Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91650
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姚宗珍zh_TW
dc.contributor.advisorChung-Chen Jane Yaoen
dc.contributor.author黃美芬zh_TW
dc.contributor.authorNutthakarn Ratanasereepraserten
dc.date.accessioned2024-02-20T16:23:07Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2023-
dc.date.submitted2023-10-23-
dc.identifier.citation1. Avci P, Gupta A, Sadasivam M, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 2013;32(1):41-52.
2. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci 2014;5(2):58-62.
3. Tam SY, Tam VCW, Ramkumar S, et al. Review on the cellular mechanisms of low-level laser therapy use in Oocology. Front Oncol 2020;10:1255.
4. Rola P, Doroszko A, Derkacz A. The Use of Low-Level Energy Laser Radiation in Basic and Clinical Research. Adv Clin Exp Med 2014;23(5):835-42.
5. Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res 2009;88(7):597-608.
6. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med 2004;35(2):117-20.
7. Youssef M, Ashkar S, Hamade E, et al. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 2008;23(1):27-33.
8. Salehi P, Heidari S, Tanideh N, Torkan S. Effect of low-level laser irradiation on the rate and short-term stability of rotational tooth movement in dogs. Am J Orthod Dentofacial Orthop 2015;147(5):578-86.
9. Limpanichkul W, Godfrey K, Srisuk N, Rattanayatikul C. Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthod Craniofac Res 2006;9(1):38-43.
10. Altan BA, Sokucu O, Ozkut MM, Inan S. Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci 2012;27(1):131-40.
11. Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010;62(8):607-10.
12. Pastore D, Greco M, Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol 2000;76(6):863-70.
13. Zhang Y, Song S, Fong CC, et al. cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol 2003;120(5):849-57.
14. Karu T. Mechanisms of low-power laser light action on cellular level. SPIE 2000;4159.
15. Castano AP, Dai T, Yaroslavsky I, et al. Low-level laser therapy for zymosan-induced arthritis in rats: Importance of illumination time. Lasers Surg Med 2007;39(6):543-50.
16. Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg 2001;19(1):29-33.
17. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose Response 2011;9(4):602-18.
18. de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron 2016;22(3):7000417.
19. Ferraresi C, Kaippert B, Avci P, et al. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 2015;91(2):411-16.
20. Chang SY, Lee MY, Chung PS, et al. Enhanced mitochondrial membrane potential and ATP synthesis by photobiomodulation increases viability of the auditory cell line after gentamicin-induced intrinsic apoptosis. Sci Rep 2019;9(1):19248.
21. Tsuka Y, Kunimatsu R, Gunji H, et al. Effects of Nd:YAG low-level laser irradiation on cultured human osteoblasts migration and ATP production: in vitro study. Lasers Med Sci 2019;34(1):55-60.
22. Lee J-H, Chiang M-H, Chen P-H, et al. Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci 2018;33(3):469-77.
23. Song JW, Li K, Liang ZW, et al. Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep 2017;7(1):620.
24. Chu YH, Chen SY, Hsieh YL, Teng YH, Cheng YJ. Low-level laser therapy prevents endothelial cells from TNF-α/cycloheximide-induced apoptosis. Lasers Med Sci 2018;33(2):279-86.
25. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR. Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 2013;6(10):829-38.
26. Rola P, Włodarczak S, Lesiak M, Doroszko A, Włodarczak A. Changes in cell biology under the influence of low-level laser therapy. Photonics 2022;9(7):502.
27. Callaghan GA, Riordan C, Gilmore WS, et al. Reactive oxygen species inducible by low-intensity laser irradiation alter DNA synthesis in the haemopoietic cell line U937. Lasers Surg Med 1996;19(2):201-6.
28. Zhang J, Xing D, Gao X. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 2008;217(2):518-28.
29. Hong JU, Kwon JJ, Heo SC, et al. Effects of photobiomodulation on bone remodeling in an osteoblast-osteoclast co-culture system. Lasers Med Sci 2021.
30. Lee G, Kim B, Ko Y, et al. Regulation of RANKL-induced osteoclastogenesis by 635-nm light-emitting diode irradiation via HSP27 in bone marrow-derived macrophages. Photomed Laser Surg 2017;35(2):78-86.
31. Niimi H, Ohsugi Y, Katagiri S, et al. Effects of low-level Er:YAG laser irradiation on proliferation and calcification of primary osteoblast-like cells isolated from rat calvaria. Front Cell Dev Biol 2020;8:459.
32. Oliveira FAd, Matos AA, Matsuda SS, et al. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts. J Photochem Photobiol B 2017;169:35-40.
33. Seok-Young J, lt, sup, et al. Combined effect of recombinant human bone morphogenetic protein-2 and low level laser irradiation on bisphosphonate-treated osteoblasts. J Korean Assoc Oral Maxillofac Surg 2018;44(6):259-68.
34. Tam SY, Tam VCW, Ramkumar S, et al. Review on the cellular mechanisms of low-level laser therapy use in oncology. Front Oncol 2020;10:1255.
35. Chen AC, Arany PR, Huang YY, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011;6(7):e22453.
36. Behm C, Zhao Z, Andrukhov O. Immunomodulatory activities of periodontal ligament stem cells in orthodontic forces-induced inflammatory processes: Current Views and Future Perspectives. Front Oral Health 2022;3:877348.
37. Chaushu S, Klein Y, Mandelboim O, Barenholz Y, Fleissig O. Immune Changes Induced by Orthodontic Forces: A Critical Review. J Dent Res 2022;101(1):11-20.
38. Ma H, Yang JP, Tan R, Lee HW, Han SK. Effect of low-level laser therapy on proliferation and collagen synthesis of human fibroblasts in vitro. J Wound Manage Res 2018;14:1-6.
39. Gholami L, Parsamanesh G, Shahabi S, et al. The Effect of Laser Photobiomodulation on Periodontal Ligament Stem Cells. Photochem Photobiol 2021;97(4):851-9.
40. Wu Y, Zhu T, Yang Y, et al. Irradiation with red light-emitting diode enhances proliferation and osteogenic differentiation of periodontal ligament stem cells. Lasers Med Sci 2021;36(7):1535-43.
41. Bölükbaşı Ateş G, Ak Can A, Gülsoy M. Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 2017;32(3):591-9.
42. Tani A, Chellini F, Giannelli M, et al. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018;19(7):1946.
43. Hu Y, Huang J, Chen C, et al. Strategies of Macrophages to Maintain Bone Homeostasis and Promote Bone Repair: A Narrative Review. J Funct Biomater 2023;14(1):18.
44. Lu LY, Loi F, Nathan K, et al. Pro-inflammatory M1 macrophages promote Osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J Orthop Res 2017;35(11):2378-85.
45. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology 2018;154(2):186-95.
46. Hsu LF, Tsai MH, Shih AHY, et al. 970 nm low-level laser affects bone metabolism in orthodontic tooth movement. J Photochem Photobiol B 2018;186:41-50.
47. Hung PS, Chen FC, Kuang SH, et al. miR-146a induces differentiation of periodontal ligament cells. J Dent Res 2010;89(3):252-7.
48. Kalvelytė AV, Imbrasaitė A, Krestnikova N, Stulpinas A. Chapter four - adult stem cells and anticancer therapy. In: Fishbein JC, Heilman JM, editors. Advances in Molecular Toxicology: Elsevier; 2017. p. 123-202.
49. Eid FY, El-Kenany WA, Mowafy MI, El-Kalza AR, Guindi MA. A randomized controlled trial evaluating the effect of two low-level laser irradiation protocols on the rate of canine retraction. Sci Rep 2022;12(1):10074.
50. Da W, Tao L, Zhu Y. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front Endocrinol 2021;12:675385.
51. Ohguro N, Fukuda M, Sasabe T, Tano Y. Concentration dependent effects of hydrogen peroxide on lens epithelial cells. Br J Ophthalmol 1999;83(9):1064-8.
52. Shirawachi S, Takeda K, Naruse T, et al. Oxidative stress impairs the calcification ability of human dental pulp cells. BMC Oral Health 2022;22(1):437.
53. Lee JH, Chiang MH, Chen PH, et al. Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci 2018;33(3):469-77.
54. Alves ACA, Vieira RdP, Leal-Junior ECP, et al. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Research & Therapy 2013;15(5):116.
55. Lee KT, Chiang MH, Chen PH, et al. The effect of low-level laser irradiation on hyperglycemia-induced inflammation in human gingival fibroblasts. Lasers Med Sci 2018:1-8.
56. Harorli OT, Hatipoglu M, Erin N. Effect of photobiomodulation on secretion of IL-6 and IL-8 by human gingival fibroblasts in vitro. Photobiomodul Photomed Laser Surg 2019;37(8):457-64.
57. Prindeze NJ, Ardanuy JG, Carney BC, Moffatt LT, Shupp JW. Photobiomodulation elicits a differential cytokine response in a cultured analogue of human skin. Eplasty 2019;19:e3.
58. Zheng J, Yang K. Clinical research: low-level laser therapy in accelerating orthodontic tooth movement. BMC Oral Health 2021;21(1):324.
59. De Marchi T, Ferlito JV, Ferlito MV, Salvador M, Leal-Junior ECP. Can photobiomodulation therapy (PBMT) minimize exercise-induced oxidative stress? a systematic review and meta-analysis. Antioxidants 2022;11(9):1671.
60. Abdel-Magied N, Elkady AA, Abdel Fattah SM. Effect of low-level laser on some metals related to redox state and histological alterations in the liver and kidney of irradiated rats. Biol Trace Elem Res 2020;194(2):410-22.
61. Martirosyan D, Ashoori M, Mirmiranpour H. The effect of low level-laser irradiation on antioxidant enzymes and mineral levels in serum of patients with type 2 diabetes mellitus. Bioact Comp Health Dis 2020;3:82.
62. Ullrich N, Schröder A, Jantsch J, et al. The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain—an in vitro study of human periodontal ligament fibroblasts. Int J Oral Sci 2019;11(4):33.
63. Kirschneck C, Thuy M, Leikam A, et al. Role and regulation of mechanotransductive HIF-1α stabilisation in periodontal ligament fibroblasts. Int J Mol Sci 2020;21(24):9530.
64. Cury V, Moretti AIS, Assis L, et al. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B 2013;125:164-70.
65. Nyman JS, Lynch CC, Perrien DS, et al. Differential effects between the loss of MMP-2 and MMP-9 on structural and tissue-level properties of bone. J Bone Miner Res 2011;26(6):1252-60.
66. Hsu LF, Chang BE, Tseng KJ, et al. Orthodontic force regulates metalloproteinase-3 promoter in osteoblasts and transgenic mouse models. J Dent Sci 2022;17(1):331-7.
67. Chang HH, Wu CB, Chen YJ, et al. MMP-3 response to compressive forces in vitro and in vivo. J Dent Res 2008;87(7):692-6.
68. Shimizu S, Honjo M, Sugimoto K, Okamoto M, Aihara M. Effect of pigmentation intensity of trabecular meshwork cells on mechanisms of micropulse laser trabeculoplasty. Sci Rep 2022;12(1):10535.
69. Chouhan S, Sawant M, Weimholt C, et al. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability. Autophagy 2023;19(3):1000-25.
70. Morgan MJ, Liu Z-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011;21(1):103-15.
71. Rizzi CF, Mauriz JL, Freitas Corrêa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 2006;38(7):704-13.
72. Genah S, Cialdai F, Ciccone V, et al. Effect of NIR laser therapy by MLS-MiS source on fibroblast activation by inflammatory cytokines in relation to wound healing. Biomedicines 2021;9(3):307.
73. Albensi BC. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front Cell Dev Bio 2019;7:154.
74. Carrà G, Avalle L, Seclì L, Brancaccio M, Morotti A. Shedding light on NF-κB functions in cellular organelles. Front Cell Dev Biol 2022;10:841646.
75. Ducy P, Schinke T, Karsenty G. The Osteoblast: A sophisticated fibroblast under central surveillance. Science 2000;289(5484):1501-4.
76. Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med 2019;51(5):1-8.
77. Yamamoto K, Kishida T, Sato Y, et al. Direct conversion of human fibroblasts into functional osteoblasts by defined factors. Proc Natl Acad Sci U S A 2015;112(19):6152-7.
78. Weiskopf K, Schnorr PJ, Pang WW, et al. Myeloid cell origins, differentiation, and clinical implications. Microbiol Spectr 2016;4(5):1128.
79. Li Y, Jacox LA, Little SH, Ko C-C. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 2018;34(4):207-14.
80. Graves DT, Kayal RA, Oates T, Garlet GP. 15 - Osteoimmunology in the oral cavity (periodontal disease, lesions of endodontic origin and orthodontic tooth movement). In: Lorenzo J, Choi Y, Horowitz M, Takayanagi H, editors. Osteoimmunology. San Diego: Academic Press; 2011. p. 411-41.
81. Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 2006;28(3):221-40.
82. Lekic P, McCulloch CAG. Periodontal ligament cell populations: The central role of fibroblasts in creating a unique tissue. Anat Rec 1996;245(2):327-41.
83. Jiang N, Guo W, Chen M, et al. Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Front Oral Biol 2016;18:1-8.
84. Naveh GR, Lev-Tov Chattah N, Zaslansky P, Shahar R, Weiner S. Tooth-PDL-bone complex: response to compressive loads encountered during mastication - a review. Arch Oral Biol 2012;57(12):1575-84.
85. Kirschneck C, Thuy M, Leikam A, et al. Role and regulation of mechanotransductive HIF-1α stabilisation in periodontal ligament fibroblasts. Int J Mol Sci 2020;21(24):9530.
86. Choi EK, Lee JH, Baek SH, Kim SJ. Gene expression profile altered by orthodontic tooth movement during healing of surgical alveolar defect. Am J Orthod Dentofacial Orthop 2017;151(6):1107-15.
87. Liu J, Chen PJ, Mehta S, Dutra EH, Yadav S. Dynamic changes in transcriptome during orthodontic tooth movement. Orthod Craniofac Res 2023;10(11):12650.
88. Spitz A, Adesse D, Gonzalez M, et al. Effect of micro-osteoperforations on the gene expression profile of the periodontal ligament of orthodontically moved human teeth. Clin Oral Investig 2022;26(2):1985-96.
89. Ren Y, Hazemeijer H, de Haan B, Qu N, de Vos P. Cytokine profiles in crevicular fluid during orthodontic tooth movement of short and long durations. J Periodontol 2007;78(3):453-8.
90. Giannopoulou C, Dudic A, Pandis N, Kiliaridis S. Slow and fast orthodontic tooth movement: an experimental study on humans. Eur J Orthod 2015;38(4):404-8.
91. Lombardo L, Marafioti M, Stefanoni F, Mollica F, Siciliani G. Load deflection characteristics and force level of nickel titanium initial archwires. Angle Orthod 2011;82:507-21.
92. Ryan MC, Stucky M, Wakefield C, et al. Interactive Clustered Heat Map Builder: An easy web-based tool for creating sophisticated clustered heat maps. F1000Research 2019;8:1750-68.
93. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 2019;47(1):199-205.
94. Savage SR, Shi Z, Liao Y, Zhang B. Graph algorithms for condensing and consolidating gene set analysis results. Mol Cell Proteomics 2019;18(8):141-52.
95. Mi H, Ebert D, Muruganujan A, et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 2020;49(1):394-403.
96. Lin X, Patil S, Gao Y-G, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol 2020;11:757.
97. Klein Y, Fleissig O, Polak D, et al. Immunorthodontics: in vivo gene expression of orthodontic tooth movement. Sci Rep 2020;10(1):8172.
98. Li X, Xie J, Zhai Y, et al. Differentiation of stem cells from human exfoliated deciduous teeth into retinal photoreceptor-like cells and their sustainability in vivo. Stem Cells Int 2019;2019:1-14.
99. Kim K, Kang HE, Yook JI, et al. Transcriptional expression in human periodontal ligament cells subjected to orthodontic force: an RNA-sequencing study. J Clin Med 2020;9(2):358.
100. Sprogar Š, Meh A, Vaupotic T, Drevenšek G, Drevenšek M. Expression levels of endothelin-1, endothelin-2, and endothelin-3 vary during the initial, lag, and late phase of orthodontic tooth movement in rats. Eur J Orthod 2010;32(3):324-8.
101. Grgurevic L, Novak R, Salai G, et al. Identification of bone morphogenetic protein 4 in the saliva after the placement of fixed orthodontic appliance. Prog Orthod 2021;22(1):19.
102. Proffit WR, Fields HW, Larson BE, Sarver DM. Contemporary orthodontics. Sixth edition ed. Philadelphia, PA: Elsevier; 2019: p.209-12.
103. Barczyk M, Bolstad AI, Gullberg D. Role of integrins in the periodontal ligament: organizers and facilitators. Periodontol 2000 2013;63(1):29-47.
104. Miossec P. Local and systemic effects of IL-17 in joint inflammation: a historical perspective from discovery to targeting. Cell Mol Immunol 2021;18(4):860-5.
105. Kellner H. Targeting interleukin-17 in patients with active rheumatoid arthritis: rationale and clinical potential. Ther Adv Musculoskelet Dis 2013;5(3):141-52.
106. Zhang R, Fang H, Chen Y, et al. Gene Expression analyses of subchondral bone in early experimental osteoarthritis by microarray. PLoS ONE 2012;7:32356.
107. Wang X, Manner PA, Horner A, et al. Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage 2004;12(12):963-73.
108. Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010;46(6):1639-51.
109. Zeng F, Gao M, Liao S, et al. Role and mechanism of CD90+ fibroblasts in inflammatory diseases and malignant tumors. Mol Med 2023;29(1):20.
110. Didilescu AC, Pop F, Rusu MC. c-kit positive cells and networks in tooth germs of human midterm fetuses. Ann Anat 2013;195(6):581-5.
111. Dinh HQ, Eggert T, Meyer MA, et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. immunity 2020;53(2):319-34.e6.
112. Lu EM-C, Hobbs C, Dyer C, Ghuman M, Hughes FJ. Differential regulation of epithelial growth by gingival and periodontal fibroblasts in vitro. J Periodontal Res 2020;55(6):859-67.
113. Huang L, Xiong S, Liu H, et al. Bioinformatics analysis of the inflammation-associated lncRNA-mRNA coexpression network in type 2 diabetes. J Renin Angiotensin Aldosterone Syst 2023;2023:6072438.
114. Wei C, Wang Y, Hu C. Bioinformatic analysis and experimental validation of the potential gene in the airway inflammation of steroid-resistant asthma. Sci Rep 2023;13(1):8098.
115. Yuan Y, Duan R, Wu B, et al. Gene expression profiles and bioinformatics analysis of insulin-like growth factor-1 promotion of osteogenic differentiation. Mol Genet Genomic Med 2019;7(10):00921.
116. Zhu G, Xiong Z, Chen W, Zhu Z, Wang W. Identification of key biomarkers and related immune cell infiltration in cervical cancer tissue based on bioinformatics analysis. Sci Rep 2023;13(1):10121.
117. Cao L, Ai Y, Dong Y, et al. Bioinformatics analysis reveals the landscape of immune cell infiltration and novel immune-related biomarkers in moyamoya disease. Front Genet 2023;14:1101612.
118. Afanador E, Yokozeki M, Oba Y, et al. Messenger RNA expression of periostin and Twist transiently decrease by occlusal hypofunction in mouse periodontal ligament. Arch Oral Biol 2005;50(12):1023-31.
119. Faruangsaeng T, Thaweesapphitak S, Khamwachirapitak C, Porntaveetus T, Shotelersuk V. Comparative transcriptome profiles of human dental pulp stem cells from maxillary and mandibular teeth. Sci Rep 2022;12(1):8860.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91650-
dc.description.abstract第 1 部分 低劑量雷射光誘導矯正細胞中基因表達的分子信號和機制
本研究旨在觀察分子信號傳導,包括活性氧(ROS)和粒線體膜電位差(ΔΨm),以評估低劑量雷射治療(LLLT)對矯正牙齒移動之相關細胞,基因表達的改變及其分子機制與NF- kB訊息傳遞之間的相關性。
與牙齒矯正相關的細胞包括:類成骨細胞細胞(MG63)、永生化牙周韌帶細胞(iPDL)和M1類巨噬細胞細胞。以能量密度為1和10 J/cm2 的980 nm LLLT照射這些細胞後,使用螢光探針監測和測量ΔΨm 和細胞內ROS,以偵測細胞對 LLLT的即時反應。細胞在接受LLLT後6小時、12小時或1天後,使用反轉錄聚合酶鏈反應(RT-PCR)評估 mRNA表達探討雷射光對不同細胞在不同劑量與時間,基因調控的變化,並使用NF-kB抑製劑、ROS清除劑和ΔΨm抑製劑用於探討與基因表達調控相關的訊息傳遞機制。最後,進行了 Western 西方墨點法蛋白分析,以確認 LLLT 刺激後的 NF-kB 訊息傳遞。
我們發現:在 LLLT 之後,三種細胞中的ΔΨm 和 ROS 都明顯增加。能量密度為 1 J/cm2 和 10 J/cm2 時,ΔΨm 和ROS變化均無明顯差異。在基因表達方面,11個目標基因中有4個基因(IL-1、IL-8、CAT和SOD1)在LLLT 6小時-1天後,明顯上調。在 iPDL 細胞中,LLLT 12小時和1天之後,上調的四個基因與MG63相同(IL-1、IL-8、CAT 和 SOD1)。然而,M1 細胞沒有發生任何變化。而能明顯減少LLLT誘導的基因表達變化的訊息傳導抑製劑是NF-kB 抑製劑,ΔΨm抑製劑和ROS清除試劑對MG63和iPDL細胞沒有影響目標基因之表達。 Western 西方墨點法分析顯示,LLLT 15分鐘後,p-IkB蛋白在 iPDL和MG63升高最多,而在M1中則沒有升高。
總結,980 奈米 LLLT 增加了所有三種細胞類型中的ΔΨm和 ROS生成。然而,只有在MG63 和iPDL 細胞中發現了基因調控的變化,且為NF-kB 訊息傳導。

第 2 部分 矯正誘導的牙周韌帶組織基因圖譜變化
眾所周知,個體因素會影響矯正後的牙齒移動速度,然而,有關人類個體差異的科學研究卻仍缺乏。因此,本研究旨在調查人類牙周韌帶(PDL)組織在矯正治療的前 28 天中基因譜的動態變化。
研究對象為計劃採用全口固定矯正器,拔除四顆小臼齒和一顆上顎第大臼齒進行矯正治療的三名年輕女性患者。在施力0天(對照組)、1天、3天、7天和28天後後收集齒齦溝液(GCF)後並進行拔牙,共收集15顆牙齒。使用多重免疫測定法分析GCF中的27種細胞因子。拔牙後即收集新鮮的PDL 組織,並使用 Illumina 測序平台進行 RNA 外顯子組定序。用對差異表達基(DEGs)、基因本體(GO)、京都基因組百科全書(KEGG)訊息傳導和熱圖進行進一步分析。
RNA 外顯子組定序數據結果分為兩部分,一部分是根據治療時間點,另一部分是根據每個患者的個體情況。在不同的矯正治療時間點,GO和KEGG分析顯示,與感覺受體相關的基因在第1天上調,與骨重塑相關的基因則在第3天和第28天上調,而觀察到與破骨細胞分化相關的基因在第7天上調。在患者個體方面,儘管由於DEGs的差異,每個患者都有自己獨特的GO和KEGG結果,但數據顯示,在某種程度上都觀察到了骨重塑,如炎症反應、成骨和免疫反應。
RNA定序數據顯示,特定類型的基因會在不同的時間點表達,單個患者的DEGs數據雖非常獨特,但在骨重塑相關的GO和KEGG方面上具有相似性。
zh_TW
dc.description.abstractPart 1 Molecular signaling and mechanisms of low-level laser-induced gene expression in cells involved in orthodontic tooth movement
The study aimed to observe molecular signaling, including reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm), to evaluate the alteration of gene expression by low-level laser therapy (LLLT) and the correlation between its mechanisms and the NF-kB pathway in cells involved in orthodontic tooth movement.
Osteoblast-like cells (MG63), immortalized periodontal ligament cells (iPDL), and M1 macrophage-like cells were used as cells involved in orthodontics. The cells were irradiated by 980-nm LLLT with energy densities of 1 and 10 J/cm2. To identify the immediate cellular response to LLLT, ΔΨm and intracellular ROS were monitored and measured using fluorescent probes. To investigate changes in gene regulation, the cells were incubated for 6 h, 12 h, and 1 day after LLLT, and mRNA expression was then assessed using reverse transcription polymerase chain reaction (RT-PCR). NF-kB inhibitor, ROS scavenger, and ΔΨm suppressor were used to analyze signals associated with the regulation of gene expression. Finally, Western blot analysis was performed to confirm NF-kB signaling after LLLT.
We found significant increases of ΔΨm and ROS in all three cell types after LLLT. No significant difference was observed between the changes in ΔΨm and ROS with energy densities of 1 and 10 J/cm2 in all three cell types. Regarding gene expression, 4 out of 11 targeted genes (IL-1, IL-8, CAT, and SOD1) were significantly upregulated in MG63 6 h – 1 day after LLLT. Regarding iPDL cells, the four genes upregulated 12 h and 1 day after LLLT were the same as in MG63 (IL-1, IL-8, CAT, and SOD1). However, no changes occurred in M1 cells. The inhibitor that significantly reduced most changes in LLLT-induced gene expression was NF-kB inhibitor, whereas ΔΨm suppressor and ROS scavenger reagent affected a nonsignificant reduction in the targeted gene expression in MG63 and iPDL cells. Western blot analysis showed the highest increase in p-IkB protein level 15 min after LLLT in iPDL and MG63, but not in M1.
In conclusion, the 980-nm LLLT increased ΔΨm and ROS production in all three cell types. However, changes in gene regulation were found only in MG63 and iPDL cells, which related to the NF-kB pathway.

Part 2 Orthodontic-induced changes of genetic profile in periodontal ligament tissues – a pilot investigation
It has been known that genetic factors influence orthodontic tooth movement, however, scientific research on humans is lacking. Therefore, this study aimed to investigate dynamic changes to the genetic profile in human periodontal ligament (PDL) tissue during the first 28 days of orthodontic treatment.
Fifteen teeth from three young female patients were recruited for the study. Full-mouth fixed appliances with extraction of four premolars and one maxillary third molar was planned for orthodontic treatment. GCF collection and tooth extraction were performed following force application for 0 (control), 1, 3, 7, and 28 days. GCF was analyzed using multiplex immunoassay for 27 cytokines. Fresh PDL tissue was collected immediately after the extraction and submitted for RNA exome-sequencing using Illumina sequencing platform. Further analysis of differentially expressed genes (DEGs), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and heatmaps was conducted.
The RNA exome sequencing data was divided into two parts, based on the treatment time points and based on each patient individually. During the different orthodontic treatment time points, GO and KEGG analyses showed that genes associated with sensory receptors were upregulated on Day 1, genes involved in bone remodeling were upregulated on Days 3 and 28, and genes related to osteoclast differentiation were upregulated on Day 7. In the individual patient’s aspect, although each of them had their own unique GO and KEGG results due to the variation of DEGs, the data showed they were all somehow involved in bone remodeling such as inflammatory response, osteogenesis, and immune response.
RNA sequencing data demonstrate that the specific types of genes are expressed at different time points, whereas the DEGs data on individual patient were very specific while shared the overall similarities in terms of bone remodeling related GO and KEGG pathway.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:23:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:23:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
中文摘要 iii
Abstract vi
第 1 部分 低劑量雷射光誘導矯正細胞中基因表達的分子信號和機制 1
引言 1
材料與方法 3
細胞培養 3
雷射參數 3
活性氧(ROS)測試 3
粒線體膜電位(ΔΨm)測試 4
MMP3、VEGF、IL-6、IL-8、CAT和SOD1的差異基因表現分析 4
抑制劑分析 5
Western blot分析 5
統計分析 5
結果 7
討論 10
第 2 部分 矯正誘導的牙周韌帶組織基因圖譜變化 14
引言 14
材料與方法 14
樣本採集 15
生物力學 15
RNA定序進行PDL組織採集 15
RNA外顯子樣本庫製備與定序 15
熱圖 16
生物資訊分析(DEGs、GO和KEGG通路) 16
結果 18
熱圖 18
不同時間點矯正治療PDL組織的DEGs 18
GO分析 18
KEGG通路 18
討論 21
Appendix 25
Part 1 Molecular signaling and mechanisms of low-level laser-induced gene expression in cells involved in orthodontic tooth movement 25
Chapter 1 Introduction 25
1.1 What is low level laser therapy (LLLT) 25
1.2 Laser parameter and cellular response 25
1.3 Effects of low level laser on orthodontic tooth movement 26
1.4 Cellular mechanisms triggered by LLLT 28
1.5 Biphasic dose response 30
1.6 Retrograde mitochondrial signaling 31
1.7 Cell-cell interaction in bone remodeling 32
Chapter 2 Research objectives 33
Chapter 3 Materials and methods 34
3.1 Cell culture 34
3.2 Laser parameter 35
3.3 Optimal timing of reactive oxygen species (ROS) and mitochondria membrane potential (ΔΨm) response 36
3.4 Reactive oxygen species (ROS) studies 37
3.5 Mitochondria membrane potential (ΔΨm) studies 38
3.6 Differential gene expression analysis (Reverse transcription polymerase chain reaction- RT-PCR) 38
3.7 Inhibitor analysis 39
3.8 Western blot analysis 40
3.9 Statistics and data analysis 41
Chapter 4 Results 42
4.1 Optimal timing of reactive oxygen species (ROS) production and mitochondria membrane potential (ΔΨm) in response to LLLT 42
4.2 ROS production induced by LLLT 42
4.3 Mitochondria membrane potential (ΔΨm) induced by LLLT 43
4.4 Effects of LLLT on mRNA expression of iPDL, MG63, and M1 macrophage-like cells 44
4.5 NF-kB inhibition by IkBa phosphorylation inhibitor (BAY 11-7082) was associated with increased mRNA levels induced by LLLT in iPDL and MG63 44
4.6 LLLT influences IkBa phosphorylation in iPDL and MG63, but not M1 macrophage-like cells 45
Chapter 5 Discussion 46
Chapter 6 Conclusion 53
Table 54
Figures 55
Part 2 Orthodontic-induced changes of genetic profile in periodontal ligament tissues – a pilot investigation 67
Chapter 1 Introduction 67
1.1 Orthodontic tooth movement 67
1.2 Periodontal Ligament 68
1.3 RNA sequencing 68
Chapter 2 Research objective 70
Chapter 3 Material and method 71
3.1 Sample collection 71
3.2 Biomechanics 71
3.3 Periodontal ligament tissue collection for RNA sequencing 72
3.4 RNA exome library preparation and sequencing 72
3.5 Analyzing data based on the variation of treatment time points 73
3.6 Analyzing data based on the variation of individuals 74
Chapter 4 Results 76
4.1 The variation of treatment time points 76
4.2 The variation of individuals 78
Chapter 5 Discussion 82
Chapter 6 Conclusion 91
Tables 92
Figures 96
References 114
-
dc.language.isoen-
dc.title低劑量雷射光刺激或矯正力加載之矯正相關細胞和組織mRNA表達變化研究zh_TW
dc.titleChanges of mRNA expression profile in orthodontic-involved cells and tissues after photostimulation or mechanical loadingen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee賴亮全;沈宜萱;王詩凱;陳漪紋zh_TW
dc.contributor.oralexamcommitteeLiang-Chuan Lai;Yi-Shuan Sheen;Shih-Kai Wang;Yi-Wen Chenen
dc.subject.keyword基因調控,低劑量雷射刺激治療,線粒體膜電位,NF-kB 訊息傳遞,活性氧,矯正牙齒移動,牙周韌帶,RNA測序,zh_TW
dc.subject.keywordgene regulation,low-level laser therapy,mitochondrial membrane potential,NF-kB pathway,reactive oxygen species,orthodontic tooth movement,periodontal ligament,RNA sequencing,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202304333-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-10-23-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-lift2028-10-14-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  此日期後於網路公開 2028-10-14
7.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved