Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91638
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡璧合zh_TW
dc.contributor.advisorPi-Ho Huen
dc.contributor.author潘彥銘zh_TW
dc.contributor.authorYen-Ming Panen
dc.date.accessioned2024-02-20T16:19:48Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2023-
dc.date.submitted2023-12-27-
dc.identifier.citation[1] A. Veloso et al., "Challenges and opportunities of vertical FET devices using 3D circuit design layouts," in 2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2016: IEEE, pp. 1-3.
[2] "Int. Roadmap for Devices and Systems (IRDS), 2021.."
[3] A. I. Khan, A. Keshavarzi, and S. Datta, "The future of ferroelectric field-effect transistor technology," Nature Electronics, vol. 3, no. 10, pp. 588-597, 2020, doi: 10.1038/s41928-020-00492-7.
[4] J. Wu et al., "Adaptive circuit approaches to low-power multi-level/cell FeFET memory," in 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020: IEEE, pp. 407-413.
[5] "The Ferroelectric Company." [Online]. Available: https://ferroelectric-memory.com/technology/ferroelectric-hafnium-oxide/.
[6] T. Schenk and S. Mueller, "A new generation of memory devices enabled by ferroelectric hafnia and zirconia," in 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF), 2021: IEEE, pp. 1-11.
[7] E. Y. Tsymbal and H. Kohlstedt, "Tunneling across a ferroelectric," Science, vol. 313, no. 5784, pp. 181-183, 2006.
[8] S. Majumdar, "Back‐End CMOS Compatible and Flexible Ferroelectric Memories for Neuromorphic Computing and Adaptive Sensing," Advanced Intelligent Systems, vol. 4, no. 4, 2021, doi: 10.1002/aisy.202100175.
[9] S. Dünkel et al., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 19.7. 1-19.7. 4.
[10] H.-T. Lue, C.-J. Wu, and T.-Y. Tseng, "Device modeling of ferroelectric memory field-effect transistor (FeMFET)," IEEE transactions on electron devices, vol. 49, no. 10, pp. 1790-1798, 2002.
[11] U. Schroeder et al., "Impact of field cycling on HfO 2 based non-volatile memory devices," in 2016 46th European Solid-State Device Research Conference (ESSDERC), 2016: IEEE, pp. 364-368.
[12] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano letters, vol. 8, no. 2, pp. 405-410, 2008.
[13] S. Miller, R. Nasby, J. Schwank, M. Rodgers, and P. Dressendorfer, "Device modeling of ferroelectric capacitors," Journal of applied physics, vol. 68, no. 12, pp. 6463-6471, 1990.
[14] H.-I. Choi, M. Lee, D. Kim, W.-J. Kim, T. Song, and K. Choi, "Landau-Khalatnikov simulation for magnetoelectric coupling in CoFe2O4–BaTiO3 composites," Current Applied Physics, vol. 23, pp. 15-18, 2021.
[15] "Sentaurus TCAD, Version Q-2019.12, User Guide."
[16] "TechNews." [Online]. Available: https://technews.tw/2022/02/22/the-next-trend-feram/.
[17] Y. Kim, K. K. Min, J. Yu, D. Kwon, and B.-G. Park, "Lamination method for improved polarization-leakage current relation in HfO2-based metal/ferroelectric/insulator/semiconductor structure," Semiconductor Science and Technology, vol. 37, no. 4, p. 045001, 2022.
[18] T. Ali et al., "Impact of stack structure control and ferroelectric material optimization in novel laminate hso and hzo mfmis fefet," in 2022 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2022: IEEE, pp. 1-2.
[19] T. Ali et al., "Impact of ferroelectric wakeup on reliability of laminate based Si-doped hafnium oxide (HSO) FeFET memory cells," in 2020 IEEE International Reliability Physics Symposium (IRPS), 2020: IEEE, pp. 1-9.
[20] T. Ali et al., "A multilevel FeFET memory device based on laminated HSO and HZO ferroelectric layers for high-density storage," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019: IEEE, pp. 28.7. 1-28.7. 4.
[21] C.-Y. Liao et al., "Multibit ferroelectric FET based on nonidentical double HfZrO 2 for high-density nonvolatile memory," IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, 2021.
[22] G. Choe and S. Yu, "Variability analysis for ferroelectric field-effect transistors," in 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2021: IEEE, pp. 1-3.
[23] K. Ni, A. Gupta, O. Prakash, S. Thomann, X. S. Hu, and H. Amrouch, "Impact of extrinsic variation sources on the device-to-device variation in ferroelectric FET," in 2020 IEEE International Reliability Physics Symposium (IRPS), 2020: IEEE, pp. 1-5.
[24] Y.-S. Liu and P. Su, "Impact of trapped-charge variations on scaled ferroelectric FET nonvolatile memories," IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1639-1643, 2021.
[25] Y.-S. Liu and P. Su, "Variability analysis for ferroelectric FET nonvolatile memories considering random ferroelectric-dielectric phase distribution," IEEE Electron Device Letters, vol. 41, no. 3, pp. 369-372, 2020.
[26] C. Garg et al., "Impact of random spatial fluctuation in non-uniform crystalline phases on the device variation of ferroelectric FET," IEEE Electron Device Letters, vol. 42, no. 8, pp. 1160-1163, 2021.
[27] M. Lederer et al., "Ferroelectric field effect transistors as a synapse for neuromorphic application," IEEE Transactions on Electron Devices, vol. 68, no. 5, pp. 2295-2300, 2021.
[28] M. Jerry et al., "Ferroelectric FET analog synapse for acceleration of deep neural network training," in 2017 IEEE international electron devices meeting (IEDM), 2017: IEEE, pp. 6.2. 1-6.2. 4.
[29] P.-Y. Chen, X. Peng, and S. Yu, "NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 6.1. 1-6.1. 4.
[30] "DNN+NeuroSim Framework V2.0, User Manual."
[31] M. Jerry et al., "A ferroelectric field effect transistor based synaptic weight cell," Journal of Physics D: Applied Physics, vol. 51, no. 43, p. 434001, 2018.
[32] K. Ni et al., "Critical role of interlayer in Hf 0.5 Zr 0.5 O 2 ferroelectric FET nonvolatile memory performance," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, 2018.
[33] J. Xiang, W. H. Chang, T. Saraya, T. Hiramoto, T. Irisawa, and M. Kobayashi, "Ultrathin MoS₂-Channel FeFET Memory With Enhanced Ferroelectricity in HfZrO₂ and Body-Potential Control," IEEE Journal of the Electron Devices Society, vol. 10, pp. 72-77, 2021.
[34] J. Xian, W. H. Chang, T. Saraya, T. Hiramoto, T. Irisawa, and M. Kobayashi, "Experimental demonstration of HfO2-based ferroelectric FET with MoS2 channel for high-density and low-power memory application," in 2021 Silicon Nanoelectronics Workshop (SNW), 2021: IEEE, pp. 1-2.
[35] Y.-M. Pan, C.-K. Lu, and V. P.-H. Hu, "Linearity Analysis of FeFET Synaptic Devices considering Random Phase Distributions," in 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2023: IEEE, pp. 1-3.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91638-
dc.description.abstract鐵電場效電晶體(ferroelectric field-effect transistor, FeFET)作為新興記憶體,具有非揮發性,與CMOS製程相容等優點,並且也可以透過鐵電材料的特性達到多位元儲存的功能,因此被認為極有潛力運用於記憶體內運算,做為深度神經網路裡面的突觸,並展現可調變權重特性。然而,鐵電場效電晶體因為鐵電材料的影響導致變異度變成了非常重要的課題,本篇論文考慮隨機相位分布對於層壓型(laminated)鐵電場效電晶體變異度之影響,透過MATLAB產生隨機分布的鐵電-介電相晶粒,並套用至TCAD軟體內進行不同鐵電百分比的模擬,分析在不同鐵電百分比之下,層壓型鐵電場效電晶體與傳統單層鐵電場效電晶體的變異度差異。
鐵電場效電晶體可應用於記憶體元件和突觸元件,本篇論文首先研究鐵電場效電晶體在記憶體性能的表現,記憶體視窗(memory window, MW)為鐵電記憶體重要的電性指標,結果顯示在元件通道尺寸為80 nm × 80 nm時,相較單層鐵電場效電晶體,層壓型鐵電場效電晶體在鐵電百分比較低時 (50%和62.5%),可以分別改善15.4%和41%的記憶體視窗變異度;而在鐵電百分比較高時 (75%和81.25%),層壓型鐵電場效電晶體的記憶體視窗變異度會較單層鐵電場效電晶體高;當元件通道尺寸微縮至40 nm × 40 nm時,層壓型鐵電場效電晶體在無論較高或較低的鐵電百分比下,層壓型鐵電場效電晶體的記憶體視窗之變異度都能夠較傳統單層鐵電場效電晶體小,由此可知,層壓型鐵電場效電晶體在尺寸持續微縮的趨勢下能夠改善記憶體視窗之變異度。
接著,本篇論文探討鐵電場效電晶體做為突觸元件之特性,觀察隨機相位分布對突觸的權重校正線性度,可以從結果發現,讀取電壓從0.5V增加至0.9V,線性度會逐漸上升,而當讀取電壓為0.9V時,達到最理想(最接近零)的線性度,最佳線性度所對應到的讀取電壓會落在次臨界區和超臨界區的交界。另外,增加讀取電壓從0.5V增加至0.9V,鐵電百分比為50%和75%下,層壓型鐵電場效電晶體的線性度以及線性度之變異度皆較單層鐵電場效電晶體為理想,更適合用於模擬深度神經網絡。
zh_TW
dc.description.abstractFerroelectric Field-Effect Transistors (FeFETs) are emerging non-volatile memory devices with advantages such as compatibility with CMOS processes and the potential for multi-bit storage through ferroelectric material properties. Consequently, they are considered promising for in-memory computation within deep neural networks, serving as synapses and exhibiting adjustable weight characteristics. However, the variability of FeFETs due to ferroelectric material effects has become a significant concern.
This paper addresses the impact of random phase distribution on the variability of laminated ferroelectric field-effect transistors. Using MATLAB, random distributions of ferroelectric-dielectric phase grains are generated and applied to TCAD software to simulate devices with different ferroelectric percentages. The variations in laminated ferroelectric field-effect transistors are analyzed under various ferroelectric percentages and compared with traditional single-layer ferroelectric field-effect transistors.
Ferroelectric field-effect transistors find applications in memory and synaptic devices. This paper first investigates the performance of ferroelectric field-effect transistors in memory applications. The memory Window (MW) is a crucial electrical indicator for ferroelectric memory, and the results show that for a device channel size of 80 nm × 80 nm, compared to single-layer ferroelectric field-effect transistors, laminated ferroelectric field-effect transistors exhibit improvements of 15.4% and 41% in MW variation for lower ferroelectric percentages (50% and 62.5%), and higher MW variation for higher ferroelectric percentages (75% and 81.25%). When the device channel size scales down to 40 nm × 40 nm, laminated ferroelectric field-effect transistors consistently show smaller MW variations than traditional single-layer ferroelectric field-effect transistors, regardless of the ferroelectric percentage. This indicates that laminated ferroelectric field-effect transistors can mitigate MW variation trends as the size continues to decrease.
Furthermore, this paper explores the characteristics of ferroelectric field-effect transistors as synaptic devices. The influence of random phase distribution on the linearity correction of synaptic weights is examined. The results show that increasing the read voltage from 0.5V to 0.9V gradually improves linearity, with the most ideal linearity achieved at 0.9V. The optimal linearity corresponds to the boundary between the subthreshold and superthreshold regions. Additionally, under ferroelectric percentages of 50% and 75%, increasing the read voltage to 0.9V results in better linearity and reduced variability in linearity for laminated ferroelectric field-effect transistors compared to single-layer counterparts, making them more suitable for simulating deep neural networks.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:19:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:19:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 I
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 XII
第一章 導論 1
1.1 背景與相關研究 1
1.2 鐵電場效電晶體(FERROELECTRIC-FET) 2
1.2.1 鐵電材料 2
1.2.2 鐵電記憶體之種類 3
1.2.3 鐵電場效電晶體之操作 5
1.2.4 記憶體視窗 6
1.2.5 鐵電模型介紹 7
1.3 層壓型鐵電場效電晶體(LAMINATED FEFET) 9
1.3.1 結構介紹 9
1.3.2 文獻探討 10
1.4 鐵電場效電晶體之變異度 13
1.5 突觸元件應用 18
1.5.1 鐵電突觸元件 18
1.5.2 權重線性模型 20
1.5.3 鐵電場效電晶體之權重校正 21
1.6 研究動機 23
1.7 論文架構 24
第二章 隨機相位分布對層壓型鐵電場效電晶體記憶體視窗變異度影響 25
2.1 前言 25
2.2 模擬方法與元件結構參數 26
2.3 層壓型與單層鐵電場效電晶體之變異度分析 28
2.4 有無介面層對變異度之影響 35
2.5 面積對變異度之影響 40
2.5.1 不同晶粒大小 40
2.5.2 微縮通道 44
2.6 應用較大的寫入電壓克服記憶體視窗之缺陷 45
2.7 金屬功函數對變異度之影響 47
第三章 隨機相位分布對層壓型鐵電場效電晶體之線性度影響 50
3.1 前言 50
3.2 元件結構及模擬參數 51
3.3 突觸線性度的擬合流程 52
3.4 層壓型與單層鐵電場效電晶體之線性度分析 54
3.4.1 讀取電壓對線性度之影響 54
3.4.2 隨機相位分布對線性度之影響 58
3.5 線性度對NEUROSIM中訓練準確率之影響 66
第四章 總結與未來展望 67
4.1 總結 67
4.2 未來展望 68
參考文獻 69
-
dc.language.isozh_TW-
dc.subject鐵電場效電晶體zh_TW
dc.subject層壓型zh_TW
dc.subject變異度zh_TW
dc.subject線性度zh_TW
dc.subject記憶體視窗zh_TW
dc.subjectmemory windowen
dc.subjectlinearityen
dc.subjectvariabilityen
dc.subjectferroelectric field-effect transistoren
dc.subjectlaminateden
dc.title分析隨機相位分佈對於層壓型鐵電場效電晶體 記憶體變異度之影響zh_TW
dc.titleAnalyzing the Influence of Random Phase Distribution on Variability in Laminated FeFET Memoryen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇俊榮;胡振國zh_TW
dc.contributor.oralexamcommitteeChun-Jung Su;Jenn-Gwo Huen
dc.subject.keyword層壓型,鐵電場效電晶體,記憶體視窗,線性度,變異度,zh_TW
dc.subject.keywordlaminated,ferroelectric field-effect transistor,memory window,linearity,variability,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202304301-
dc.rights.note未授權-
dc.date.accepted2023-12-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved