請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91645完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳紀聖 | zh_TW |
| dc.contributor.advisor | Chi-Sheng Wu | en |
| dc.contributor.author | 吳芃宇 | zh_TW |
| dc.contributor.author | Peng-Yu Wu | en |
| dc.date.accessioned | 2024-02-20T16:21:44Z | - |
| dc.date.available | 2024-02-21 | - |
| dc.date.copyright | 2024-02-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-26 | - |
| dc.identifier.citation | 1. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-+.
2. M.A. Fox and M.T. Dulay, Heterogeneous photocatalysis. Chemical reviews, 1993. 93(1): p. 341-357. 3. M. Grätzel, Photoelectrochemical cells. nature, 2001. 414(6861): p. 338-344. 4. A.L. Linsebigler, G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758. 5. Y. Nosaka and M.A. Fox, Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width. The Journal of Physical Chemistry, 1988. 92(7): p. 1893-1897. 6. U. Diebold, The surface science of titanium dioxide. Surface science reports, 2003. 48(5-8): p. 53-229. 7. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chemical reviews, 1995. 95(1): p. 69-96. 8. B. Rhimi, M. Padervand, H. Jouini, S. Ghasemi, D.W. Bahnemann, and C. Wang, Recent progress in NOx photocatalytic removal: Surface/interface engineering and mechanistic understanding. Journal of Environmental Chemical Engineering, 2022: p. 108566. 9. E.W. Team, Chemical Entities of Biological Interest (ChEBI). 2019. 10. S. Hygiene, I. Cases, and A. Consult, Nitrogen dioxide ICSC: 0930. 2003. 11. M. Hnatyshyn, Decomposition analysis of the impact of economic growth on ammonia and nitrogen oxides emissions in the European Union. Journal of international studies, 2018. 11(1): p. 201-209. 12. J.W. Beeckman and L.L. Hegedus, Design of monolith catalysts for power plant nitrogen oxide (No.+-.) emission control. Industrial & engineering chemistry research, 1991. 30(5): p. 969-978. 13. H.S. Fogler, Essentials of chemical reaction engineering: essenti chemica reactio engi. 2010: Pearson Education. 14. Z. Gu, M. Jin, X. Wang, R. Zhi, Z. Hou, J. Yang, H. Hao, S. Zhang, X. Wang, and E. Zhou, Recent Advances in g-C3N4-Based Photocatalysts for NOx Removal. Catalysts, 2023. 13(1): p. 192. 15. W. Prins and Z. Nuninga, Design and experience with catalytic reactors for SCR-DeNOx. Catalysis today, 1993. 16(2): p. 187-205. 16. S.S. Park, D.H. Yoon, S.H. You, W.T. Bae, and D.W. Shin, Optimum chemical composition of raw catalytic materials for a De-NOx SCR honeycomb. Journal of Ceramic Processing Research, 2008. 9(6): p. 591-595. 17. P.A. Kumar, M.P. Reddy, L.K. Ju, B. Hyun-Sook, and H.H. Phil, Low temperature propylene SCR of NO by copper alumina catalyst. Journal of Molecular Catalysis A: Chemical, 2008. 291(1-2): p. 66-74. 18. T. Komatsu, K. Tomokuni, and I. Yamada, Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation. Catalysis Today, 2006. 116(2): p. 244-249. 19. V.-H. Nguyen, B.-S. Nguyen, C.-W. Huang, T.-T. Le, C.C. Nguyen, T.T.N. Le, D. Heo, Q.V. Ly, Q.T. Trinh, and M. Shokouhimehr, Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts. Journal of Cleaner Production, 2020. 270: p. 121912. 20. T. Ibusuki and K. Takeuchi, Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis. Journal of Molecular Catalysis, 1994. 88(1): p. 93-102. 21. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. Journal of Molecular Catalysis A: Chemical, 2000. 161(1-2): p. 205-212. 22. K. Hashimoto, K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami, and Y. Kera, Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere. Applied Catalysis B: Environmental, 2001. 30(3-4): p. 429-436. 23. Y.-H. Tseng, C.-S. Kuo, C.-H. Huang, Y.-Y. Li, P.-W. Chou, C.-L. Cheng, and M.-S. Wong, Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity. Nanotechnology, 2006. 17(10): p. 2490. 24. K. Hashimoto, K. Wasada, N. Toukai, H. Kominami, and Y. Kera, Photocatalytic oxidation of nitrogen monoxide over titanium (IV) oxide nanocrystals large size areas. Journal of Photochemistry and Photobiology A: Chemistry, 2000. 136(1-2): p. 103-109. 25. Z. Wu, Z. Sheng, Y. Liu, H. Wang, N. Tang, and J. Wang, Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase. Journal of Hazardous Materials, 2009. 164(2-3): p. 542-548. 26. Y. Ishibai, J. Sato, S. Akita, T. Nishikawa, and S. Miyagishi, Photocatalytic oxidation of NOx by Pt-modified TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2007. 188(1): p. 106-111. 27. C. Ao, S. Lee, C.L. Mak, and L. Chan, Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO. Applied Catalysis B: Environmental, 2003. 42(2): p. 119-129. 28. S. Devahasdin, C. Fan Jr, K. Li, and D.H. Chen, TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 156(1-3): p. 161-170. 29. K. Hashimoto, K. Sumida, S. Kitano, K. Yamamoto, N. Kondo, Y. Kera, and H. Kominami, Photo-oxidation of nitrogen oxide over titanium (IV) oxide modified with platinum or rhodium chlorides under irradiation of visible light or UV light. Catalysis Today, 2009. 144(1-2): p. 37-41. 30. F. Li, X. Li, C. Ao, M. Hou, and S. Lee, Photocatalytic conversion of NO using TiO2–NH3 catalysts in ambient air environment. Applied Catalysis B: Environmental, 2004. 54(4): p. 275-283. 31. F. Spadavecchia, G. Cappelletti, S. Ardizzone, C.L. Bianchi, S. Cappelli, C. Oliva, P. Scardi, M. Leoni, and P. Fermo, Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Applied Catalysis B: Environmental, 2010. 96(3-4): p. 314-322. 32. M. Signoretto, E. Ghedini, V. Trevisan, C. Bianchi, M. Ongaro, and G. Cruciani, TiO2–MCM-41 for the photocatalytic abatement of NOx in gas phase. Applied Catalysis B: Environmental, 2010. 95(1-2): p. 130-136. 33. N. Bowering, G.S. Walker, and P.G. Harrison, Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25. Applied Catalysis B: Environmental, 2006. 62(3-4): p. 208-216. 34. T.H. Lim, S.M. Jeong, S.D. Kim, and J. Gyenis, Photocatalytic decomposition of NO by TiO2 particles. Journal of Photochemistry and Photobiology A: Chemistry, 2000. 134(3): p. 209-217. 35. M. Anpo and M. Takeuchi, Design and development of second-generation titanium oxide photocatalysts to better our environment—approaches in realizing the use of visible light. International journal of Photoenergy, 2001. 3: p. 89-94. 36. M. Anpo, S.G. Zhang, H. Mishima, M. Matsuoka, and H. Yamashita, Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catalysis today, 1997. 39(3): p. 159-168. 37. M. Anpo, M. Matsuoka, H. Yamashita, W.-S. Ju, S.-E. Park, and Y.-G. Shul, Photocatalytic decomposition of NO on transition metal ion-exchanged zeolite catalysts. Journal of industrial and engineering chemistry, 2000. 6(3): p. 133-143. 38. M. Anpo, S.G. Zhang, S. Higashimoto, M. Matsuoka, H. Yamashita, Y. Ichihashi, Y. Matsumura, and Y. Souma, Characterization of the local structure of the vanadium silicalite (VS-2) catalyst and its photocatalytic reactivity for the decomposition of NO into N2 and O2. The Journal of Physical Chemistry B, 1999. 103(43): p. 9295-9301. 39. M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of catalysis, 2003. 216(1-2): p. 505-516. 40. M. Anpo, T.-H. Kim, and M. Matsuoka, The design of Ti-, V-, Cr-oxide single-site catalysts within zeolite frameworks and their photocatalytic reactivity for the decomposition of undesirable molecules—The role of their excited states and reaction mechanisms. Catalysis Today, 2009. 142(3-4): p. 114-124. 41. H. Yamashita, Y. Ichihashi, S.G. Zhang, Y. Matsumura, Y. Souma, T. Tatsumi, and M. Anpo, Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework. Applied Surface Science, 1997. 121: p. 305-309. 42. J. Zhang, M. Minagawa, T. Ayusawa, S. Natarajan, H. Yamashita, M. Matsuoka, and M. Anpo, In situ investigation of the photocatalytic decomposition of NO on the Ti− HMS under flow and closed reaction systems. The Journal of Physical Chemistry B, 2000. 104(48): p. 11501-11505. 43. J. Zhang, Y. Hu, M. Matsuoka, H. Yamashita, M. Minagawa, H. Hidaka, and M. Anpo, Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. The Journal of Physical Chemistry B, 2001. 105(35): p. 8395-8398. 44. S.F. Miller and B. Miller, Advanced flue gas cleaning systems for sulfur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants, in Advanced power plant materials, design and technology. 2010, Elsevier. p. 187-216. 45. B.G. Miller, Clean coal engineering technology. 2010: Elsevier. 46. S. Jafarinejad, Petroleum waste treatment and pollution control. 2016: Butterworth-Heinemann. 47. R. Sadeghbeigi, Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. 2020: Butterworth-Heinemann. 48. A. Yamamoto, K. Teramura, and T. Tanaka, Selective Catalytic Reduction of NO by NH3 over Photocatalysts (Photo‐SCR): Mechanistic Investigations and Developments. The Chemical Record, 2016. 16(5): p. 2268-2277. 49. Y. Bedjanian and A. El Zein, Interaction of NO2 with TiO2 surface under UV irradiation: products study. The Journal of Physical Chemistry A, 2012. 116(7): p. 1758-1764. 50. N.H. Nguyen, H.-Y. Wu, and H. Bai, Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes. Chemical Engineering Journal, 2015. 269: p. 60-66. 51. S. Yamazoe, Y. Masutani, T. Shishido, and T. Tanaka, Metal oxide promoted TiO 2 catalysts for photo-assisted selective catalytic reduction of NO with NH3. Research on Chemical Intermediates, 2008. 34: p. 487-494. 52. N.W. Cant and J.R. Cole, Photocatalysis of the reaction between ammonia and nitric oxide on TiO2 surfaces. Journal of Catalysis, 1992. 134(1): p. 317-330. 53. Y.-C. Chou and Y. Ku, NO reduction and N2 selectivity under various operating conditions for photo-SCR of NO. Chemical Engineering Journal, 2010. 162(2): p. 696-701. 54. T. Shishido, K. Teramura, and T. Tanaka, A unique photo-activation mechanism by “in situ doping” for photo-assisted selective NO reduction with ammonia over TiO2 and photooxidation of alcohols over Nb2O5. Catalysis Science & Technology, 2011. 1(4): p. 541-551. 55. S. Yamazoe, Y. Masutani, K. Teramura, Y. Hitomi, T. Shishido, and T. Tanaka, Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH3 over TiO2. Applied Catalysis B: Environmental, 2008. 83(1-2): p. 123-130. 56. A. Yamamoto, K. Teramura, S. Hosokawa, T. Shishido, and T. Tanaka, Visible‐Light‐Assisted Selective Catalytic Reduction of Nitric Oxide with Ammonia over Dye‐Modified Titania Photocatalysts. ChemCatChem, 2015. 7(12): p. 1818-1825. 57. L. Huang, X. Hu, S. Yuan, H. Li, T. Yan, L. Shi, and D. Zhang, Photocatalytic preparation of nanostructured MnO2-(Co3O4)/TiO2 hybrids: The formation mechanism and catalytic application in SCR deNOx reaction. Applied Catalysis B: Environmental, 2017. 203: p. 778-788. 58. J.A. Raub, M. Mathieu-Nolf, N.B. Hampson, and S.R. Thom, Carbon monoxide poisoning—a public health perspective. Toxicology, 2000. 145(1): p. 1-14. 59. K.R. Thampi, P. Ruterana, and M. Grätzel, Low-temperature thermal and photoactivation of TiO2-supported Ru, Rh, and Cu catalysts for CO-NO reaction. Journal of Catalysis, 1990. 126(2): p. 572-590. 60. N. Bowering, D. Croston, P.G. Harrison, and G.S. Walker, Silver modified Degussa P25 for the photocatalytic removal of nitric oxide. International Journal of Photoenergy, 2007. 2007. 61. T. Toyao, J. Morishima, M. Saito, Y. Horiuchi, T. Kamegawa, G. Martra, S. Coluccia, M. Matsuoka, and M. Anpo, FT-IR study of the reaction mechanisms for photocatalytic reduction of NO with CO promoted by various single-site photocatalysts. Journal of catalysis, 2013. 299: p. 232-239. 62. I. Subbotina, B. Shelimov, V. Kazansky, A. Lisachenko, M. Che, and S. Coluccia, Selective photocatalytic reduction of nitric oxide by carbon monoxide over silica-supported molybdenum oxide catalysts. Journal of Catalysis, 1999. 184(2): p. 390-395. 63. Y.-T. Wu, Y.-H. Yu, V.-H. Nguyen, and J.C. Wu, In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts. Research on Chemical Intermediates, 2015. 41: p. 2153-2164. 64. S. Poulston, M.V. Twigg, and A.P. Walker, The Effect of nitric oxide on the photocatalytic oxidation of small hydrocarbons over titania. Applied Catalysis B: Environmental, 2009. 89(3-4): p. 335-341. 65. J. Lasek, Y.-H. Yu, and J.C. Wu, Water and temperature effects on photo-selective catalytic reduction of nitric oxide on Pd-loaded TiO2 photocatalyst. Environmental technology, 2012. 33(18): p. 2133-2141. 66. J.C.-C. Yu, V.-H. Nguyen, J. Lasek, D.X. Li, and J.C. Wu, Competitive reaction pathway for photo and thermal catalytic removal of NO with hydrocarbon in flue gas under elevated temperatures. Catalysis Communications, 2016. 84: p. 40-43. 67. J.C.-C. Yu, V.-H. Nguyen, J. Lasek, and J.C. Wu, Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement. Applied Catalysis B: Environmental, 2017. 219: p. 391-400. 68. Y.H. Yu, I.H. Su, and J.C. Wu, Photocatalytic reduction of NO pollutant using an optical‐fibre photoreactor at room temperature. Environmental technology, 2010. 31(13): p. 1449-1458. 69. Y.-H. Yu, Y.-T. Pan, Y.-T. Wu, J. Lasek, and J.C. Wu, Photocatalytic NO reduction with C3H8 using a monolith photoreactor. Catalysis today, 2011. 174(1): p. 141-147. 70. R. Jin, Z. Wu, Y. Liu, B. Jiang, and H. Wang, Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method. Journal of Hazardous Materials, 2009. 161(1): p. 42-48. 71. M. Matsuoka, S. Higashimoto, H. Yamashita, and M. Anpo, In-situ investigations of the photocatalytic reaction of no with propane on the vanadium silicalite-1 catalyst. Research on Chemical Intermediates, 2000. 26: p. 85-92. 72. J.C.-C. Yu, V.-H. Nguyen, J. Lasek, S.-W. Chiang, D.X. Li, and J.C. Wu, NOx abatement from stationary emission sources by photo-assisted SCR: Lab-scale to pilot-scale studies. Applied Catalysis A: General, 2016. 523: p. 294-303. 73. A. Mohammed and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—Hervex, Băile Govora, Romania. 2018. 74. K. Akhtar, S.A. Khan, S.B. Khan, and A.M. Asiri, Scanning electron microscopy: Principle and applications in nanomaterials characterization. Handbook of materials characterization, 2018: p. 113-145. 75. M. Abd Mutalib, M. Rahman, M. Othman, A. Ismail, and J. Jaafar, Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy, in Membrane characterization. 2017, Elsevier. p. 161-179. 76. B.D. Cullity, Elements of X-ray Diffraction. 1956: Addison-Wesley Publishing. 77. B.V. Crist, The XPS library website: A resource for the XPS community including-The XPS library of information, XPS spectra-base having> 70,000 monochromatic XPS spectra, and spectral data processor (SDP) v8. 0 software. Journal of Electron Spectroscopy and Related Phenomena, 2021. 248: p. 147046. 78. M.A. Mohamed, J. Jaafar, A. Ismail, M. Othman, and M. Rahman, Fourier transform infrared (FTIR) spectroscopy, in Membrane characterization. 2017, Elsevier. p. 3-29. 79. J.A. Lasek, K. Głód, R. Fryza, S. Dobras, T. Chwoła, K. Supernok, J.C.-S. Wu, A.P.-Y. Wu, and C.-W. Huang, Experience in Scaling-Up of Photo-Thermo-Catalytic Purification of Process Gasses from NOx. Energies, 2023. 16(14): p. 5344. 80. A. Weibel, R. Bouchet, P. Bouvier, and P. Knauth, Hot compaction of nanocrystalline TiO2 (anatase) ceramics. Mechanisms of densification: Grain size and doping effects. Acta materialia, 2006. 54(13): p. 3575-3583. 81. M. Hugenschmidt, K. Adrion, A. Marx, E. Müller, and D. Gerthsen, Electron-Beam-Induced Carbon Contamination in STEM-in-SEM: Quantification and Mitigation. Microscopy and Microanalysis, 2023. 29(1): p. 219-234. 82. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, and F.K. Katsaros, Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 2010. 345(4): p. 469-473. 83. L. Chougala, M. Yatnatti, R. Linganagoudar, R. Kamble, and J. Kadadevarmath, A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. 2017. 84. C. Zhang, Z. Liu, L. Chen, and Y. Dong, Influence of pH, humic acid, ionic strength, foreign ions, and temperature on 60 Co (II) sorption onto γ-Al2O3. Journal of Radioanalytical and Nuclear Chemistry, 2012. 292(1): p. 411-419. 85. L. Khriachtchev, J. Lundell, E. Isoniemi, and M. Räsänen, HONO in solid Kr: Site-selective trans↔ cis isomerization with narrow-band infrared radiation. The Journal of Chemical Physics, 2000. 113(10): p. 4265-4273. 86. I.-H. Su and J.C. Wu, Photo selective catalytic reduction of nitric oxide with propane at room temperature. Catalysis Communications, 2009. 10(11): p. 1534-1537. 87. T.M. Twesme, D.T. Tompkins, M.A. Anderson, and T.W. Root, Photocatalytic oxidation of low molecular weight alkanes: observations with ZrO2–TiO2 supported thin films. Applied Catalysis B: Environmental, 2006. 64(3-4): p. 153-160. 88. X. Fu, L.A. Clark, W.A. Zeltner, and M.A. Anderson, Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Journal of photochemistry and photobiology A: Chemistry, 1996. 97(3): p. 181-186. 89. S. Roy, M. Hegde, and G. Madras, Catalysis for NOx abatement. Applied energy, 2009. 86(11): p. 2283-2297. 90. J.D. Koch, J. Gronki, and R.K. Hanson, Measurements of near-UV absorption spectra of acetone and 3-pentanone at high temperatures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008. 109(11): p. 2037-2044. 91. S. Khan, D. Newport, and S. Le Calvé, Development of a toluene detector based on deep UV absorption spectrophotometry using glass and aluminum capillary tube gas cells with a LED source. Micromachines, 2019. 10(3): p. 193. 92. C. Ao, S. Lee, and C.Y. Jimmy, Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. Journal of Photochemistry and photobiology A: Chemistry, 2003. 156(1-3): p. 171-177. 93. Y. Iguchi, H. Ichiura, T. Kitaoka, and H. Tanaka, Preparation and characteristics of high performance paper containing titanium dioxide photocatalyst supported on inorganic fiber matrix. Chemosphere, 2003. 53(10): p. 1193-1199. 94. S. Almaie, V. Vatanpour, M.H. Rasoulifard, and I. Koyuncu, Volatile organic compounds (VOCs) removal by photocatalysts: A review. Chemosphere, 2022: p. 135655. 95. W. Xu, D. Raftery, and J.S. Francisco, Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR. The Journal of Physical Chemistry B, 2003. 107(19): p. 4537-4544. 96. G. Vincent, P.-M. Marquaire, and O. Zahraa, Abatement of volatile organic compounds using an annular photocatalytic reactor: study of gaseous acetone. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 197(2-3): p. 177-189. 97. Y. Komazaki, H. Shimizu, and S. Tanaka, A new measurement method for nitrogen oxides in the air using an annular diffusion scrubber coated with titanium dioxide. Atmospheric Environment, 1999. 33(27): p. 4363-4371. 98. Q. Wu, J. Ye, W. Qiao, Y. Li, J.H. Niemantsverdriet, E. Richards, F. Pan, and R. Su, Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by Pd cocatalyst on TiO2. Applied Catalysis B: Environmental, 2021. 291: p. 120118. 99. R. Atkinson and S.M. Aschmann, Products of the gas‐phase reactions of aromatic hydrocarbons: Effect of NO2 concentration. International journal of chemical kinetics, 1994. 26(9): p. 929-944. 100. B. Engler, J. Leyrer, E. Lox, and K. Ostgathe, Catalytic reduction of nitrogen oxides in diesel exhaust gas, in Studies in Surface Science and Catalysis. 1995, Elsevier. p. 529-547. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91645 | - |
| dc.description.abstract | 近年來,空氣污染日益嚴重,因此提升空氣品質已成為國際議題。在空氣污染物中,氮氧化物(NOx)以及揮發性有機化合物(VOCs)的去除引起了廣泛關注。NOx 與 VOCs 會導致酸雨和光化學煙霧等空氣污染問題,且共存的 NOx 和 VOCs在陽光照射下還會生成臭氧(O3)造成二次汙染,但陽光同時也是光催化劑可以利用的能量來源。光催化會改變 NOx 和 VOCs 之間的反應途徑,協同將它們轉化為小分子(如 CO2、H2O)。然而,大多數研究僅關注單一污染物的降解,未能滿足實際情境中多種污染物共存的要求。
因此,本研究以 TiO2 作為光觸媒主要的基底,並以 Pd 修飾,利用覆膜浸漬法負載於 α-Al2O3 載體上。透過 SEM BSE 圖像搭配 EDS mapping 成像顯示 Pd 粒子分布於 TiO2 層內且 TiO2 成功負載於 α-Al2O3 載體上,然而由於 Pd 重量百分比過低,於 XPS、EDS 元素分析內並無 Pd 的訊號;UV-Vis 顯示具有 Pd 修飾的 TiO2於可見光波長區域能吸收較多的可見光。 之後,分別在實驗室規模與先導級規模光反應器進行光催化反應,在不同初始濃度、反應溫度與光強度下,比較 NOx 與 VOCs 的去除率。結果發現在室溫下光觸媒具有最佳的 NOx 和 VOCs 去除率,但當溫度提高時 NOx 和 VOCs 去除率因為吸附能力下降而下降。另外,於先導級反應系統中,最佳 NOx 去除率能達到100%,最佳丙酮去除率約為 85%;最佳甲苯去除率能達到接近 100%的表現,然而丙烷因為分子結構較穩定,去除率僅有 5~10%。這顯示本研究所合成之觸媒具有良好的 NOx 與 VOCs 的光催化能力並能應用於更大規模的反應器內。透過 FTIR顯示當 NO 與 VOCs 同時進行光催化反應時,於觸媒表面上不會生成 N-O 鍵結,表示能減緩 NO 光氧化反應速率,降低氧化副產物的生成而造成光觸媒毒化。此現象與活性測試結果吻合。綜上所述,我們的研究成功地放大光反應到先導級光反應系統,經由一系列的實驗,證實光觸媒能顯著有效的去除 NOx 和 VOCs。 | zh_TW |
| dc.description.abstract | In recent years, air pollution has become increasingly severe so improving air quality is an international concern. Removing nitrogen oxides (NOx) and volatile organic compounds (VOCs) has attracted widespread attention as key pollutants. The coexistence of NOx and VOCs leads to air pollution issues such as acid rain and photochemical smog. In addition, sunlight triggers the generation of secondary pollutants like ozone (O3). However, sunlight also serves as an energy source for photocatalysis. Photocatalysts can modify the reaction pathways between NOx and VOCs, thus synergistically converting them into small molecules (e.g., CO2, H2O). So far, most studies focus on the degradation of a single pollutant, lacking to address the complexity of multiple pollutants in real situations.
Therefore, this study utilizes TiO2-based photocatalyst, loaded with Pd and coated onto an α-Al2O3 support using dip-coating method. Scanning electron microscopy (SEM) by back-scattering electrons (BSE) imaging combined with energy-dispersive X-ray spectroscopy (EDS) mapping shows that Pd particles are dispersed within the TiO2 layer, and successfully loaded onto the α-Al2O3 support. However, due to the low weight percentage of Pd, there is no signal for Pd in X-ray photoelectron spectroscopy (XPS) and EDS elemental analysis. UV-Vis analysis indicates that Pd-modified TiO2 absorbs more visible light. Subsequently, photocatalytic reactions were conducted in both lab-scale and pilot scale photocatalytic reactors to compare the removal efficiency of NOx and VOCs under different initial concentrations, reaction temperatures, and light intensities. The results indicate that the photocatalyst exhibits optimal NOx and VOCs removal at room temperature while the removal decreases at higher temperatures due to low adsorption capacity. In the pilot-scale reaction system, the NOx removal reached 100%, while the optimalacetone removal was approximately 85%. The toluene removal approached 100%, but propane exhibited a removal of only 5-10% attributed to its stable molecular structure. Our research demonstrates that the synthesized catalyst in this study possesses excellent photocatalytic capabilities for the removal of NOx and VOCs, and can be applied in larger-scale reactors. FTIR reveals that, during simultaneous photocatalytic reactions with NO and VOCs, no N-O bonds are formed on the catalyst surface, indicating the inhibition of NO photo-oxidation thus reducing the generation of oxidation byproducts, which will occupy active sites and result in catalyst deactivation. This is consistent with the results of activity tests. In summary, this study successfully scaled up the photo reaction to a pilot-scale system through a series of experiments, achieving significant and effective removal of NOx and VOCs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:21:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-20T16:21:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES x LIST OF TABLES xv 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機和目標 2 第2章 文獻回顧 3 2.1 光觸媒 3 2.1.1 光催化原理 3 2.1.2 二氧化鈦光觸媒 5 2.2 氮氧化物 7 2.2.1 氮氧化物簡介 7 2.2.2 氮氧化物來源 8 2.2.3 氮氧化物之影響 9 2.3 氮氧化物去除方法 11 2.3.1 傳統去除氮氧化物之方法 11 2.3.2 光催化去除氮氧化物之方法 14 2.3.2.1光催化氧化反應 14 2.3.2.2光催化分解反應 19 2.3.2.3光催化選擇性還原反應 24 第3章 實驗裝置與步驟 32 3.1 化學藥品與器材 32 3.1.1 藥品 32 3.1.2 器材 32 3.2 觸媒製備 34 3.2.1 溶液製備 34 3.2.2 觸媒製備 35 3.3 觸媒性質與反應分析原理 36 3.3.1 掃描式電子顯微鏡 36 3.3.2 能量散佈光譜儀 38 3.3.3 X光繞射儀 39 3.3.4 紫外光可見光光譜儀 41 3.3.5 比表面積分析 42 3.3.6 X射線光電子能譜儀 43 3.3.7 傅立葉轉換紅外線光譜儀 44 3.4 光催化反應系統 46 3.4.1 實驗室規模反應系統 46 3.4.2 先導級規模反應系統 48 3.4.3 實驗數據計算 51 第4章 觸媒性質鑑定結果與討論 53 4.1 XRD 53 4.2 UV-Vis 54 4.3 SEM 55 4.4 EDS 57 4.5 BET 62 4.6 XPS 63 4.7 FTIR 65 第5章 光觸媒反應系統結果與討論 68 5.1 實驗室規模反應系統 68 5.1.1 NO的光催化和熱催化去除 68 5.1.1.1空白測試 68 5.1.1.2 VOC效應 69 5.1.1.3溫度效應 73 5.2 先導級規模反應系統 75 5.2.1 NO的光催化和熱催化去除 76 5.2.1.1 VOC效應 76 5.2.1.2 丙酮效應 78 5.2.1.3 甲苯效應 79 5.2.1.4 丙烷效應 80 5.2.1.5 溫度效應 81 5.2.2 丙酮的光催化和熱催化去除 83 5.2.2.1 溫度效應 83 5.2.2.2 光強度效應 84 5.2.3 甲苯的光催化和熱催化去除 85 5.2.3.1 溫度效應 85 5.2.3.2 光強度效應 86 5.2.4 丙烷的光催化和熱催化去除 86 5.2.4.1 溫度效應 86 5.2.4.2 光強度效應 88 5.3 實驗室與先導級規模的光催化反應系統效能比較 88 5.4 反應機制分析文獻 91 5.4.1 一氧化氮與丙酮可能的反應機制 91 5.4.2 一氧化氮與甲苯可能的反應機制 95 5.4.3 一氧化氮與丙烷可能的反應機制 97 第6章 結論與未來展望 98 參考文獻 100 附錄 109 個人小傳 114 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 揮發性有機化合物 | zh_TW |
| dc.subject | 氮氧化物 | zh_TW |
| dc.subject | 先導級系統 | zh_TW |
| dc.subject | 光催化 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | TiO2 | en |
| dc.subject | Photocatalysis | en |
| dc.subject | Pilot-scale system | en |
| dc.subject | VOCs | en |
| dc.subject | NO | en |
| dc.title | 先導級光反應器進行升溫輔助光催同時淨化VOCs和NOx | zh_TW |
| dc.title | Photo-catalytic and thermal-assisted air purification of both VOCs and NOx by pilot-scale photo-reactor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾堯宣;賴育英 | zh_TW |
| dc.contributor.oralexamcommittee | Yao-Hsuan Tseng;Yu-Ying Lai | en |
| dc.subject.keyword | 氮氧化物,揮發性有機化合物,二氧化鈦,光催化,先導級系統, | zh_TW |
| dc.subject.keyword | NO,VOCs,TiO2,Photocatalysis,Pilot-scale system, | en |
| dc.relation.page | 114 | - |
| dc.identifier.doi | 10.6342/NTU202400203 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
