請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91643完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕居振 | zh_TW |
| dc.contributor.advisor | Chu-Chen Chueh | en |
| dc.contributor.author | 高世峰 | zh_TW |
| dc.contributor.author | Shih-Feng Kao | en |
| dc.date.accessioned | 2024-02-20T16:21:11Z | - |
| dc.date.available | 2024-02-21 | - |
| dc.date.copyright | 2024-02-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2024-01-23 | - |
| dc.identifier.citation | [1] F. Zhang, K. Zhu, Adv Energy Mater 2020, 10, 1902579.
[2] NREL, Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf [3] N. Li, Z. Zhu, C. C. Chueh, H. Liu, B. Peng, A. Petrone, X. Li, L. Wang, A. K. Y. Jen, Adv Energy Mater 2017, 7, 1601307. [4] D. Shindell, C. J. Smith, Nature 2019, 573, 408. [5] K. Vijayan, S. Vijayachamundeeswari, K. Sivaperuman, N. Ahsan, T. Logu, Y. Okada, Sol Energy 2022, 234, 81. [6] M. A. Iqbal, M. Malik, W. Shahid, S. Z. U. Din, N. Anwar, M. Ikram, F. Idrees, Thin Films Photovoltaics 2022. [7] G. Conibeer, Materials today 2007, 10, 42. [8] T. Zhang, H. Yang, Handbook of Energy Efficiency in Buildings; Elsevier: Amsterdam, The Netherlands 2018. [9] E. Danladi, D. S. Dogo, S. U. Michael, F. O. Uloko, A. A. O. Salawu, East European Journal of Physics 2021, 5. [10] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chemical reviews 2009, 109, 5868. [11] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J Am Chem Soc 2009, 131, 6050. [12] a) S. De Wolf, J. Holovsky, S.-J. Moon, P. Loper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, The journal of physical chemistry letters 2014, 5, 1035; b) N.-G. Park, Materials today 2015, 18, 65. [13] a) L. M. Herz, ACS Energy Letters 2017, 2, 1539; b) C. S. Ponseca Jr, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. r. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J Am Chem Soc 2014, 136, 5189. [14] a) S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341; b) G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344. [15] a) J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano letters 2013, 13, 1764; b) G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy & Environmental Science 2014, 7, 982. [16] S. Luo, W. A. Daoud, J Mater Chem A 2015, 3, 8992. [17] M. Rini, R. a. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, A. Cavalleri, Nature 2007, 449, 72. [18] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Acta Crystallographica Section B: Structural Science 2008, 64, 702. [19] Z. Song, S. C. Watthage, A. B. Phillips, M. J. Heben, J Photon Energy 2016, 6, 022001. [20] I. Mesquita, L. Andrade, A. Mendes, Renewable and Sustainable Energy Reviews 2018, 82, 2471. [21] T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale, Y. M. Lam, J Mater Chem A 2015, 3, 8943. [22] a) A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, science 2014, 345, 295; b) Q. Jiang, X. Sheng, B. Shi, X. Feng, T. Xu, The Journal of Physical Chemistry C 2014, 118, 25878. [23] Z. Zhou, S. Pang, Z. Liu, H. Xu, G. Cui, J Mater Chem A 2015, 3, 19205. [24] V. W. Bergmann, S. A. Weber, F. Javier Ramos, M. K. Nazeeruddin, M. Grätzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad, R. Berger, Nat Commun 2014, 5, 5001. [25] C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, Advanced Science 2016, 3, 1500324. [26] a) C. Zuo, L. Ding, Angewandte Chemie 2021, 133, 11342; b) A. Muradov, D. Frolushkina, V. Samusenkov, G. Zhamanbayeva, S. Kot, Energies 2021, 14, 2918; c) M. Adnan, Z. Irshad, J. K. Lee, Rsc Adv 2020, 10, 29010. [27] S. Liu, V. P. Biju, Y. Qi, W. Chen, Z. Liu, NPG Asia Materials 2023, 15, 27. [28] E. Gutierrez-Partida, H. Hempel, S. Caicedo-Davila, M. Raoufi, F. Pena-Camargo, M. Grischek, R. Gunder, J. Diekmann, P. Caprioglio, K. O. Brinkmann, ACS Energy Letters 2021, 6, 1045. [29] H. Liu, M. H. Yu, C. C. Lee, X. Yu, Y. Li, Z. Zhu, C. C. Chueh, Z. a. Li, A. K. Y. Jen, Adv Mater Technol-Us 2021, 6, 2000960. [30] Z. Yang, C. C. Chueh, F. Zuo, J. H. Kim, P. W. Liang, A. K. Y. Jen, Adv Energy Mater 2015, 5, 1500328. [31] K. Hwang, Y. S. Jung, Y. J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. Y. Kim, D. Vak, Adv Mater 2015, 27, 1241. [32] J. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra, M. Jaysankar, C. M. De La Huerta, U. W. Paetzold, R. Gehlhaar, D. Cheyns, J Mater Chem A 2016, 4, 3792. [33] F. Mathies, T. Abzieher, A. Hochstuhl, K. Glaser, A. Colsmann, U. W. Paetzold, G. Hernandez-Sosa, U. Lemmer, A. Quintilla, J Mater Chem A 2016, 4, 19207. [34] S. Akin, N. Arora, S. M. Zakeeruddin, M. Graetzel, R. H. Friend, M. I. Dar, Adv Energy Mater 2020, 10, 1903090. [35] A. M. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, Chem Mater 2015, 27, 3397. [36] a) B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, Scientific reports 2016, 6, 1; b) Y.-C. Chen, W.-J. Lin, C.-C. Chiu, R. Juwita, H.-H. G. Tsai, The Journal of Physical Chemistry C 2020, 124, 14521; c) E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. Qi, Energy & environmental science 2016, 9, 3406; d) A. Latini, G. Gigli, A. Ciccioli, Sustain Energ Fuels 2017, 1, 1351. [37] a) S. Ito, S. Tanaka, K. Manabe, H. Nishino, The Journal of Physical Chemistry C 2014, 118, 16995; b) G. Niu, X. Guo, L. Wang, J Mater Chem A 2015, 3, 8970. [38] A. Mahapatra, D. Prochowicz, M. M. Tavakoli, S. Trivedi, P. Kumar, P. Yadav, J Mater Chem A 2020, 8, 27. [39] a) P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K. Y. Jen, Adv Mater 2014, 26, 3748; b) F. Cai, Y. Yan, J. Yao, P. Wang, H. Wang, R. S. Gurney, D. Liu, T. Wang, Adv Funct Mater 2018, 28, 1801985; c) J. Li, X. Hua, F. Gao, X. Ren, C. Zhang, Y. Han, Y. Li, B. Shi, S. F. Liu, J Energy Chem 2022, 66, 1; d) M. M. Tavakoli, P. Yadav, D. Prochowicz, M. Sponseller, A. Osherov, V. Bulović, J. Kong, Adv Energy Mater 2019, 9, 1803587. [40] a) N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, Acs Nano 2014, 8, 9815; b) Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat Commun 2014, 5, 5784; c) X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat Energy 2017, 2, 1. [41] D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. F. Liu, R. P. Chang, Energy & Environmental Science 2016, 9, 3071. [42] C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha, C. Li, G. Yang, F. Yao, X. Zheng, R. J. Ellingson, Nano Energy 2019, 61, 141. [43] Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, Adv Mater 2017, 29, 1604545. [44] a) X. Liu, J. Wu, Y. Yang, T. Wu, Q. Guo, J Power Sources 2018, 399, 144; b) R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, Z.-K. Wang, Joule 2019, 3, 1464. [45] a) M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, Nature 2018, 555, 497; b) Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, A. Ho‐Baillie, S. Huang, M. A. Green, J. Seidel, Adv Energy Mater 2016, 6, 1502104; c) Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Energy & Environmental Science 2017, 10, 516. [46] a) S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, Nature 2019, 571, 245; b) Q. Wu, W. Zhou, Q. Liu, P. Zhou, T. Chen, Y. Lu, Q. Qiao, S. Yang, Acs Appl Mater Inter 2016, 8, 34464. [47] M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, Joule 2019, 3, 2179. [48] B. w. Park, S. I. Seok, Adv Mater 2019, 31, 1805337. [49] F. Wang, W. Geng, Y. Zhou, H. H. Fang, C. J. Tong, M. A. Loi, L. M. Liu, N. Zhao, Adv Mater 2016, 28, 9986. [50] S.-H. Lee, S. Jeong, S. Seo, H. Shin, C. Ma, N.-G. Park, ACS Energy Letters 2021, 6, 1612. [51] X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, Nat Energy 2020, 5, 131. [52] S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J Am Chem Soc 2019, 141, 5781. [53] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nature Photonics 2019, 13, 460. [54] C. T. Lin, J. Lee, J. Kim, T. J. Macdonald, J. Ngiam, B. Xu, M. Daboczi, W. Xu, S. Pont, B. Park, Adv Funct Mater 2020, 30, 1906763. [55] a) C. Fu, Z. Gu, Y. Tang, Q. Xiao, S. Zhang, Y. Zhang, Y. Song, Angewandte Chemie 2022, 134, e202117067; b) F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin, S.-H. Jang, J Am Chem Soc 2020, 142, 20134; c) S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, J Mater Chem A 2020, 8, 12201; d) F. Zhang, D. Bi, N. Pellet, C. Xiao, Z. Li, J. J. Berry, S. M. Zakeeruddin, K. Zhu, M. Grätzel, Energy & Environmental Science 2018, 11, 3480. [56] G. Grancini, V. D''Innocenzo, E. R. Dohner, N. Martino, A. S. Kandada, E. Mosconi, F. De Angelis, H. I. Karunadasa, E. T. Hoke, A. Petrozza, Chemical science 2015, 6, 7305. [57] a) Q. He, M. Worku, L. Xu, C. Zhou, S. Lteif, J. B. Schlenoff, B. Ma, J Mater Chem A 2020, 8, 2039; b) M. G. Mohamed, C.-C. Lee, A. F. EL-Mahdy, J. Lüder, M.-H. Yu, Z. Li, Z. Zhu, C.-C. Chueh, S.-W. Kuo, J Mater Chem A 2020, 8, 11448; c) M.-H. Yu, P.-C. Han, C.-C. Lee, I.-C. Ni, Z. Zhu, E. Z. Kurmaev, S. Furukawa, K. C.-W. Wu, C.-C. Chueh, J Mater Chem C 2022, 10, 14542. [58] a) W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen, J. P. C. Baena, A. Hagfeldt, M. Graetzel, Energy & Environmental Science 2018, 11, 151; b) F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang, L. Han, Energy & Environmental Science 2017, 10, 1942. [59] a) D. Zhao, M. Sexton, H. Y. Park, G. Baure, J. C. Nino, F. So, Adv Energy Mater 2015, 5, 1401855; b) X. Zheng, B. Chen, M. Yang, C. Wu, B. Orler, R. B. Moore, K. Zhu, S. Priya, ACS Energy Letters 2016, 1, 424. [60] J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C. Chueh, H.-L. Yip, Z. Zhu, A. K. Jen, Nat Commun 2020, 11, 177. [61] V. M. Le Corre, E. A. Duijnstee, O. El Tambouli, J. M. Ball, H. J. Snaith, J. Lim, L. J. A. Koster, ACS energy letters 2021, 6, 1087. [62] J. Huang, S. Tan, P. D. Lund, H. Zhou, Energy & Environmental Science 2017, 10, 2284. [63] J. A. Christians, P. A. Miranda Herrera, P. V. Kamat, J Am Chem Soc 2015, 137, 1530. [64] Z. Zhu, V. G. Hadjiev, Y. Rong, R. Guo, B. Cao, Z. Tang, F. Qin, Y. Li, Y. Wang, F. Hao, Chem Mater 2016, 28, 7385. [65] M. Shirayama, M. Kato, T. Miyadera, T. Sugita, T. Fujiseki, S. Hara, H. Kadowaki, D. Murata, M. Chikamatsu, H. Fujiwara, Journal of Applied Physics 2016, 119, 115501. [66] H. S. Kim, J. Y. Seo, N. G. Park, Chemsuschem 2016, 9, 2528. [67] Y. Li, X. Xu, C. Wang, C. Wang, F. Xie, J. Yang, Y. Gao, The Journal of Physical Chemistry C 2015, 119, 23996. [68] C. Rocks, V. Svrcek, P. Maguire, D. Mariotti, J Mater Chem C 2017, 5, 902. [69] a) G.-H. Kim, H. Jang, Y. J. Yoon, J. Jeong, S. Y. Park, B. Walker, I.-Y. Jeon, Y. Jo, H. Yoon, M. Kim, Nano letters 2017, 17, 6385; b) E. Yoon, K. Y. Jang, J. Park, T. W. Lee, Adv Mater Interfaces 2021, 8, 2001712. [70] a) G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. DeQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, Acs Nano 2015, 9, 9380; b) X. Gong, M. Li, X. B. Shi, H. Ma, Z. K. Wang, L. S. Liao, Adv Funct Mater 2015, 25, 6671; c) A. Solanki, S. S. Lim, S. Mhaisalkar, T. C. Sum, Acs Appl Mater Inter 2019, 11, 25474. [71] J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Appl Phys Lett 2014, 105. [72] a) M. K. Gangishetty, R. W. Scott, T. L. Kelly, Nanoscale 2016, 8, 6300; b) B. Wang, Z.-G. Zhang, S. Ye, H. Rao, Z. Bian, C. Huang, Y. Li, J Mater Chem A 2016, 4, 17267. [73] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D''Haen, L. D''Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, Adv Energy Mater 2015, 5, 1500477. [74] H. Wang, Z. Wang, Z. Yang, Y. Xu, Y. Ding, L. Tan, C. Yi, Z. Zhang, K. Meng, G. Chen, Adv Mater 2020, 32, 2000865. [75] Y. Chen, Q. Meng, Y. Xiao, X. Zhang, J. Sun, C. B. Han, H. Gao, Y. Zhang, Y. Lu, H. Yan, Acs Appl Mater Inter 2019, 11, 44101. [76] L. Xie, J. Chen, P. Vashishtha, X. Zhao, G. S. Shin, S. G. Mhaisalkar, N.-G. Park, ACS Energy Letters 2019, 4, 2192. [77] J. W. Lee, N. G. Park, Adv Energy Mater 2020, 10, 1903249. [78] a) J. Chen, D. Lee, N.-G. Park, Acs Appl Mater Inter 2017, 9, 36338; b) C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kießling, A. Köhler, Y. Vaynzof, S. Huettner, Adv Mater 2016, 28, 2446; c) Y. Yuan, J. Huang, Accounts of chemical research 2016, 49, 286. [79] a) J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Energy & Environmental Science 2015, 8, 2118; b) C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh, M. S. Islam, Nat Commun 2015, 6, 7497; c) W.-J. Yin, T. Shi, Y. Yan, Appl Phys Lett 2014, 104, 063903. [80] Y. Yuan, Q. Wang, Y. Shao, H. Lu, T. Li, A. Gruverman, J. Huang, Adv Energy Mater 2016, 6, 1501803. [81] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, Science 2017, 356, 1376. [82] a) Z. Liu, J. Hu, H. Jiao, L. Li, G. Zheng, Y. Chen, Y. Huang, Q. Zhang, C. Shen, Q. Chen, Adv Mater 2017, 29, 1606774; b) S. Rahimnejad, A. Kovalenko, S. M. Forés, C. Aranda, A. Guerrero, ChemPhysChem 2016, 17, 2795. [83] H.-S. Kim, A. Hagfeldt, N.-G. Park, Chem Commun 2019, 55, 1192. [84] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476. [85] L. Duan, A. Uddin, Materials Chemistry Frontiers 2022, 6, 400. [86] H. Lu, A. Krishna, S. M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Iscience 2020, 23, 101359. [87] X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu, C. Xiao, D. Gao, J. B. Patel, D. Kuciauskas, A. Magomedov, Nat Energy 2023, 8, 462. [88] S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Science 2018, 362, 449. [89] F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu, S. Zhang, T. Wang, C. Tao, G. Fang, Adv Mater 2021, 33, 2007126. [90] S. Y. Kim, S. J. Cho, S. E. Byeon, X. He, H. J. Yoon, Adv Energy Mater 2020, 10, 2002606. [91] K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K.-Y. Jen, Acs Nano 2014, 8, 12701. [92] F. Ali, C. Roldán‐Carmona, M. Sohail, M. K. Nazeeruddin, Adv Energy Mater 2020, 10, 2002989. [93] A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Márquez, E. Köhnen, E. Kasparavičius, Energy & Environmental Science 2019, 12, 3356. [94] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, Science 2020, 370, 1300. [95] I. Levine, A. Al-Ashouri, A. Musiienko, H. Hempel, A. Magomedov, A. Drevilkauskaite, V. Getautis, D. Menzel, K. Hinrichs, T. Unold, Joule 2021, 5, 2915. [96] P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger, D. Yoo, F. Lang, M. Grischek, B. Li, J. Li, Nature Nanotechnology 2022, 1. [97] M. Taddei, J. A. Smith, B. M. Gallant, S. Zhou, R. J. Westbrook, Y. Shi, J. Wang, J. N. Drysdale, D. P. McCarthy, S. Barlow, ACS Energy Letters 2022, 7, 4265. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91643 | - |
| dc.description.abstract | 近年來,鈣鈦礦太陽能電池 (PVSCs) 因其高效率、易製備、溶液相容性佳等優勢,成為備受矚目的研究焦點之一。至今,已認證元件之光電轉換效率(PCE)達到25.7%,接近矽太陽能電池效率的水平。研究團隊使用各種方法嘗試更進一步提升PVSCs PCE,而添加劑工程正是其中一種主要的研究方法,用於鈍化鈣鈦礦晶體或表面缺陷、調節結晶過程、並優化鈣鈦礦薄膜的型態。透過適當的添加劑工程,PVSCs更進一步提升其效率及穩定性。
在第二章中,我們詳細討論了苯已胺碘化物(PEA+)和苯已胺(PEA)添加劑的差異。PEA+和PEA是兩種常見且具代表性的添加劑,然而,由於它們的結構相似,經常引起混淆且缺乏比較。因此我們透過比較銨基添加劑PEA+和胺基添加劑PEA,討論銨基及胺基添加劑對於效率及穩定性的差異。首先我們通過基本表面分析方法討論添加劑對於鈣鈦礦的作用及優勢。接著,我們在不同條件下對元件進行穩定性測試,包括低相對濕度、高相對溼度、加熱條件及光照測試。從實驗結果得知,由於PEA具有路易斯鹼特性,對於鈣鈦礦有更有效的鈍化作用。此外,PEA能夠有效防止水侵入、更好的熱穩定性及抑制碘離子遷移,進而提高元件效率及穩定性。 在第三章中,我們提出了關於實驗室未來的一些可能研究方向,包括鈣鈦礦組成工程以及自組裝單層膜的引入。鈣鈦礦組成工程在近年來經常被用於PVSCs,透過調節陽離子和陰離子的組成,實現高效率及穩定的PVSCs。自組裝單層膜則是最新研究的焦點之一,透過自組裝單層膜的引入,當作空穴傳輸層,獲得更好的鈣鈦礦層表面型態、優化層與層之間的能帶對齊、並有效的減少界面電荷再復合,進一步優化PVSCs的效率及穩定性。 | zh_TW |
| dc.description.abstract | Perovskite solar cells (PVSCs) have gained significant attention as promising photovoltaic devices due to their high efficiency, solution-compatible processability, ease of manufacture, and low cost [1]. At present, their certified power conversion efficiency (PCE) has reached 25.7%, approaching the value of silicon-based solar cells [2]. For PVSCs, additive engineering has become a prevailing strategy to passivate bulk or surface perovskite defects, modulate crystallization processes, and optimize the morphology of perovskite films. These improvements derive impressively high performance and stable PVSCs.
In recent years, phenethylammonium iodide (PEA+) and phenethylamine (PEA) are two common and representative additives used to enhance the performance of PVSCs [3]. However, ammonium- and amine-based additives are often confused due to their structural similarities. Herein, in Chapter 2, we discuss in detail the difference between PEA+ and PEA additives, including photovoltaic performance, optical properties, electrical properties, and device stability. We first elucidate the role of additives and their benefits through several basic surface analyses such as XRD, SEM, UV, and so on. In the next part, we aged the devices under different conditions, including low relative humidity (RH40%), high relative humidity (RH70%), heated conditions at 90℃, and light illumination. The results show that PEA passivates iodide vacancies and undercoordinated Pb owing to its Lewis base characteristic. Also, PEA better prevents water invasion, enhances thermal resistance, and inhibits iodide ion migration, thus enhancing PCE and stability. As a result, PEA increases PCE by more than 15% to reach a value of > 21%. More important, the unencapsulated PEA-based device maintained 95.1% and 94.4% of their initial PCE values after storing in an N2 environment for 5000 hours and aging at RH 20% ± 5% at RT for 600 hours, respectively. In Chapter 3, we proposed some possible future works in our lab, including compositional engineering and SAM introduction. Compositional engineering is frequently researched in these years to realize high-performance and stable PVSCs by tuning the composition of cations such as MA+, FA+, and Cs+ and anions such as I-, Br-, and Cl-. By the mixed cation and anion strategy, we can fabricate PVSCs with a bandgap that approaches the theoretical Shockley-Queisser limit and stabilize the α-phase FAPbI3 perovskite. In regard to SAMs, significant improvements in surface morphology, energy band alignment, as well as reduced interfacial charge recombination can be observed after introducing SAMs as HSCs, leading to optimized PCE and stability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:21:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-20T16:21:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents vi Table Captions ix Figure Captions x Chapter 1: Introduction 1 1.1 Introduction to Photovoltaics 1 1.1.1 Background 1 1.1.2 Working Principle 3 1.1.3 Photovoltaic parameters 5 1.2 Perovskite Solar Cells (PVSCs) 6 1.2.1 Introduction 6 1.2.2 PVSCs Configuration 8 1.2.3 Deposition of PVSCs 11 1.2.4 Challenges : Stability issue 14 1.3 Background Research Overview : Additive Engineering 18 1.3.1 Additive Manufacturing Techniques 18 1.3.2 Common Additives Strategies 19 Figures 21 Tables 30 Chapter 2: Unraveling the Effects of Ammonium/Amine-based Additives on the Performance and Stability of Inverted Perovskite Solar Cells and Their Differences 31 2.1 Introduction 31 2.2 Experimental Section 35 2.2.1 Materials 35 2.2.2 Precursor solution preparation 36 2.2.3 Device fabrication 36 2.2.4 Characterizations 37 2.3 Result and Discussion 39 2.3.1 Photovoltaic Performance and Characterization of PEA+/PEA additives 39 2.3.2 Water stability 45 2.3.3 Thermal stability 53 2.3.4 Ion migration 56 2.3.5 Long-term stability 58 2.4 Conclusion 59 Figures 61 Tables 78 Chapter 3: Future work 80 3.1 Compositional Engineering 80 3.2 Self-Assembled Monolayer (SAM) 83 Figures 88 Chapter 4: Conclusion 94 Reference 96 | - |
| dc.language.iso | en | - |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 反式鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 三碘合鉛酸甲基銨 | zh_TW |
| dc.subject | 添加劑工程 | zh_TW |
| dc.subject | 穩定性 | zh_TW |
| dc.subject | 銨類添加劑 | zh_TW |
| dc.subject | 胺類添加劑 | zh_TW |
| dc.subject | perovskite solar cells | en |
| dc.subject | amine-based additives | en |
| dc.subject | ammonium amine-based additives | en |
| dc.subject | stability | en |
| dc.subject | additives engineering | en |
| dc.subject | MAPbI3 | en |
| dc.subject | inverted perovskite solar cells | en |
| dc.title | 銨類與胺類添加劑對於反式鈣鈦礦太陽能電池效率及穩定性的影響及差異 | zh_TW |
| dc.title | Unraveling the Effects of Ammonium/Amine-based Additives on the Performance and Stability of Inverted Perovskite Solar Cells and Their Differences | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 衛子健;陳志平;李坤穆;林玠廷 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Chien Wei;Chih-Ping Chen;Kun-Mu Lee;Chieh-Ting Lin | en |
| dc.subject.keyword | 鈣鈦礦太陽能電池,反式鈣鈦礦太陽能電池,三碘合鉛酸甲基銨,添加劑工程,穩定性,銨類添加劑,胺類添加劑, | zh_TW |
| dc.subject.keyword | perovskite solar cells,inverted perovskite solar cells,MAPbI3,additives engineering,stability,ammonium amine-based additives,amine-based additives, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202400098 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-24 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-01-15 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
