Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91642
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor闕居振zh_TW
dc.contributor.advisorChu-Chen Chuehen
dc.contributor.author闕稟翔zh_TW
dc.contributor.authorPin-Hsiang Chuehen
dc.date.accessioned2024-02-20T16:20:54Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2023-
dc.date.submitted2024-01-22-
dc.identifier.citation(1) Rasmussen, S. C. Conjugated and conducting organic polymers: the first 150 years. ChemPlusChem 2020, 85, 1412-1429.
(2) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. ChemComm 1977, 578-580.
(3) Burroughes, J. H.; Bradley, D. D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539-541.
(4) Yamamoto, T.; Sanechika, K.; Yamamoto, A. Preparation of thermostable and electric‐conducting poly (2, 5‐thienylene). J. Polym. Sci., Polym. Lett. Ed 1980, 18, 9-12.
(5) Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 2018, 4, 2748-2785.
(6) Knopfmacher, O.; Hammock, M. L.; Appleton, A. L.; Schwartz, G.; Mei, J.; Lei, T.; Pei, J.; Bao, Z. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 2014, 5, 2954.
(7) Shi, L.; Guo, Y.; Hu, W.; Liu, Y. Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Mater. Chem. Front. 2017, 1, 2423-2456.
(8) Tseng, Y.-C.; Kato, A.; Chang, J.-F.; Chen, W.-C.; Higashihara, T.; Chueh, C.-C. Impact of the segment ratio on a donor–acceptor all-conjugated block copolymer in single-component organic solar cells. Nanoscale 2022, 14, 5472-5481.
(9) Chang, J.-F.; Hsieh, C.-T.; Su, L.-Y.; Chueh, C.-C. Reducing the side-chain influences of isoindigo-based polymer donors by backbone fluorination in photovoltaic applications. Dyes Pigm. 2022, 199, 110038.
(10) Cui, C.; Li, Y. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy Environ. Sci. 2019, 12, 3225-3246.
(11) Chen, C.-H.; Lin, Y.-C.; Yang, Y.-F.; Chiang, Y.-C.; Li, Z.; Yip, H.-L.; Chen, W.-C.; Chueh, C.-C. Improving the performance of all-inorganic perovskite light-emitting diodes through using polymeric interlayers with a pendant design. Mater. Chem. Front. 2021, 5, 7199-7207.
(12) Liu, Y.; Hua, L.; Yan, S.; Ren, Z. Halogenated π-conjugated polymeric emitters with thermally activated delayed fluorescence for highly efficient polymer light emitting diodes. Nano Energy 2020, 73, 104800.
(13) Xu, Y.; Cui, Y.; Yao, H.; Zhang, T.; Zhang, J.; Ma, L.; Wang, J.; Wei, Z.; Hou, J. A new conjugated polymer that enables the integration of photovoltaic and light‐emitting functions in one device. Adv. Mater. 2021, 33, 2101090.
(14) Li, W.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. Diketopyrrolopyrrole polymers for organic solar cells. Acc. Chem. Res. 2016, 49, 78-85.
(15) Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z. Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field‐Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Adv. Mater. 2016, 28, 943-950.
(16) Jung, J. W.; Liu, F.; Russell, T. P.; Jo, W. H. A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. Energy Environ. Sci. 2012, 5, 6857-6861.
(17) Li, Y.; Sonar, P.; Murphy, L.; Hong, W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 2013, 6, 1684-1710.
(18) Marszalek, T.; Li, M.; Pisula, W. Design directed self-assembly of donor–acceptor polymers. ChemComm 2016, 52, 10938-10947.
(19) Tsao, H. N.; Cho, D. M.; Park, I.; Hansen, M. R.; Mavrinskiy, A.; Yoon, D. Y.; Graf, R.; Pisula, W.; Spiess, H. W.; Müllen, K. Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 2011, 133, 2605-2612.
(20) Shi, D.; Liu, Z.; Ma, J.; Zhao, Z.; Tan, L.; Lin, G.; Tian, J.; Zhang, X.; Zhang, G.; Zhang, D. Half‐Fused Diketopyrrolopyrrole‐Based Conjugated Donor–Acceptor Polymer for Ambipolar Field‐Effect Transistors. Adv. Funct. Mater. 2020, 30, 1910235.
(21) Kang, I.; Yun, H.-J.; Chung, D. S.; Kwon, S.-K.; Kim, Y.-H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 2013, 135, 14896-14899.
(22) Wang, Z.; Liu, Z.; Ning, L.; Xiao, M.; Yi, Y.; Cai, Z.; Sadhanala, A.; Zhang, G.; Chen, W.; Sirringhaus, H. Charge mobility enhancement for conjugated DPP-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit. Chem. Mater. 2018, 30, 3090-3100.
(23) Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. 25th anniversary article: key points for high‐mobility organic field‐effect transistors. Adv. Mater. 2013, 25, 6158-6183.
(24) Ding, L.; Wang, Z. Y.; Wang, J. Y.; Pei, J. Organic semiconducting materials based on BDOPV: structures, properties, and applications. Chin. J. Chem. 2020, 38, 13-24.
(25) Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. A BDOPV‐based donor–acceptor polymer for high‐performance n‐type and oxygen‐doped ambipolar field‐effect transistors. Adv. Mater. 2013, 25, 6589-6593.
(26) Lei, T.; Dou, J.-H.; Cao, X.-Y.; Wang, J.-Y.; Pei, J. Electron-deficient poly (p-phenylene vinylene) provides electron mobility over 1 cm2 V–1 s–1 under ambient conditions. J. Am. Chem. Soc. 2013, 135, 12168-12171.
(27) Wang, Z.-Y.; Yao, Z.-F.; Lu, Y.; Ding, L.; Yu, Z.-D.; You, H.-Y.; Wang, X.-Y.; Zhou, Y.-Y.; Zou, L.; Wang, J.-Y. Precise tracking and modulating aggregation structures of conjugated copolymers in solutions. Polym. Chem. 2020, 11, 3716-3722.
(28) Dou, J.-H.; Zheng, Y.-Q.; Yao, Z.-F.; Yu, Z.-A.; Lei, T.; Shen, X.; Luo, X.-Y.; Sun, J.; Zhang, S.-D.; Ding, Y.-F. Fine-tuning of crystal packing and charge transport properties of BDOPV derivatives through fluorine substitution. J. Am. Chem. Soc. 2015, 137, 15947-15956.
(29) Zhang, Y.; Zou, J.; Yip, H.-L.; Chen, K.-S.; Zeigler, D. F.; Sun, Y.; Jen, A. K.-Y. Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells. Chem. Mater. 2011, 23, 2289-2291.
(30) Wu, S.; Wu, X.; Xing, W.; Sun, Y.; Zou, Y.; Xu, W.; Zhu, D. Backbone Structure Effect on the Thermoelectric Properties of IDT‐Based p‐Type Conjugated Polymers. Macromol Rapid Commun 2020, 41, 1900322.
(31) Wadsworth, A.; Chen, H.; Thorley, K. J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T. D.; Sirringhaus, H. Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors. J. Am. Chem. Soc. 2019, 142, 652-664.
(32) Liang, C.; Wang, H. Indacenodithiophene-based DA conjugated polymers for application in polymer solar cells. Org. Electron. 2017, 50, 443-457.
(33) Scharber, M. C.; Sariciftci, N. S. Low band gap conjugated semiconducting polymers. Adv. Mater. Technol. 2021, 6, 2000857.
(34) Kim, Y.; Long, D. X.; Lee, J.; Kim, G.; Shin, T. J.; Nam, K.-W.; Noh, Y.-Y.; Yang, C. A balanced face-on to edge-on texture ratio in naphthalene diimide-based polymers with hybrid siloxane chains directs highly efficient electron transport. Macromolecules 2015, 48, 5179-5187.
(35) Chen, M. S.; Lee, O. P.; Niskala, J. R.; Yiu, A. T.; Tassone, C. J.; Schmidt, K.; Beaujuge, P. M.; Onishi, S. S.; Toney, M. F.; Zettl, A. Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 2013, 135, 19229-19236.
(36) Li, M.; An, C.; Pisula, W.; Müllen, K. Cyclopentadithiophene–benzothiadiazole donor–acceptor polymers as prototypical semiconductors for high-performance field-effect transistors. Acc. Chem. Res. 2018, 51, 1196-1205.
(37) Mei, J.; Bao, Z. Side Chain Engineering in Solution-Processable Conjugated Polymers. Chem. Mater. 2014, 26, 604-615. DOI: 10.1021/cm4020805.
(38) Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C. Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable field-effect transistors. Macromolecules 2016, 49, 8540-8548.
(39) Liu, X.; Nian, L.; Gao, K.; Zhang, L.; Qing, L.; Wang, Z.; Ying, L.; Xie, Z.; Ma, Y.; Cao, Y. Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE> 10% in polymer solar cells. J. Mater. Chem. A. 2017, 5, 17619-17631.
(40) Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 2011, 133, 20130-20133.
(41) Yuan, Y.; Zhao, F.; Ding, Y.; Zhang, G.; Wang, X.; Qiu, L. Asymmetric Hybrid Siloxane Side Chains for Enhanced Mobility and Mechanical Properties of Diketopyrrolopyrrole‐Based Polymers. Macromol Rapid Commun 2022, 43, 2100636.
(42) Yen, H.-C.; Lin, Y.-C.; Chen, W.-C. Modulation of the hydrophilicity on asymmetric side chains of isoindigo-based polymers for improving carrier mobility–stretchability properties. Macromolecules 2021, 54, 1665-1676.
(43) Mun, J.; Ochiai, Y.; Wang, W.; Zheng, Y.; Zheng, Y.-Q.; Wu, H.-C.; Matsuhisa, N.; Higashihara, T.; Tok, J. B.-H.; Yun, Y. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 2021, 12, 3572.
(44) Lin, Y.-C.; Chen, F.-H.; Chiang, Y.-C.; Chueh, C.-C.; Chen, W.-C. Asymmetric side-chain engineering of isoindigo-based polymers for improved stretchability and applications in field-effect transistors. ACS Appl. Mater. Interfaces 2019, 11, 34158-34170.
(45) Xue, G.; Zhao, X.; Qu, G.; Xu, T.; Gumyusenge, A.; Zhang, Z.; Zhao, Y.; Diao, Y.; Li, H.; Mei, J. Symmetry breaking in side chains leading to mixed orientations and improved charge transport in isoindigo-alt-bithiophene based polymer thin films. ACS Appl. Mater. Interfaces 2017, 9, 25426-25433.
(46) Liu, X.; He, B.; Garzón‐Ruiz, A.; Navarro, A.; Chen, T. L.; Kolaczkowski, M. A.; Feng, S.; Zhang, L.; Anderson, C. A.; Chen, J. Unraveling the main chain and side chain effects on thin film morphology and charge transport in quinoidal conjugated polymers. Adv. Funct. Mater. 2018, 28, 1801874.
(47) Holliday, S.; Donaghey, J. E.; McCulloch, I. Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem. Mater. 2014, 26, 647-663.
(48) Liu, Y.; Song, J.; Bo, Z. Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. ChemComm 2021, 57, 302-314.
(49) Lee, J.; Ko, H.; Song, E.; Kim, H. G.; Cho, K. Naphthodithiophene-based conjugated polymer with linear, planar backbone conformation and strong intermolecular packing for efficient organic solar cells. ACS Appl. Mater. Interfaces 2015, 7, 21159-21169.
(50) Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 2017, 117, 10291-10318.
(51) Lei, T.; Xia, X.; Wang, J.-Y.; Liu, C.-J.; Pei, J. “Conformation locked” strong electron-deficient poly (p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: synthesis, properties, and effects of fluorine substitution position. J. Am. Chem. Soc. 2014, 136, 2135-2141.
(52) Yu, Z. D.; Lu, Y.; Wang, J. Y.; Pei, J. Conformation control of conjugated polymers. Chem. Eur. j 2020, 26, 16194-16205.
(53) Zhang, L.; Wu, J.; Li, D.; Li, W.; Meng, Q.; Bo, Z. Ladder-like conjugated polymers used as hole-transporting materials for high-efficiency perovskite solar cells. J. Mater. Chem. A. 2019, 7, 14473-14477.
(54) Chen, M.; Yan, L.; Zhao, Y.; Murtaza, I.; Meng, H.; Huang, W. Anthracene-based semiconductors for organic field-effect transistors. J. Mater. Chem. C 2018, 6, 7416-7444.
(55) Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 2007, 107, 1296-1323.
(56) Zhang, X.; Richter, L. J.; DeLongchamp, D. M.; Kline, R. J.; Hammond, M. R.; McCulloch, I.; Heeney, M.; Ashraf, R. S.; Smith, J. N.; Anthopoulos, T. D. Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. J. Am. Chem. Soc. 2011, 133, 15073-15084.
(57) Más-Montoya, M.; Janssen, R. A. J. The Effect of H- and J-Aggregation on the Photophysical and Photovoltaic Properties of Small Thiophene-Pyridine-DPP Molecules for Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2017, 27, 1605779. DOI: 10.1002/adfm.201605779.
(58) Kim, S. o.; An, T. K.; Chen, J.; Kang, I.; Kang, S. H.; Chung, D. S.; Park, C. E.; Kim, Y. H.; Kwon, S. K. H‐aggregation strategy in the design of molecular semiconductors for highly reliable organic thin film transistors. Adv. Funct. Mater. 2011, 21, 1616-1623.
(59) Jiang, H.; Pan, F.; Zhang, L.; Zhou, X.; Wang, Z.; Nian, Y.; Liu, C.; Tang, W.; Ma, Q.; Ni, Z. Impact of the siloxane-terminated side chain on photovoltaic performances of the dithienylbenzodithiophene–difluorobenzotriazole-based wide band gap polymer donor in non-fullerene polymer solar cells. ACS Appl. Mater. Interfaces 2019, 11, 29094-29104.
(60) Qu, G.; Park, K. S.; Kafle, P.; Zhang, F.; Kwok, J. J.; Patel, B. B.; Smilgies, D.-M.; Thomsen, L.; McNeill, C. R.; Diao, Y. Lyotropic liquid crystalline mesophase governs interfacial molecular orientation of conjugated polymer thin films. Chem. Mater. 2020, 32, 6043-6054.
(61) Tang, Z.; Xu, X.; Li, R.; Yu, L.; Meng, L.; Wang, Y.; Li, Y.; Peng, Q. Asymmetric siloxane functional side chains enable high-performance donor copolymers for photovoltaic applications. ACS Appl. Mater. Interfaces 2020, 12, 17760-17768.
(62) Zhang, S.; Alesadi, A.; Mason, G. T.; Chen, K. L.; Freychet, G.; Galuska, L.; Cheng, Y. H.; St. Onge, P. B. J.; Ocheje, M. U.; Ma, G. Molecular Origin of Strain‐Induced Chain Alignment in PDPP‐Based Semiconducting Polymeric Thin Films. Adv. Funct. Mater. 2021, 31, 2100161.
(63) Zhang, G.; Dai, Y.; Liu, Y.; Liu, J.; Lu, H.; Qiu, L.; Cho, K. Facile green synthesis of isoindigo-based conjugated polymers using aldol polycondensation. Polym. Chem. 2017, 8, 3448-3456.
(64) Huang, Y.-W.; Lin, Y.-C.; Li, J.-S.; Chen, W.-C.; Chueh, C.-C. Investigating the backbone conformation and configuration effects for donor–acceptor conjugated polymers with ladder-type structures synthesized through Aldol polycondensation. J. Mater. Chem. C 2021, 9, 9473-9483.
(65) Onwubiko, A.; Yue, W.; Jellett, C.; Xiao, M.; Chen, H.-Y.; Ravva, M. K.; Hanifi, D. A.; Knall, A.-C.; Purushothaman, B.; Nikolka, M. Fused electron deficient semiconducting polymers for air stable electron transport. Nat. Commun. 2018, 9, 416.
(66) Wang, Y.; Zeglio, E.; Wang, L.; Cong, S.; Zhu, G.; Liao, H.; Duan, J.; Zhou, Y.; Li, Z.; Mawad, D. Green Synthesis of Lactone‐Based Conjugated Polymers for n‐Type Organic Electrochemical Transistors. Adv. Funct. Mater. 2022, 32, 2111439.
(67) Zhang, W.; Shi, K.; Lai, J.; Zhou, Y.; Wei, X.; Che, Q.; Wei, J.; Wang, L.; Yu, G. Record‐High Electron Mobility Exceeding 16 cm2 V− 1 s− 1 in Bisisoindigo‐Based Polymer Semiconductor with a Fully Locked Conjugated Backbone. Adv. Mater. 2023, 35, 2300145.
(68) Alsufyani, M.; Hallani, R. K.; Wang, S.; Xiao, M.; Ji, X.; Paulsen, B. D.; Xu, K.; Bristow, H.; Chen, H.; Chen, X. The effect of aromatic ring size in electron deficient semiconducting polymers for n-type organic thermoelectrics. J. Mater. Chem. C 2020, 8, 15150-15157.
(69) Guo, Z.; Lee, D.; Schaller, R. D.; Zuo, X.; Lee, B.; Luo, T.; Gao, H.; Huang, L. Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends. J. Am. Chem. Soc. 2014, 136, 10024-10032.
(70) Spano, F. C.; Silva, C. H-and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477-500.
(71) Pace, G.; Bargigia, I.; Noh, Y.-Y.; Silva, C.; Caironi, M. Intrinsically distinct hole and electron transport in conjugated polymers controlled by intra and intermolecular interactions. Nat. Commun. 2019, 10, 5226.
(72) Park, Y.; Han, S. W.; Chan, C. C.; Reid, B. P.; Taylor, R. A.; Kim, N.; Jo, Y.; Im, H.; Kim, K. S. Interplay between many body effects and Coulomb screening in the optical bandgap of atomically thin MoS 2. Nanoscale 2017, 9, 10647-10652.
(73) Lan, Z. A.; Zhang, G.; Chen, X.; Zhang, Y.; Zhang, K. A.; Wang, X. Reducing the exciton binding energy of donor–acceptor‐based conjugated polymers to promote charge‐induced reactions. Angew. Chem. Int. Ed. 2019, 58, 10236-10240.
(74) Ledwon, P.; Ovsiannikova, D.; Jarosz, T.; Gogoc, S.; Nitschke, P.; Domagala, W. Insight into the properties and redox states of n-dopable conjugated polymers based on naphtalene diimide units. Electrochimi. Acta 2019, 307, 525-535.
(75) Wang, H.; Xu, Y.; Yu, X.; Xing, R.; Liu, J.; Han, Y. Structure and morphology control in thin films of conjugated polymers for an improved charge transport. Polymers 2013, 5, 1272-1324.
(76) Wu, H. T.; Yao, Z. F.; Xu, Z.; Kong, H. K.; Wang, X. Y.; Li, Q. Y.; Wang, J. Y.; Pei, J. Controlling Solution‐State Aggregation and Solid‐State Microstructures of Conjugated Polymers by Tuning Backbone Conformation. Macromol. Rapid Commun. 2022, 43, 2200069.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91642-
dc.description.abstract共軛高分子的發現可以追溯到約五十年前發生的一個美麗的錯誤,由於計算錯誤,過量的添加劑被加入了聚乙炔聚合物中,而聚乙炔也展現出了前所未有的銀色光澤。從那時起,材料科學便進入了一個嶄新的世代。與金屬相比,共軛聚合物具有良好的溶解性、質地輕盈和可拉伸性等優勢,使得共軛高分子成為大規模溶液加工製程和可穿戴設備的首選材料。近年來,共軛高分子已在有機場效電晶體(OFETs)、有機太陽能電池(OSCs)和有機發光二極體(OLEDs)等光電領域取得許多的突破,其中,由於場效電晶體可以進一步應用於放大器及記憶體中,受到許多矚目。因此,為了滿足發展有機場效電晶體的多功能特性,科學家們付出了相當大的努力合成具有高遷移率的N型高分子材料,如:二酮吡咯並吡咯(DPP)和苯並二呋喃二酮基寡(對苯乙烯)(BDOPV)為主的共軛高分子。
除了共軛單體的創新設計外,側鏈工程也被證明能有效增加高分子的溶解度與調節其分子間距及相互作用以獲得更高的載子遷移率。有鑒於此,科學家們開始在共軛主幹上引入不對稱的側鏈設計。延續此概念,我們在DPP高分子上引入了線性烷基鏈、碳矽烷鏈和末端矽氧烷鏈,形成不同的側鏈組合。碳矽烷鏈和末端矽氧烷的組合成功地誘導出異向堆疊型態,提高了聚合物的遷移率和可拉伸性。另一方面,線性烷基鏈和矽氧烷鏈的相容性則不如前面的組合好,於是無法提供高分子理想的遷移率和可拉伸性,此結果顯示側鏈設計可調控分子間的相互作用進而影響高分子的性能。
除了側鏈工程以外,非共價鍵的形成也可調節分子間和分子內的相互作用。分子內的非共價鍵可有效地讓高分子主鏈平面化,提供更好的堆疊型態更有效地傳輸電子。我們因此設計了一系列由BDOPV單元和吲哚二硫酚(IDT)單元組成的隨機聚合共聚物,並研究其分子內的相互作用在共面性中所扮演的角色。結果顯示,由於氧原子和氫原子中的電子親和力差異,分子內的非共價鍵有效地固定了芳香族主鏈,形成了類梯形的高分子。在氧-氫吸引力的相互作用下,高分子鏈以更緊密、更牢固地方式堆疊,有利於分子間的軌域重疊和電子/電洞傳輸。相反地,BDOPV單體的旋轉角和IDT單體的剛硬結構不能夠完美地相互配合,以至於分子鏈的排列遇到障礙,證明了分子內相互作用會嚴重影響聚合物鏈的結構和構型。
zh_TW
dc.description.abstractThe discovery of conjugated polymers can be traced back to a beautiful mistake made some fifty years ago. Due to a miscalculation, an excessive amount of additive was added to polyacetylene and the polymer exhibited an unprecedented silver lustre. Since then, materials science entered a new era. The solubility, lightness and stretchability of conjugated polymers compared to metals have made them the material of choice for large-scale solution processing and wearable devices. In recent yours, conjugated polymers have made many breakthroughs in the field of optoelectronic applications such as organic field effect transistors (OFETs), organic solar cells (OSCs) and organic light-emitting diodes (OLEDs). Among these, FETs received lots of attention because they can be further used in amplifiers and memories. Therefore, in order to satisfy the need to develop the multifunctional properties of FETs, considerable efforts have been made to synthesize N-type polymers with high mobility, such as diketopyrrolopyrrole (DPP)- and benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based conjugated polymers.
In addition to innovative designs for conjugated monomers, side chain engineering has also been shown to be effective in increasing the solubility of polymers and modulating their intermolecular distances and interactions to achieve higher mobilities. In response to this, scientists have started to introduce asymmetric side chain designs on the conjugated backbone. Continuing with this concept, we herein introduce linear alkyl chain, carbosilane chain and siloxane-terminated chain to DPP polymers, forming different combinations of side chains. The combination of carbonsilane chain and siloxane-terminated chain successfully induces bimodal stacking patterns that enhance the mobility and stretchability of the polymer. On the other hand, the linear alkyl chain and siloxane chain are not as compatible as the previous combination and therefore do not provide the desired mobility and stretchability of the polymer. This result suggests that the side chain design can modulate intermolecular interactions and thus influence the properties of conjugated polymers.
In addition to side chain engineering, the formation of non-covalent bonds can also regulate inter- and intra-molecular interactions. Intramolecular non-covalent bonding can effectively planarize polymer backbones, providing better stacking patterns for more efficient electron transport. We have therefore designed a series of random copolymers consisting of BDOPV and indacenodithiophene (IDT) units and investigate the role of intramolecular interactions in coplanarity. The results show that due to the difference in electron affinity between the oxygen and hydrogen atoms, the intramolecular non-covalent bonding effectively immobilizes the aromatic backbone, forming a ladder-type polymer. Under the O-H intramolecular interaction, the polymer chains stack in a tighter and stronger manner, facilitating intermolecular orbital domain overlap and electron/hole transport. Conversely, the rotation angle of BDOPV and the rigid structure of IDT do not perfectly match each other, to the extent that the alignment of the molecular chains encounters obstacles, demonstrating that intramolecular interactions can seriously affect the structures and configurations of polymer chains.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:20:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:20:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract v
Table Captions x
Figure Captions xi
Scheme Captions xvi
Chapter 1. Introduction 1
1.1 Introduction to Organic Semiconducting Materials 1
1.2 DPP-based Conjugated Polymers 2
1.3 BDOPV-based Conjugated Polymers 2
1.4 IDT-based Conjugated Polymers 3
1.5 Interactions in Polymers 4
1.5.1 Interchain Interactions between Polymers 4
1.5.2 Intrachain Interactions in Polymers 5
1.6 Introduction of Organic Field-effect Transistors 6
1.7 Research Objectives 7
Figures 10
Chapter 2. Stretchable Diketopyrrolopyrrole-Based Conjugated Polymers with Asymmetric Sidechain Designs for Field-Effect Transistor Applications 19
2.1 Introduction 19
2.2 Experimental Section 21
2.2.1 Materials 21
2.2.2 Synthesis 21
2.2.3 FET device Fabrication 26
2.2.4 Characterization 27
2.3 Result and Discussion 28
2.3.1 Syntheses and Characterizations 28
2.3.2 Optical and electrochemical properties 30
2.3.3 Morphological characterization 31
2.3.4 Regular FET performance 34
2.3.5 Morphology characterizations of the stretched polymer films 35
2.3.6 FET performance of the stretched polymer films 38
2.4 Conclusion 40
Figures 42
Tables 55
Schemes 58
Chapter 3. Modulation of the Conformation, Segment Compatibility, and Coplanarity Conjugated Polymers by Aldol Condensation for Efficient Ambipolar Organic Field-Effect Transistors 59
3.1 Introduction 59
3.2 Experiment Section 61
3.2.1 Materials 61
3.2.2 Synthesis 61
3.2.3 FET Device Fabrication 66
3.2.4 Characterization 67
3.3 Result and Discussion 68
3.3.1 Syntheses and characterizations 68
3.3.2 Optical and Electrochemical properties 70
3.3.3 Molecular Simulation 72
3.3.4 Temperature Dependent UV absorption spectra 73
3.3.5 Morphological Characterization 74
3.3.6 Field-effect transistor device performance 75
3.4 Conclusion 77
Figures 79
Tables 92
Schemes 94
Chapter 4. Conclusion and Future work 95
References 97
-
dc.language.isoen-
dc.subject二酮吡咯並吡咯共軛高分子zh_TW
dc.subject側鏈工程zh_TW
dc.subject非對稱側鏈zh_TW
dc.subject苯苯並二呋喃二 酮基寡(對苯乙烯)高分子zh_TW
dc.subject分子內互鎖zh_TW
dc.subject場效電晶體zh_TW
dc.subjectfield-effect transistorsen
dc.subjectintramolecular interlockingen
dc.subjectBDOPV-based polymeren
dc.subjectasymmetric side chainen
dc.subjectside chain engineeringen
dc.subjectDPP-based polymeren
dc.title調節共軛聚合物的鏈間/鏈內相互作用及其對場效電晶體性能的影響zh_TW
dc.titleModulation of Interchain/Intrachain Interactions in Conjugated Polymers and Their Effects on the Performance of Field-Effect Transistorsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林彥多;李文亞;郭明裕zh_TW
dc.contributor.oralexamcommitteeYan-Duo Lin;Wen-Ya Lee;Ming-Yu Kuoen
dc.subject.keyword二酮吡咯並吡咯共軛高分子,側鏈工程,非對稱側鏈,苯苯並二呋喃二 酮基寡(對苯乙烯)高分子,分子內互鎖,場效電晶體,zh_TW
dc.subject.keywordDPP-based polymer,side chain engineering,asymmetric side chain,BDOPV-based polymer,intramolecular interlocking,field-effect transistors,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202400143-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-01-01-
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-112-1.pdf
Access limited in NTU ip range
7.26 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved