. Organotypic co-cultures as a novel 3D model for head and neck squamous cell carcinoma. Cancers. 2020;12(8):2330. 86. Richtsmeier JT, Baxter LL, Reeves RH. Parallels of craniofacial maldevelopment in down syndrome and Ts65Dn mice. Developmental Dynamics. 2000;217(2):137-45. 87. Jang MH, Kim HJ, Chung YR, Lee Y, Park SY. A comparison of Ki-67 counting methods in luminal Breast Cancer: The Average Method vs. the Hot Spot Method. PLoS One. 2017;12(2):e0172031. 88. Takeuchi I, Suzuki T, Makino K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for transcutaneous immunization. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;608:125607. 89. Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci Pharm. 2012;80(1):1-28. 90. Cadick J, Capelli-Schellpfeffer M, Neitzel D. Electrical Safety Handbook 3E: Mcgraw-hill; 2005. 91. Webster JG, Nimunkar AJ. Medical Instrumentation: Application and Design: Wiley; 2020. 92. Zakzewski CA, Amory DW, Jasaitis DK, Li JK. Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive rabbits: preliminary report. Cardiovasc Drugs Ther. 1992;6(6):589-95. 93. Nair AB, Al-Dhubiab BE, Shah J, Gorain B, Jacob S, Attimarad M, et al. Constant Voltage Iontophoresis Technique to Deliver Terbinafine via Transungual Delivery System: Formulation Optimization Using Box–Behnken Design and In Vitro Evaluation. Pharmaceutics. 2021;13(10):1692. 94. Nair AB, Aldhubiab B, Shah J, Jacob S, Attimarad M, Sreeharsha N, et al. Design, Development, and Evaluation of Constant Voltage Iontophoresis for the Transungual Delivery of Efinaconazole. Pharmaceutics. 2023;15(5):1422. 95. Ita K. Perspectives on Transdermal Electroporation. Pharmaceutics. 2016;8(1). 96. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 2018;11(8):1165-88. 97. Neidhart SM, Gezelter JD. Thermal Transport is Influenced by Nanoparticle Morphology: A Molecular Dynamics Study. The Journal of Physical Chemistry C. 2018;122(2):1430-6. 98. Bouman HD, Lentzer EM. The treatment of hyperhidrosis of hands and feet with constant current. Am J Phys Med. 1952;31(3):158-69. 99. Walling HW, Swick BL. Treatment options for hyperhidrosis. Am J Clin Dermatol. 2011;12(5):285-95. 100. Kim DH, Kim TH, Lee SH, Lee AY. Treatment of Palmar Hyperhidrosis with Tap Water Iontophoresis: A Randomized, Sham-Controlled, Single-Blind, and Parallel-Designed Clinical Trial. Ann Dermatol. 2017;29(6):728-34. 101. Rawat S, Vengurlekar S, Rakesh B, Jain S, Srikarti G. Transdermal delivery by iontophoresis. Indian J Pharm Sci. 2008;70(1):5-10. 102. Kalele K, Kulkarni N, Kathariya R. Oral Squamous Cell Carcinoma: Hematoxylin and Eosin Staining. J Clin Diagn Res. 2015;9(9):Zj01. 103. Yamamoto A, Huang Y, Krajina BA, McBirney M, Doak AE, Qu S, et al. Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7. Proc Natl Acad Sci U S A. 2023;120(10):e2214888120. 104. Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol. 2020;10:212. 105. Takkem A, Barakat C, Zakaraia S, Zaid K, Najmeh J, Ayoub M, Seirawan MY. Ki-67 Prognostic Value in Different Histological Grades of Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev. 2018;19(11):3279-86. 106. Gadbail AR, Sarode SC, Chaudhary MS, Gondivkar SM, Tekade SA, Yuwanati M, Patil S. Ki67 Labelling Index predicts clinical outcome and survival in oral squamous cell carcinoma. J Appl Oral Sci. 2021;29:e20200751. 107. Mukai H, Yamaguchi T, Takahashi M, Hozumi Y, Fujisawa T, Ohsumi S, et al. Ki-67 response-guided preoperative chemotherapy for HER2-positive breast cancer: results of a randomised Phase 2 study. British Journal of Cancer. 2020;122(12):1747-53. 108. Martincic A, Cemazar M, Sersa G, Kovac V, Milacic R, Scancar J. A novel method for speciation of Pt in human serum incubated with cisplatin, oxaliplatin and carboplatin by conjoint liquid chromatography on monolithic disks with UV and ICP-MS detection. Talanta. 2013;116:141-8. 109. Hann S, Koellensperger G, Kanitsar K, Stingeder G, Brunner M, Erovic B, et al. Platinum determination by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) in different matrices relevant to human biomonitoring. Anal Bioanal Chem. 2003;376(2):198-204. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91659 | - |
dc.description.abstract | 口腔癌目前在台灣癌症發生率排名第五。口腔癌的治療基本是手術合併放射線治療以及化療。化療常以順鉑(cisplatin)作為全身性化療藥物,但cisplatin經過全身循環到達腫瘤的藥量會大幅減少,若增加劑量則會因為非專一性而傷害健康組織。因此已有研究顯示包覆cisplatin的奈米粒子可局部導入腫瘤,降低全身循環的副作用,並增加抗腫瘤的療效。為了更有效將奈米粒子導入腫瘤,我們設計包覆cisplatin的奈米載體為幾丁聚醣(chitosan)帶正電,再加上電化學離子電滲療法(iontophoresis)促進奈米粒子導入腫瘤中,本研究的目的是評估不同電化學離子導入法導入cisplatin的奈米粒子的抗腫瘤療效。
本研究分為體外(in vitro)試驗及動物(in vivo)試驗,體外試驗將鼠皮架設至橫式玻璃槽內,並貼上含有cisplatin奈米粒子的貼片,測試不同參數對cisplatin奈米粒子的滲透量,參數設定初步分為計時電流組(Chronopotentiometry, CP)、變動電流組(CP (on/off ratio: 1:1 (sec)))以及微分脈衝伏安組(Differential Pulse Voltammetry, DPV),找出各組最佳參數後則進行體內試驗。動物實驗使用野生型C57BL/6小鼠,在口腔黏膜上施打MOC2口腔癌細胞,當腫瘤約長到10~20 mm³時進行治療。分為控制組、被動滲透組(Passive)、CP組、變動電流組以及DPV組,共五個組別。將含有cisplatin奈米粒子貼片貼在有腫瘤口腔內側,搭配恆電位儀(Potentiostat)依照各組參數進行治療,頻率為每隻小鼠一次30分鐘每週三次直至實驗結束,治療期間會使用電子尺與超音波影像(ultrasonography)進行腫瘤大小的測量,實驗結束會犧牲小鼠取出腫瘤分別進行組織切片、H&E和IHC染色(Ki-67、pan CK (AE1/AE3)),並利用ICP-MS分析腫瘤內Pt(鉑)含量。 結果顯示在體外測試中DPV 16 cycle (0~0.06V) 組作用30分鐘具有最大的cisplatin釋放量;在動物實驗方面,變動電流組與DPV組的腫瘤體積皆小於其他組別並有顯著差異;而以腫瘤體積增長量的結果來看,變動電流組與DPV組在初期(前兩次治療)較能有效壓制腫瘤生長,並有較少的Ki-67 marker表現;在ICP-MS的分析中, DPV組測得較高的Pt(鉑)含量,並略高於變動電流組但兩組間無顯著差異,因此推論變動電流組與DPV組優於其他治療組。 結論,在本研究的動物模型中,DPV組與變動電流組有較佳的cisplatin奈米粒子滲透率,並能有效抑制腫瘤生長。因此,以離子電滲療法促進貼片釋放cisplatin奈米粒子在未來可用於臨床治療口腔癌的選擇。 | zh_TW |
dc.description.abstract | Currently, oral cancer ranks fifth in the incidence of cancers in Taiwan. The treatment for oral cancer generally involves a combination of surgery, radiation therapy, and chemotherapy. Cisplatin is commonly used as a systemic chemotherapy drug, but the amount of cisplatin reaching the tumor significantly decreases after systemic circulation. Increasing the dosage can harm healthy tissues due to nonspecific effects. Therefore, studies have shown that cisplatin-encapsulated chitosan nanoparticles can locally target tumors, reduce systemic side effects, and enhance the anti-tumor efficacy. To enhance the delivery of nanoparticles to tumors, we designed a cisplatin-encapsulated chitosan nanoparticle, which is positively charged. Additionally, we employed the technique of iontophoresis to facilitate the entry of nanoparticles into tumors. The aim of this study was to evaluate the tumor suppression efficacy of cisplatin-encapsulated chitosan nanoparticles using different iontophoresis methods.
The study comprised in vitro and in animal experiments. In the in vitro experiments, mouse skin was mounted in a horizontal glass chamber, and patches containing cisplatin nanoparticles were applied to test the permeation under different electric parameters (Chronopotentiometry (CP), CP (on/off ratio 1:1 (sec)) and Differential Pulse Voltammetry (DPV)). After identifying the optimal parameters for each group, in animal experiments was conducted. Wild-type C57BL/6 mice were used, and MOC2 oral cancer cells were implanted onto the oral mucosa. Treatment was initiated when tumors reached approximately 10~20 mm³. Patches containing cisplatin-encapsulated chitosan nanoparticles were applied to oral tumor, and treatment frequency was 30 minutes per session, three times a week. The animal experiment included a control group, a passive diffusion group, CP group, CP (on/off ratio 1:1 (sec)) group, and DPV group, totaling five groups. Tumor measurements were taken during treatment using ultrasonography. At the end of the experiment, mice were sacrificed, tumors were extracted for histological sections, and H&E and IHC staining (Ki-67, pan CK (AE1/AE3)) were performed. Furthermore, ICP-MS analysis was conducted to examine Pt (platinum) content within the tumors, evaluating the efficacy of iontophoresis of cisplatin nanoparticles. In results, DPV 16 cycle (0~0.06V) group showed best cisplatin delivery in vitro mouse skin study. In the animal models, the tumor volumes in both the CP (on/off ratio 1:1 (sec)) group and the DPV group were significantly smaller than those in the other groups. In terms of tumor volume growth, the CP (on/off ratio 1:1 (sec)) group and the DPV group were more effective in suppressing tumor growth at the initial stage (the first two treatments). The expression of the Ki-67 marker in the CP (on/off ratio 1:1 (sec)) group and the DPV group were the lowest among the treatment groups. In ICP-MS analysis, the DPV group showed a higher Pt (platinum) content, slightly surpassing the CP (on/off ratio 1:1 (sec)) group, although the difference between the two groups was not statistically significant. Therefore, both the CP (on/off ratio 1:1 (sec)) and DPV showed best tumor suppression efficacy. Overall, the tumor suppression efficacy of the DPV group and the CP (on/off ratio 1:1 (sec)) group showed better diffusion of cisplatin-encapsulated chitosan nanoparticles. The iontophoresis facility for delivering cisplatin-encapsulated chitosan nanoparticles can be utilized in future clinical treatment. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:25:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-20T16:25:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書……………………………………………………………………..i
致謝………………………………………………………………………………….ii 摘要………………………………………………………………………………....iii Abstract……………………………………………………………………………....v 目次………………………………………………………………………………....vii 圖次………………………………………………………………………………..x 表次……………………………………………………………………………….xi 第一章 緒論………………………………………………………………………….1 1.1前言……………………………………………………………………………….1 1.2研究目的………………………………………………………………………….1 第二章 文獻回顧…………………………………………………………………….2 2.1口腔癌…………………………………………………………………………….2 2.2奈米粒子藥物…………………………………………………………………….3 2.2.1 奈米粒子藥物應用於癌症………………………………………………...4 2.3離子電滲療法…………………………………………………………………….6 2.3.1計時電位法…………………………………………………………………7 2.3.2變動電流組…………………………………………………………………7 2.3.3微分脈衝伏安法……………………………………………………………8 2.3.4離子電滲療法於市面上的應用…………………………………………….9 2.3.5離子電滲療法於口腔的應用……………………………………………...10 2.4口腔癌動物模型…………………………………………………………………11 2.5超音波量測………………………………………………………………………12 第三章 材料與方法…………………………………………………………………13 3.1 實驗材料………………………………………………………………………...13 3.1.1實驗藥品…………………………………………………………………...13 3.1.2細胞實驗藥品……………………………………………………………...16 3.1.3實驗用細胞株……………………………………………………………...18 3.1.4實驗用動物………………………………………………………………...18 3.1.5動物實驗藥品、器械……………………………………………………...18 3.1.6實驗儀器…………………………………………………………………...19 3.2實驗流程…………………………………………………………………………22 3.3實驗方法…………………………………………………………………………24 3.3.1 幾丁聚醣/順鉑(chitosan/cisplatin)奈米粒子製備………………………..24 3.3.2貼片製備…………………………………………………………………...24 3.3.3 iontophoresis離子導入法…………………………………………………25 3.3.4細胞實驗方法……………………………………………………………...31 3.3.5動物實驗方法……………………………………………………………...35 第四章 結果…………………………………………………………………………39 4.1 cisplatin奈米粒子於橫式玻璃槽實驗的相關結果…………………………….39 4.1.1 cisplatin在PBS的檢量線……………………………………………….39 4.1.2 鼠皮厚度與電阻…………….…………………………………………..40 4.1.3 cisplatin奈米粒子於橫式玻璃槽使用各電流參數的釋放量…………..41 4.2 cisplatin奈米粒子利用電流參數於動物實驗的相關結果…………………….46 4.2.1 各組別腫瘤體積與時間的原始數據……………………………………..46 4.2.2 超音波量測各組別腫瘤影像圖…………………………………………..50 4.2.3各實驗組小鼠體重變化…………………………………………………...53 4.2.4各實驗組Tumor、lymph nodes組織切片(H&E stain)…………………..54 4.2.5各實驗組Tumor、lymph nodes組織切片(IHC stain)及計數結果………54 4.2.6 ICP-MS: 各組腫瘤中Pt含量……………………………………………..59 第五章 討論…………………………………………………………………………60 5.1 探討不同離子電滲療法之參數對cisplatin奈米粒子滲透量之影響………...60 5.2 探討動物實驗設計……………………………………………………………...64 5.2.1 整體時間點……………………………………………………………....64 5.2.2 量測腫瘤的方法…………………………………………………………65 5.3 探討不同離子電滲療法之參數搭配cisplatin奈米粒子對腫瘤的療效……...66 5.3.1 腫瘤大小…………………………………………………………………66 5.3.2 組織切片…………………………………………………………………69 5.3.2.1各實驗組Tumor、lymph nodes組織切片(H&E stain)……………….69 5.3.2.2各實驗組Tumor、lymph nodes組織切片(IHC stain)及計數結果…...70 5.3.3 ICP-MS…………………………………………………………………....71 第六章 結論…………………………………………………………………………73 第七章 參考文獻……………………………………………………………………75 | - |
dc.language.iso | zh_TW | - |
dc.title | 以電化學方法促進順鉑-幾丁聚醣奈米顆粒貼片的口腔腫瘤治療效果-動物試驗 | zh_TW |
dc.title | Iontophoresis Enhancing Efficacy of Cisplatin-Encapsulated Chitosan Nanoparticle in Oral Tumor Treatment- An Animal Model | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 陳漪紋 | zh_TW |
dc.contributor.coadvisor | Yi-Wen Chen | en |
dc.contributor.oralexamcommittee | 劉瑋文;張哲政 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Wen Liu;Che-Chen Chang | en |
dc.subject.keyword | 口腔癌,順鉑,奈米粒子,動物試驗,離子電滲療法, | zh_TW |
dc.subject.keyword | oral cancer,cisplatin,nanoparticle,iontophoresis,animal model, | en |
dc.relation.page | 86 | - |
dc.identifier.doi | 10.6342/NTU202304500 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-12-12 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 口腔生物科學研究所 | - |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 10.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。