請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91637完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明穗 | zh_TW |
| dc.contributor.advisor | Ming-Sui Lee | en |
| dc.contributor.author | 沈立淞 | zh_TW |
| dc.contributor.author | Li-Sung Shen | en |
| dc.date.accessioned | 2024-02-20T16:19:32Z | - |
| dc.date.available | 2024-02-21 | - |
| dc.date.copyright | 2024-02-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-29 | - |
| dc.identifier.citation | [1] B. Bergner, C. Lippert, and A. Mahendran. Iterative patch selection for high- resolution image recognition. arXiv preprint arXiv:2210.13007, 2022.
[2] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J. Vert, and F. Bach. Learning with differentiable pertubed optimizers. In Advances in Neural Information Processing Systems (NeurIPS), 2020. [3] G. Campanella, M. Hanna, and L. e. a. Geneslaw. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine, 2019. [4] R. J. Chen, C. Chen, Y. Li, T. Y. Chen, A. D. Trister, R. G. Krishnan, and F. Mahmood. Scaling vision transformers to gigapixel images via hierarchical self- supervised learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. [5] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for con- trastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020. [6] J. Cordonnier, A. Mahendran, and A. Dosovitskiy. Differentiable patch selection for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.47 doi:10.6342/NTU202400261 [7] O. Dehaene, A. Camara, O. Moindrot, A. de Lavergne, and P. Courtiol. Self- super- vision closes the gap between weak and strong supervision in histology. [8] O. Dehaene, A. Camara, O. Moindrot, A. de Lavergne, and P. Courtiol. Self- supervision closes the gap between weak and strong supervision in histology. arXiv preprint arXiv:2012.03583, 2020. [9] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, and E. Buchatskaya. Bootstrap your own latent: A new approach to self-supervised learning, 2020. [10] D. J. Ho, D. V. Y. andTimothy M. D''Alfonso, and M. G. Hanna. Deep multi-magnification networks for multi-class breast cancer image segmentation. Computerized Medical Imaging and Graphics, 88, 2021. [11] M. Ilse, J. M. Tomczak, and M. Welling. Attention-based deep multiple instance learning. arXiv preprint arXiv:1802.04712, 2018. [12] A. Katharopoulos and F. Fleuret. Processing megapixel images with deep attention- sampling models. In International Conference on Machine Learning, 36, 2019. [13] S.KongandR.Henao.Efficientclassificationofverylargeimageswithtinyobjects. [14] B. Li, Y. Li, and K. W. Eliceiri. Dual-stream multiple instance learning net- work for whole slide image classification with self-supervised contrastive learn- ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14318–14328, 2021. [15] J. Li, W. Li, A. Sisk, H. Ye, W. D. Wallace, W. Speier, and C. W. Arnold. A multi- resolution model for histopathology image classification and localization with mul- tiple instance learning. Computers in Biology and Medicine, 131, 2021.48 doi:10.6342/NTU202400261 [16] M.V.MandLerousseau,E.Deutsch,andN.Paragios.Sparseconvolutionalcontext- aware multiple instance learning for whole slide image classification. MICCAI Workshop on Computational Pathology, 2021. [17] A. Myronenko, Z. Xu, D. Yang, H. Roth, and D. Xu. Accounting for dependencies in deep learning based multiple instance learning for whole slide imaging. MICCAI, 2021. [18] P. Pati, G. Jaume, A. Foncubierta-Rodríguez, F. Feroce, and A. M. Anniciello. Hi- erarchical graph representations in digital pathology. Medical Image Analysis, 75, 2022. [19] Z. Shao, H. Bian, Y. Chen, Y. Wang, J. Zhang, and Ji. Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Advances in Neural Information Processing Systems, 34:2136–2147, 2021. [20] K. Thandiackal, B. Chen, P. Pati, G. Jaume, D. F. Williamson, M. Gabrani, and O. Goksel. Differentiable zooming for multiple instance learning on whole-slide images. In The European Conference on Computer Vision (ECCV), 2022. [21] H. Tokunaga, Y. Teramoto, A. Yoshizawa, and R. Bise. Adaptive weighting multi- field-of-view cnn for semantic segmentation in pathology. in ieee conference on computer vision and pattern recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12597–12606, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91637 | - |
| dc.description.abstract | 嗜酸性慢性鼻竇炎(Eosinophilic Chronic Rhinosinusitis, ECRS)是一種涉及鼻部的慢性免疫系統疾病,其特徵是免疫系統失調導致異常數量的嗜酸性白血球聚集在鼻部和鼻竇的部分區域。可能的症狀包括鼻塞、鼻瘜肉的生長、嗅覺衰退以及鼻涕倒流等等。診斷ECRS需要去計算鼻部組織切片的嗜酸性白血球數量。透過計算數量,除了可以得知確診與否,也可以以白血球數量數值的高低來作為目前的恢復狀況。
目前基於全切片醫學影像之研究主要集中於腫瘤分類與細胞圖像分割。近年來透過深度學習與多示例學習的發展得到了重大的改進。然而在嗜酸性白血球數量估計的題目中,目前鮮有研究進行。其最主要的原因在於全切片醫學影像資料的不足以及嗜酸性白血球圖片標記的不易。因此我們基於多示例學習在腫瘤分類中的重大突破,提出了一個快速選取感興趣區域的方法來加速。此外,為了增進醫師在做嗜酸性白血球圖片標記的效率,本研究提出了以補丁形式作為細胞標註單位的方式來減少醫師做資料標記的負擔。本研究使用台大醫院耳鼻喉科所提供之資料集來作為訓練與測試,最終達到在全切片影像中快速得到分類結果與高準確率的研究成果。 | zh_TW |
| dc.description.abstract | Eosinophilic Chronic Rhinosinusitis (ECRS) is a chronic immune system disorder affecting the nasal passages. Its hallmark is an immune system imbalance leading to an abnormal accumulation of eosinophils in specific areas of the nose and sinuses. Symptoms may include nasal congestion, the growth of nasal polyps, diminished sense of smell, and postnasal drip. Diagnosing ECRS involves calculating the quantity of eosinophils in nasal tissue slices. This quantitative assessment not only aids in confirming the diagnosis but also serves as an indicator of the current recovery status based on eosinophil count levels.
Current research in whole medical imaging primarily focuses on tumor classification and cell image segmentation. Advances in deep learning and multi-instance learning in recent years have significantly improved these areas. However, there is a scarcity of research in the estimation of eosinophil counts, primarily due to insufficient data in whole-slide medical images and the difficulty in annotating eosinophil images. Building on the breakthroughs in multi-instance learning for tumor classification, our study proposes a rapid region of interest selection method to expedite the process. Additionally, to enhance efficiency in annotating eosinophil images, this research suggests using patch-based cell labeling to reduce the burden on medical professionals. The dataset provided by the Department of Otolaryngology at National Taiwan University Hospital is utilized for training and testing purposes. Ultimately, our study aims to achieve rapid classification results with high accuracy in whole-slide images of eosinophilic chronic rhinosinusitis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:19:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-20T16:19:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements iii
摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xv Chapter 1 Introduction 1 1.1 Motivation ............................... 1 1.2 Contribution .............................. 6 1.3 ThesisOrganization .......................... 7 Chapter 2 Related Work 9 2.1 Multiple Instance Learning in Histopathology .......................... 9 2.2 ROI Selection with Multiple Instance Learning .......................... 11 Chapter 3 Method 15 3.1 ProblemDefinition........................... 15 3.2 OverallSystem............................. 16 3.3 MediumRegionSelector........................ 17 3.3.1 Slide-LevelMultipleInstanceLearning ........................18 3.3.2 FeatureExtractor ........................... 22 3.4 CandidateSelector ........................... 23 3.4.1 CandidateDatasetPreparation .................... 23 3.4.2 BinaryCandidateClassifier...................... 28 3.5 Patch-wiseCountingModule...................... 29 3.5.1 Patch-LevelMultipleInstanceLearning ...................... 29 3.5.2 ResultsIntegration .......................... 31 Chapter 4 Experiment 35 4.1 Training Dataset, Metric and Implementation Detail ................35 4.1.1 EosinophilsWSIDataset ....................... 35 4.1.2 CandidateImageDataset ....................... 35 4.1.3 PatchDataset ............................. 36 4.1.4 EvaluationMetric........................... 36 4.1.5 ImplementationDetail ........................ 37 4.2 Results ................................. 37 4.2.1 ResultsofCandidateClassifier .................... 37 4.2.2 ResultsofPatchClassifier ...................... 38 4.2.3 ResultsofMediumRegionSelector ................. 38 4.2.4 ResultsofOverallSystem....................... 39 4.2.5 QualitativeResults .......................... 40 4.3 AblationStudy ............................. 42 4.3.1 ImpactofTop-K............................ 42 4.3.2 EffectivenessofCandidateSelection................. 42 Chapter 5 Conclusion 45 References 47 | - |
| dc.language.iso | en | - |
| dc.subject | 多示例學習 | zh_TW |
| dc.subject | 全切片影像 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 醫學影像 | zh_TW |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | Medical Image | en |
| dc.subject | Computer Vision | en |
| dc.subject | Multiple Instance Learning | en |
| dc.subject | Whole Slide Image | en |
| dc.title | 基於多示例學習之高效階層式感興趣區域檢測於全切片影像中的嗜酸性白血球數量估計 | zh_TW |
| dc.title | Efficient Hierarchical ROI Detection for Eosinophils Estimation in Whole Slide Images via Multiple Instance Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 胡敏君;林怡岑 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Chun Hu;Yi-Tsen Lin | en |
| dc.subject.keyword | 全切片影像,多示例學習,電腦視覺,醫學影像,深度學習, | zh_TW |
| dc.subject.keyword | Whole Slide Image,Multiple Instance Learning,Computer Vision,Medical Image,Deep Learning, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202400261 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-01-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | - |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
