Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光華zh_TW
dc.contributor.advisorKuang-Hua Chenen
dc.contributor.author史修竹zh_TW
dc.contributor.authorHsiu-Chu Shihen
dc.date.accessioned2024-02-20T16:18:24Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2024-
dc.date.submitted2024-01-29-
dc.identifier.citation卜小蝶(2002)。使用者導向之圖書分類關聯分析研究。圖書資訊學刊,17,81-94。
吳安琪(2001)。利用資料探勘的技術及統計的方法增強圖書館的經營與服務(碩士論文)。取自https://hdl.handle.net/11296/3hmq5s
余明哲(2003)。圖書館個人化館藏推薦系統(碩士論文)。取自https://hdl.handle.net/11296/s8vph5
呂家賢(2005)。運用資料探勘技術於大學圖書館圖書資源推廣利用之研究(碩士論文)。取自https://hdl.handle.net/11296/w7k84a
邱宏彬、湯鎰聰、陳揮明(2005)。數位圖書館個人化檢索與推薦服務之設計與實作。資訊管理研究,5,1-23。
唐牧群、吳宛青(2009)。由透鏡理論看大學圖書館讀者選書決策過程。圖書資訊學刊,7(1/2),37-52。
蔡秀滿與莊宛螢(2007)。使用加權移動視窗模式之圖書資料探勘。電腦學刊,17(4),79-96。
戴玉旻(2002)。圖書館借閱記錄探勘系統(碩士論文)。取自https://hdl.handle.net/11296/hgj6h8
謝宜瑾、唐牧群(2013)。從透鏡模式探討影響讀者尋書滿意度之因素─以 aNobii 為例。圖書資訊學研究,8(1),69-119。
羅子文(2007)。Web2.0概念的圖書館個人化推薦系統(碩士論文)。取自https://hdl.handle.net/11296/4uam4c
Adomavicius, G., & Tuzhilin, A. (2001). Extending recommender systems: A multidimensional approach. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-01), Workshop on Intelligent Techniques for Web Personalization (ITWP2001).
Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS), 23(1), 103–145. doi: 10.1145/1055709.1055714
Adomavicius, G., & Tuzhilin, A. (2005.) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
Geng, H., Deng, X., & Ali, H. H. (2008). Message Passing Clustering (MPC): a knowledge-based framework for clustering under biological constraints. International Journal of Data Mining and Bioinformatics, 2(2), 95-120.
Han, J., Kamber, M., Pei, J. (Eds.). (2012). Data Mining: Concepts and Techniques. (3rd Edition). doi: 10.1016/B978-0-12-381479-1.00010-1.
Lai, Y., & Zeng, J. (2013). A cross-language personalized recommendation model in digital libraries. The Electronic Library, 31(3), 264–277. doi:10.1108/EL-08-2011-0126
Liao, I E., Hsu, W. C., Cheng, M. S., & Chen, L. P. (2010). A library recommender system based on a personal ontology model and collaborative filtering technique for English collections. The Electronic Library, 28(3), 386-400.
Lopes, G. R., Souto, M. A.M., Wives, L. K., & de Oliveira, J. P. M. (2008). A personalized recommender system for digital libraries. Proceedings of the 14th Brazilian Symposium on Multimedia and the Web - WebMedia 2008 (pp. 59-66). doi:10.1145/1666091.1666103
Lops, P., Jannach, D., Musto, C., Bogers, T., & Koolen, M. (2019). Trends in content-based recommendation. User Modeling and User-Adapted Interaction, 29(2), 239-249. doi: 10.1007/s11257-019-09231-w
Mansur, F., Patel, V., & Patel, M. (2017). A review on recommender systems. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1-6. doi: 10.1109/ICIIECS.2017.8276182
Melville, P., Mooney, R. J., & Nagarajan, R. (2002.) Content-boosted collaborative filtering for improved recommendations. Proceedings of the 18th National Conference on Artificial Intelligence (AAAI ''02), 187–192. Retrieved from https://www.aaai.org/Papers/AAAI/2002/AAAI02-029.pdf
Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text categorization. Proceedings of the Fifth ACM Conference on Digital Libraries, 195–204. doi: 10.1145/336597.336662
Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), 10059-10072. doi: 10.1016/j.eswa.2012.02.038
Pazzani, M.J., & Billsus, D. (2007). Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds) Lecture Notes in Computer Science: The Adaptive Web. (pp. 325-341). doi: 10.1007/978-3-540-72079-9_10
Pham, M. C., Cao, Y., Klamma, R., & Jarke, M. (2011). A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis. Journal of Universal Computer Science (j-jucs), 17(4). 583-604.
Rahman, M. M. (2013). Contextual Recommender Systems Using a Multidimensional Approach. International Journal of Intelligent Information Systems, 2(4), 55-63. doi: 10.11648/j.ijiis.20130204.11
Rajagopal, S., & Kwan, A. (2012). Book Recommendation System using Data Mining for the University of Hong Kong Libraries. In B. Fox (Chair), CITE Research Symposium 2012 (CITERS 2012). Symposium conducted at the meeting of CITE (Centre for Information Technology in Education) and Faculty of Education, HKU Hong Kong. Retrieved from http://hub.hku.hk/handle/10722/164694
Sirikayon, C., Thusaranon, P., & Pongtawevirat, P. (2018). A collaborative filtering based library book recommendation system. Proceedings of 2018 5th International Conference on Business and Industrial Research (ICBIR), 106-109. doi: 10.1109/ICBIR.2018.8391175
Su, X., & Khoshgoftaar, T. M. (2009). A Survey of Collaborative Filtering Techniques. Advances in Artificial Intelligence, 2009, 1–19. doi: 10.1155/2009/421425
Zhang, F. (2016). A Personalized Time-Sequence-Based Book Recommendation Algorithm for Digital Libraries. IEEE Access, 4, 2714–2720. doi: 10.1109/ACCESS.2016.2564997
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91633-
dc.description.abstract推薦系統(Recommendation System)是圖書館協助使用者篩選資料的一種工具,但因多數資料缺乏使用紀錄,使得推薦系統面臨資料稀疏等問題,影響推薦效能。本研究以臺北市立圖書館的書目資料和2013至2018年的借閱紀錄為基礎,選擇「題名」、「作者」、「分類號」、「主題標目」、「出版社」等5種書目資料,提出以書目資料作為中介之混和推薦方法,檢視其預測效果。
本研究以2013年至2017年的借閱紀錄為訓練資料集、2018年借閱紀錄為答案資料集,將訓練資料集的書籍借閱紀錄轉換為書目資料借閱紀錄,再依據書目資料的共被借閱率以Message Passing Clustering(MPC)分群方法進行階層分群,建構5個單種書目資料的相似度矩陣。利用相似度矩陣將個人借閱紀錄轉為興趣特徵,得出預測結果。最後與答案資料集中同一人之借閱紀錄相比較,透過預測分數、預測結果餘弦相似度與前N名預測結果評估5種書目各自與整合的預測結果。
評估結果顯示「主題標目」與「出版社」的整體預測分數最佳,單次借閱均分大於5.5,但是前20名預測結果中,「題名」、「作者」成功預測答案資料集的次數較多,分別有2萬5,939次與6,841次。考量真實情境下使用者的認知負荷,且「題名」、「作者」與「出版社」預測結果之排序成高度相關,建議選擇預測成功次數較多的「題名」取代「作者」,並將「出版社」的預測結果作為補充。此外,「主題標目」預測結果與其他4種書目資料呈低度相關,亦可提供使用者不同面向的新資訊。本研究針對書目資料用於混和推薦系統之結果可提供未來書籍推薦方法研究以及實務運用之參考。
zh_TW
dc.description.abstractRecommendation system is a tool that libraries can assist users to filter data. Lack of usage records for most data leads to challenges, such as data sparsity. This study proposes a hybrid recommendation method based on the Taipei Public Library borrowing records from 2013 to 2018. Five types of bibliographic data: title, author, classification number, subject heading, and publisher, were selected as intermediaries to deal with data sparsity issues.
This study transformed borrowing records to bibliographic data borrowing records. Then, it hierarchically clustered these bibliographic data by co-borrowed rates with the Message Passing Clustering (MPC) method. The clustered results were utilized to construct 5 similarity matrices for each type of bibliographic data. Personal records were converted into interest features by these matrices and obtain predictions. Finally, the predictions of each type of bibliographic data and the integrated predictions were evaluated based on prediction score, cosine similarity, and the top N predictions.
The results show that "subject heading" and "publisher" have better prediction scores. Average scores of records are above 5.5. However, within the top 20 predictions, "title" and "author" are better, with 25,939 and 6,841 success predictions, respectively. Considering user''s cognitive load and high correlation between "title," "author," and "publisher," this study suggest to use "title," which has more success predictions, rather than "author." "Publisher" can be used as a supplementary source. Additionally, since the predictions of "subject heading" are less correlated with the other four types of bibliographic data, it can provide users some different perspectives of new information. The results of this study on using bibliographic data in hybrid recommendation system can serve as a reference for future research and practical applications in book recommendation methods.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:18:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:18:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要……………………………………………………………………………………i
Abstract……………………………………………………………………………………ii
謝辭……………………………………………………………………………………iii
目次…………………………………………………………………………………v
圖次…………………………………………………………………………………vii
表次…………………………………………………………………………………viii
第一章、緒論…………………………………………………………………………1
第一節、研究動機………………………………………………………………1
第二節、研究目的與研究問題…………………………………………………4
第三節、研究範圍與限制………………………………………………………5
第二章、文獻回顧……………………………………………………………………7
第一節、推薦系統………………………………………………………………7
第二節、基於內容推薦方法……………………………………………………9
第三節、協力過濾推薦方法…………………………………………………10
第四節、分群方法……………………………………………………………14
第五節、多因素協力過濾推薦方法…………………………………………17
第六節、圖書館的推薦系統相關研究………………………………………17
第三章、研究方法…………………………………………………………………21
第一節、研究對象……………………………………………………………21
第二節、研究流程……………………………………………………………22
第四章、研究結果…………………………………………………………………37
第一節、實驗流程……………………………………………………………37
第二節、個人興趣特徵與答案資料集之相似性……………………………39
第三節、預測排名……………………………………………………………42
第四節、書目資料預測排名相關性…………………………………………43
第五章、結論與建議………………………………………………………………49
第一節、研究結論……………………………………………………………49
第二節、未來研究之建議……………………………………………………51
參考文獻……………………………………………………………………………53
-
dc.language.isozh_TW-
dc.subject協力過濾zh_TW
dc.subject書目資訊zh_TW
dc.subject階層分群zh_TW
dc.subject混合推薦模型zh_TW
dc.subject書目資料zh_TW
dc.subjectHybrid Recommendation Methoden
dc.subjectBibliographic Dataen
dc.subjectCollaborative Filteringen
dc.subjectHierarchical Clusteringen
dc.subjectBibliographic Informationen
dc.title書目資料為中介的協力過濾式推薦於圖書館之應用zh_TW
dc.titleApplication of Collaborative Filtering Recommendation Mediated by Bibliographic Data in Libraryen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee唐牧群;楊東謀;蕭宗銘zh_TW
dc.contributor.oralexamcommitteeMuh-Chyun Tang;Tung-Mou Yang;Tsung-Ming Hsiaoen
dc.subject.keyword混合推薦模型,協力過濾,書目資料,書目資訊,階層分群,zh_TW
dc.subject.keywordHybrid Recommendation Method,Collaborative Filtering,Bibliographic Data,Bibliographic Information,Hierarchical Clustering,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202400232-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-30-
dc.contributor.author-college文學院-
dc.contributor.author-dept圖書資訊學系-
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf1.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved